Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model
•Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relat...
Saved in:
| Published in | Aquatic toxicology Vol. 142-143; pp. 114 - 122 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
15.10.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0166-445X 1879-1514 1879-1514 |
| DOI | 10.1016/j.aquatox.2013.08.003 |
Cover
| Abstract | •Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relatively little variability amongst individual test organisms is indicated.
The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. |
|---|---|
| AbstractList | The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. •Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relatively little variability amongst individual test organisms is indicated. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αᵢ) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r²=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H⁺, Al, Cu, Zn, Cd, Pb and UO₂ were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αᵢ, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO₂)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations. |
| Author | Tipping, E. Lofts, S. |
| Author_xml | – sequence: 1 givenname: E. surname: Tipping fullname: Tipping, E. email: et@ceh.ac.uk – sequence: 2 givenname: S. surname: Lofts fullname: Lofts, S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23994673$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFz1CAYhhmnjt1Wf4LK0UtiCBASPXR2OrZ1pp0ebMfeGAJflJ1sSIHo7r8v26wevKxc4PC8Hy8PJ-hocAMg9JYUOSlI9XGVq8dJRbfJy4LQvKjzoqAv0ILUoskIJ-wILRJXZYzxh2N0EsKqSKtkzSt0XNKmYZWgCwQ3EFWP13YTJw84zbPaxm064Of5VuPWuqiwHXCvWufTlX6LYTOCt2sYYviEl-PYW51YN2DX4fgT8Per5U12cXf7gNfOQP8avexUH-DNfj9F9xdf7s6vsuvby6_ny-tM05rRDBQwQyhoorVQhDZ1UxveQUsqVqmSt6ptusYIYUpRawWcl8qImjaq1NyIlp6iap47DaPa_lZ9L8dUU_mtJIXceZMrufcmd95kUcvkLQU_zMHRu8cJQpRrGzT0vRrATUESnmBOBeOHUcaqWhBWVgl9t0endg3mb5c_-hPweQa0dyF46GSS_ywyemX7g6X5P-n_fez7OdcpJ9UPb4O8_5YAVqQMI82u-NlMQPqsXxa8DNrCoMFYDzpK4-yBO54AeaLP8A |
| CitedBy_id | crossref_primary_10_1002_etc_2824 crossref_primary_10_1002_etc_3999 crossref_primary_10_1016_j_chemosphere_2016_12_017 crossref_primary_10_1007_s11356_016_7034_1 crossref_primary_10_1002_etc_3332 crossref_primary_10_1002_etc_4563 crossref_primary_10_1002_etc_3437 crossref_primary_10_1016_j_aquatox_2015_01_032 crossref_primary_10_1002_etc_2688 crossref_primary_10_1002_etc_2820 crossref_primary_10_1002_etc_5038 crossref_primary_10_1002_etc_5533 crossref_primary_10_1002_etc_2642 crossref_primary_10_1002_etc_2862 crossref_primary_10_1016_j_ecoenv_2020_111346 crossref_primary_10_1080_10643389_2020_1862560 crossref_primary_10_1016_j_watres_2017_10_031 crossref_primary_10_1002_etc_4560 crossref_primary_10_1016_j_chemosphere_2014_11_003 crossref_primary_10_1016_j_jhazmat_2019_121940 crossref_primary_10_1016_j_aquatox_2023_106503 crossref_primary_10_1016_j_envpol_2017_04_001 crossref_primary_10_1016_j_envpol_2013_11_012 crossref_primary_10_3390_antibiotics11101362 crossref_primary_10_1021_acs_est_5b05133 crossref_primary_10_1007_s11783_017_0916_8 crossref_primary_10_1021_acs_est_6b06608 crossref_primary_10_1007_s11356_015_5130_2 crossref_primary_10_1002_etc_2773 crossref_primary_10_1002_etc_2792 crossref_primary_10_1002_etc_4057 crossref_primary_10_1021_acs_est_7b06554 crossref_primary_10_1002_etc_3204 crossref_primary_10_1080_15376516_2017_1351019 crossref_primary_10_3389_fmicb_2016_01728 crossref_primary_10_1016_j_scitotenv_2014_07_023 crossref_primary_10_1016_j_aquatox_2024_107169 crossref_primary_10_1016_j_aquatox_2020_105708 crossref_primary_10_1080_10643389_2017_1321476 crossref_primary_10_1021_acs_est_6b03195 crossref_primary_10_1016_j_chemosphere_2015_06_057 crossref_primary_10_1016_j_aquatox_2019_04_022 crossref_primary_10_1038_s41598_017_00449_5 crossref_primary_10_1016_j_chemosphere_2018_02_097 |
| Cites_doi | 10.1016/j.aquatox.2013.02.007 10.1016/S0016-7037(01)00587-7 10.1021/es048947e 10.1021/es000253s 10.1016/j.jcis.2005.01.015 10.1007/s10498-008-9040-5 10.1016/j.chemosphere.2012.02.052 10.1897/07-425.1 10.1002/tox.20348 10.1002/etc.5620190332 10.1016/j.envint.2006.05.007 10.1016/j.envpol.2008.05.010 10.1016/0043-1354(95)00019-H 10.1007/BF00008374 10.1897/02-593 10.1002/etc.5620210628 10.1139/f93-154 10.1016/j.aquatox.2010.07.018 10.1002/etc.556 10.1016/j.aquatox.2004.01.017 10.1071/EN11016 10.1016/j.chemosphere.2005.04.089 10.1016/0098-3004(94)90038-8 10.1080/10807030801934929 10.1002/etc.5620220322 10.1002/etc.5620130115 10.1152/physrev.00050.2003 10.1016/j.envpol.2004.02.010 10.1897/05-243R.1 10.1016/j.envpol.2008.03.001 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.aquatox.2013.08.003 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Ecology |
| EISSN | 1879-1514 |
| EndPage | 122 |
| ExternalDocumentID | 10.1016/j.aquatox.2013.08.003 23994673 10_1016_j_aquatox_2013_08_003 US201400164196 S0166445X13001987 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W KOM LW9 LY9 M34 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCU SDF SDG SDP SEN SES SPCBC SSA SSZ T5K TN5 ~02 ~G- ~KM 6TJ AAHBH AALCJ AAQXK AATTM AAXKI ABFNM ABGRD ABWVN ACRPL ADMUD ADNMO AEGFY AEIPS AFJKZ AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV EJD FBQ FEDTE FGOYB G-2 HLV HMT HVGLF HZ~ R2- SEW SPT SSH WUQ AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c3843-eae4d13ec1cc7a139898d5feb1646a25bab9f9d77d278cae552ad7839a2c5d7b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0166-445X 1879-1514 |
| IngestDate | Tue Aug 19 20:43:01 EDT 2025 Sat Sep 27 19:47:23 EDT 2025 Sun Sep 28 11:16:09 EDT 2025 Thu Apr 03 06:52:30 EDT 2025 Wed Oct 01 03:07:21 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Thu Apr 03 09:44:01 EDT 2025 Fri Feb 23 02:31:14 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chemical speciation Aquatic organisms WHAM-FTOX Toxicity WHAM Metals WHAM-F(TOX) |
| Language | English |
| License | Copyright © 2013 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3843-eae4d13ec1cc7a139898d5feb1646a25bab9f9d77d278cae552ad7839a2c5d7b3 |
| Notes | http://dx.doi.org/10.1016/j.aquatox.2013.08.003 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0166445X13001987 |
| PMID | 23994673 |
| PQID | 1446871426 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_aquatox_2013_08_003 proquest_miscellaneous_1501353745 proquest_miscellaneous_1446871426 pubmed_primary_23994673 crossref_citationtrail_10_1016_j_aquatox_2013_08_003 crossref_primary_10_1016_j_aquatox_2013_08_003 fao_agris_US201400164196 elsevier_sciencedirect_doi_10_1016_j_aquatox_2013_08_003 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Oct-15 |
| PublicationDateYYYYMMDD | 2013-10-15 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-Oct-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Aquatic toxicology |
| PublicationTitleAlternate | Aquat Toxicol |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Borgmann, Norwood, Dixon (bib0190) 2008; 14 Yee, Fein (bib0185) 2001; 65 Norwood (bib0110) 2007 Rainbow (bib0130) 2007; 33 Evans, Piermarini, Choe (bib0045) 2005; 85 Kamo, Nagai (bib0195) 2008; 27 Ivorra, Kraak, Admiraal (bib0070) 1995; 29 Stockdale, Tipping, Fjellheim, Garmo, Hildrew, Lofts, Monteith, Ormerod, Shilland (bib0145) 2013 Couillard, Grapentine, Borgmann, Doylea, Masson (bib0030) 2008; 156 Antunes, Scornaienchi, Roshon (bib0005) 2012; 88 Jho, An, Nam (bib0080) 2011; 30 Kooijman (bib0085) 1996 Stockdale, Tipping, Lofts, Ormerod, Clements, Blust (bib0140) 2010; 100 Hassler, Wilkinson (bib0050) 2003; 22 Borgmann, Norwood, Clarke (bib0010) 1993; 259 Preston, Coad, Townend, Killham, Paton (bib9190) 2000; 19 Tipping, Vincent, Lawlor, Lofts (bib0170) 2008; 156 Borgmann, Norwood, Dixon (bib0015) 2004; 131 De Schamphelaere, Janssen (bib0040) 2004; 23 Paquin, Gorsuch, Apte, Batley, Bowles, Campbell, Delos, Di Toro, Dwyer, Galvez, Gensemer, Goss, Hogstrand, Janssen, McGeer, Naddy, Playle, Santore, Schneider, Stubblefield, Wood, Wua (bib0120) 2002; 133 Tipping, Lofts, Sonke (bib0175) 2011; 8 Iwasaki, Cadmus, Clements (bib0075) 2013; 132–133 Borrock, Fein (bib0020) 2005; 286 Kraak, Lavy, Schoon, Toussaint, Peeters, van Straalen (bib0090) 1994; 13 Heijerick, De Schamphelaere, Janssen (bib0060) 2002; 21 Shaw, Dempsey, Chen, Hamilton, Folt (bib0135) 2006; 25 Charles, Markich, Ralph (bib0025) 2006; 62 Newman, Ungar (bib0105) 2003 Tipping (bib0155) 1994; 20 Hickie, Hutchinson, Dixon, Hodson (bib0065) 1993; 50 Playle (bib0125) 2004; 67 Lofts, Tipping, Hamilton-Taylor (bib0095) 2008; 14 De Schamphelaere, Janssen (bib0035) 2002; 36 Luoma, Rainbow (bib0100) 2005; 39 Hatano, Shoji (bib0055) 2008; 23 Jho (10.1016/j.aquatox.2013.08.003_bib0080) 2011; 30 Norwood (10.1016/j.aquatox.2013.08.003_bib0110) 2007 Hickie (10.1016/j.aquatox.2013.08.003_bib0065) 1993; 50 Rainbow (10.1016/j.aquatox.2013.08.003_bib0130) 2007; 33 Couillard (10.1016/j.aquatox.2013.08.003_bib0030) 2008; 156 Stockdale (10.1016/j.aquatox.2013.08.003_bib0145) 2013 Borgmann (10.1016/j.aquatox.2013.08.003_bib0190) 2008; 14 Paquin (10.1016/j.aquatox.2013.08.003_bib0120) 2002; 133 Yee (10.1016/j.aquatox.2013.08.003_bib0185) 2001; 65 Antunes (10.1016/j.aquatox.2013.08.003_bib0005) 2012; 88 De Schamphelaere (10.1016/j.aquatox.2013.08.003_bib0035) 2002; 36 Iwasaki (10.1016/j.aquatox.2013.08.003_bib0075) 2013; 132–133 Newman (10.1016/j.aquatox.2013.08.003_bib0105) 2003 Preston (10.1016/j.aquatox.2013.08.003_bib9190) 2000; 19 Kooijman (10.1016/j.aquatox.2013.08.003_bib0085) 1996 Luoma (10.1016/j.aquatox.2013.08.003_bib0100) 2005; 39 Playle (10.1016/j.aquatox.2013.08.003_bib0125) 2004; 67 Evans (10.1016/j.aquatox.2013.08.003_bib0045) 2005; 85 Shaw (10.1016/j.aquatox.2013.08.003_bib0135) 2006; 25 Borrock (10.1016/j.aquatox.2013.08.003_bib0020) 2005; 286 Heijerick (10.1016/j.aquatox.2013.08.003_bib0060) 2002; 21 Tipping (10.1016/j.aquatox.2013.08.003_bib0170) 2008; 156 Borgmann (10.1016/j.aquatox.2013.08.003_bib0010) 1993; 259 Charles (10.1016/j.aquatox.2013.08.003_bib0025) 2006; 62 Tipping (10.1016/j.aquatox.2013.08.003_bib0155) 1994; 20 Stockdale (10.1016/j.aquatox.2013.08.003_bib0140) 2010; 100 Lofts (10.1016/j.aquatox.2013.08.003_bib0095) 2008; 14 Borgmann (10.1016/j.aquatox.2013.08.003_bib0015) 2004; 131 Ivorra (10.1016/j.aquatox.2013.08.003_bib0070) 1995; 29 De Schamphelaere (10.1016/j.aquatox.2013.08.003_bib0040) 2004; 23 Tipping (10.1016/j.aquatox.2013.08.003_bib0175) 2011; 8 Kamo (10.1016/j.aquatox.2013.08.003_bib0195) 2008; 27 Hatano (10.1016/j.aquatox.2013.08.003_bib0055) 2008; 23 Kraak (10.1016/j.aquatox.2013.08.003_bib0090) 1994; 13 Hassler (10.1016/j.aquatox.2013.08.003_bib0050) 2003; 22 |
| References_xml | – volume: 30 start-page: 1697 year: 2011 end-page: 1703 ident: bib0080 article-title: Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data publication-title: Environ. Toxicol. Chem. – volume: 131 start-page: 469 year: 2004 end-page: 484 ident: bib0015 article-title: Re-evaluation of metal bioaccumulation and chronic toxicity in publication-title: Environ. Pollut. – year: 2007 ident: bib0110 article-title: Metal mixture toxicity to – volume: 33 start-page: 576 year: 2007 end-page: 582 ident: bib0130 article-title: Trace metal bioaccumulation: models, metabolic activity and toxicity publication-title: Environ. Int. – year: 2003 ident: bib0105 article-title: Fundamentals of Ecotoxicology – volume: 85 start-page: 97 year: 2005 end-page: 177 ident: bib0045 article-title: The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste publication-title: Physiol. Rev – volume: 36 start-page: 48 year: 2002 end-page: 54 ident: bib0035 article-title: A Biotic Ligand Model predicting acute copper toxicity for publication-title: Environ. Sci. Technol. – volume: 14 start-page: 266 year: 2008 end-page: 289 ident: bib0190 article-title: Modelling bioaccumulation and toxicity of metal mixtures publication-title: Human Ecol. Risk Assess. – year: 2013 ident: bib0145 article-title: Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model publication-title: Ecol. Indicat. – volume: 39 start-page: 1921 year: 2005 end-page: 1931 ident: bib0100 article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept publication-title: Environ. Sci. Technol. – volume: 156 start-page: 936 year: 2008 end-page: 943 ident: bib0170 article-title: Metal accumulation by stream bryophytes, related to chemical speciation publication-title: Environ. Pollut. – volume: 23 start-page: 1115 year: 2004 end-page: 1122 ident: bib0040 article-title: Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to publication-title: Environ. Toxicol. Chem. – volume: 23 start-page: 372 year: 2008 end-page: 378 ident: bib0055 article-title: Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model publication-title: Environ. Toxicol. – volume: 156 start-page: 1314 year: 2008 end-page: 1324 ident: bib0030 article-title: The amphipod publication-title: Environ. Pollut. – volume: 133 start-page: 3 year: 2002 end-page: 35 ident: bib0120 article-title: The biotic ligand model: a historical overview publication-title: Comp. Biochem. Physiol. Part C – volume: 25 start-page: 182 year: 2006 end-page: 189 ident: bib0135 article-title: Comparative toxicity of cadmium, zinc and mixtures of cadmium and zinc to daphnids publication-title: Environ. Toxicol. Chem. – volume: 100 start-page: 112 year: 2010 end-page: 119 ident: bib0140 article-title: Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability publication-title: Aquat. Toxicol. – volume: 21 start-page: 1309 year: 2002 end-page: 1315 ident: bib0060 article-title: Predicting acute zinc toxicity for publication-title: Environ. Toxicol. Chem. – volume: 88 start-page: 389 year: 2012 end-page: 394 ident: bib0005 article-title: Copper toxicity to publication-title: Chemosphere – volume: 50 start-page: 1348 year: 1993 end-page: 1355 ident: bib0065 article-title: Toxicity of trace metal mixtures to alevin rainbow trout ( publication-title: Can. J. Fish. Aq. Sci. – volume: 29 start-page: 2113 year: 1995 end-page: 2117 ident: bib0070 article-title: Use of lake water in testing copper toxicity to desmid species publication-title: Water Res. – volume: 13 start-page: 109 year: 1994 end-page: 114 ident: bib0090 article-title: Ecotoxicity of mixtures of metals to the zebra mussel publication-title: Environ. Toxicol. Chem. – volume: 67 start-page: 359 year: 2004 end-page: 370 ident: bib0125 article-title: Using multiple metal–gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results publication-title: Aquat. Toxicol. – volume: 22 start-page: 620 year: 2003 end-page: 626 ident: bib0050 article-title: Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by publication-title: Environ. Toxicol. Chem. – volume: 259 start-page: 79 year: 1993 end-page: 89 ident: bib0010 article-title: Accumulation, regulation and toxicity of copper, zinc, lead and mercury in publication-title: Hydrobiologia – volume: 20 start-page: 973 year: 1994 end-page: 1023 ident: bib0155 article-title: WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances publication-title: Comp. Geosci. – volume: 8 start-page: 225 year: 2011 end-page: 235 ident: bib0175 article-title: Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances publication-title: Environ. Chem. – volume: 14 start-page: 337 year: 2008 end-page: 358 ident: bib0095 article-title: The chemical speciation of Fe(III) in freshwaters publication-title: Aquat. Geochem. – volume: 27 start-page: 1479 year: 2008 end-page: 1487 ident: bib0195 article-title: An application of the biotic ligand model to predict the toxic effects of metal mixtures publication-title: Environ. Toxicol. Chem. – volume: 286 start-page: 110 year: 2005 end-page: 126 ident: bib0020 article-title: The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models publication-title: J. Colloid Interface Sci. – volume: 19 start-page: 775 year: 2000 end-page: 780 ident: bib9190 article-title: Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? publication-title: Environ. Toxicol. Chem. – year: 1996 ident: bib0085 article-title: Toxic effects as process perturbations. Chapter 2 publication-title: The Analysis of Aquatic Toxicity Data – volume: 132–133 start-page: 151 year: 2013 end-page: 156 ident: bib0075 article-title: Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms publication-title: Aquat. Toxicol. – volume: 62 start-page: 1224 year: 2006 end-page: 1233 ident: bib0025 article-title: Toxicity of uranium and copper individually and in combination, to a tropical freshwater macrophyte ( publication-title: Chemosphere – volume: 65 start-page: 2037 year: 2001 end-page: 2042 ident: bib0185 article-title: Cd adsorption onto bacterial surfaces: a universal adsorption edge? publication-title: Geochim. Cosmochim. Acta – volume: 132–133 start-page: 151 year: 2013 ident: 10.1016/j.aquatox.2013.08.003_bib0075 article-title: Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.02.007 – volume: 65 start-page: 2037 year: 2001 ident: 10.1016/j.aquatox.2013.08.003_bib0185 article-title: Cd adsorption onto bacterial surfaces: a universal adsorption edge? publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00587-7 – volume: 39 start-page: 1921 year: 2005 ident: 10.1016/j.aquatox.2013.08.003_bib0100 article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept publication-title: Environ. Sci. Technol. doi: 10.1021/es048947e – volume: 36 start-page: 48 year: 2002 ident: 10.1016/j.aquatox.2013.08.003_bib0035 article-title: A Biotic Ligand Model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH publication-title: Environ. Sci. Technol. doi: 10.1021/es000253s – year: 2013 ident: 10.1016/j.aquatox.2013.08.003_bib0145 article-title: Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model publication-title: Ecol. Indicat. – volume: 286 start-page: 110 year: 2005 ident: 10.1016/j.aquatox.2013.08.003_bib0020 article-title: The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.01.015 – volume: 14 start-page: 337 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0095 article-title: The chemical speciation of Fe(III) in freshwaters publication-title: Aquat. Geochem. doi: 10.1007/s10498-008-9040-5 – volume: 88 start-page: 389 year: 2012 ident: 10.1016/j.aquatox.2013.08.003_bib0005 article-title: Copper toxicity to Lemna minor modelled using humic acid as a surrogate for the plant root publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.02.052 – volume: 27 start-page: 1479 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0195 article-title: An application of the biotic ligand model to predict the toxic effects of metal mixtures publication-title: Environ. Toxicol. Chem. doi: 10.1897/07-425.1 – year: 2003 ident: 10.1016/j.aquatox.2013.08.003_bib0105 – volume: 23 start-page: 372 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0055 article-title: Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model publication-title: Environ. Toxicol. doi: 10.1002/tox.20348 – year: 2007 ident: 10.1016/j.aquatox.2013.08.003_bib0110 – volume: 133 start-page: 3 year: 2002 ident: 10.1016/j.aquatox.2013.08.003_bib0120 article-title: The biotic ligand model: a historical overview publication-title: Comp. Biochem. Physiol. Part C – volume: 19 start-page: 775 year: 2000 ident: 10.1016/j.aquatox.2013.08.003_bib9190 article-title: Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620190332 – volume: 33 start-page: 576 year: 2007 ident: 10.1016/j.aquatox.2013.08.003_bib0130 article-title: Trace metal bioaccumulation: models, metabolic activity and toxicity publication-title: Environ. Int. doi: 10.1016/j.envint.2006.05.007 – volume: 156 start-page: 936 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0170 article-title: Metal accumulation by stream bryophytes, related to chemical speciation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.05.010 – year: 1996 ident: 10.1016/j.aquatox.2013.08.003_bib0085 article-title: Toxic effects as process perturbations. Chapter 2 – volume: 29 start-page: 2113 year: 1995 ident: 10.1016/j.aquatox.2013.08.003_bib0070 article-title: Use of lake water in testing copper toxicity to desmid species publication-title: Water Res. doi: 10.1016/0043-1354(95)00019-H – volume: 259 start-page: 79 year: 1993 ident: 10.1016/j.aquatox.2013.08.003_bib0010 article-title: Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella azteca publication-title: Hydrobiologia doi: 10.1007/BF00008374 – volume: 23 start-page: 1115 year: 2004 ident: 10.1016/j.aquatox.2013.08.003_bib0040 article-title: Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna publication-title: Environ. Toxicol. Chem. doi: 10.1897/02-593 – volume: 21 start-page: 1309 year: 2002 ident: 10.1016/j.aquatox.2013.08.003_bib0060 article-title: Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620210628 – volume: 50 start-page: 1348 year: 1993 ident: 10.1016/j.aquatox.2013.08.003_bib0065 article-title: Toxicity of trace metal mixtures to alevin rainbow trout (Oncorhynchus mykiss) and larval fathead minnow (Pimephales promelas) in soft, acidic water publication-title: Can. J. Fish. Aq. Sci. doi: 10.1139/f93-154 – volume: 100 start-page: 112 year: 2010 ident: 10.1016/j.aquatox.2013.08.003_bib0140 article-title: Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.07.018 – volume: 30 start-page: 1697 year: 2011 ident: 10.1016/j.aquatox.2013.08.003_bib0080 article-title: Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.556 – volume: 67 start-page: 359 issue: 2004 year: 2004 ident: 10.1016/j.aquatox.2013.08.003_bib0125 article-title: Using multiple metal–gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2004.01.017 – volume: 8 start-page: 225 year: 2011 ident: 10.1016/j.aquatox.2013.08.003_bib0175 article-title: Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances publication-title: Environ. Chem. doi: 10.1071/EN11016 – volume: 62 start-page: 1224 year: 2006 ident: 10.1016/j.aquatox.2013.08.003_bib0025 article-title: Toxicity of uranium and copper individually and in combination, to a tropical freshwater macrophyte (Lemna aequinoctialis) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.04.089 – volume: 20 start-page: 973 year: 1994 ident: 10.1016/j.aquatox.2013.08.003_bib0155 article-title: WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances publication-title: Comp. Geosci. doi: 10.1016/0098-3004(94)90038-8 – volume: 14 start-page: 266 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0190 article-title: Modelling bioaccumulation and toxicity of metal mixtures publication-title: Human Ecol. Risk Assess. doi: 10.1080/10807030801934929 – volume: 22 start-page: 620 year: 2003 ident: 10.1016/j.aquatox.2013.08.003_bib0050 article-title: Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620220322 – volume: 13 start-page: 109 year: 1994 ident: 10.1016/j.aquatox.2013.08.003_bib0090 article-title: Ecotoxicity of mixtures of metals to the zebra mussel Dreissena polymorpha publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620130115 – volume: 85 start-page: 97 year: 2005 ident: 10.1016/j.aquatox.2013.08.003_bib0045 article-title: The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste publication-title: Physiol. Rev doi: 10.1152/physrev.00050.2003 – volume: 131 start-page: 469 year: 2004 ident: 10.1016/j.aquatox.2013.08.003_bib0015 article-title: Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2004.02.010 – volume: 25 start-page: 182 year: 2006 ident: 10.1016/j.aquatox.2013.08.003_bib0135 article-title: Comparative toxicity of cadmium, zinc and mixtures of cadmium and zinc to daphnids publication-title: Environ. Toxicol. Chem. doi: 10.1897/05-243R.1 – volume: 156 start-page: 1314 year: 2008 ident: 10.1016/j.aquatox.2013.08.003_bib0030 article-title: The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.03.001 |
| SSID | ssj0000249 |
| Score | 2.301871 |
| Snippet | •Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic... The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear... |
| SourceID | unpaywall proquest pubmed crossref fao elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114 |
| SubjectTerms | Animals Aquatic Organisms Aquatic Organisms - drug effects bacteria Bacteria - drug effects binding sites cations Chemical speciation Chlorophyta Chlorophyta - drug effects drug effects fish invertebrates Invertebrates - drug effects macrophytes Metals Metals - toxicity Models, Biological protons Toxicity toxicity testing Toxicity Tests Toxicity Tests - standards Water Pollutants, Chemical Water Pollutants, Chemical - toxicity WHAM WHAM-FTOX |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJDT2gGB8rGwgI_GapknsOOGtqlZVSIWHraJv1sV2UKaSdFurrS_727nLRwsCMcRbEsWK7bvc_U6-ux9jH5waQJwogbFJBJ7IE-dBDs4LEmXRHUPgEqp3nn6OJzPxaS7ne2zU1cJQWmVr-xubXlvr9onf7qa_LAr_HMEKOnM5pwMZCp2pgl0oYjHo3-_SPKglXtPfO_bo7V0Vj3_Zh6s1hrZ3lOEV1Z08O-6s3_3ToxyqP6HQQ3awLpewuYXF4ifPNH7GnraQkg-bWT9ne648YgejjsntiD0-q1tTb14wN3UItvn34o4ODjhOqjAIw_GC15MsDM-KagW8KHmrHtX1hu9oAG4-8uHuyJtXOUcAyb9OhlNvfPFlzmtinZdsNj67GE28lmjBM1EiIs-BEzaInAmMUYCYMEkTK3M047GIIZQZZGmeWqVsqBIDTsoQrEJoBaGRVmXRK7ZfVqU7ZjwHjD9AZDK1TgyyFNJMpYgqTB4662zcY6LbXm3aLuREhrHQXbrZpW6lokkqmkgyB1GP9bfDlk0bjocGJJ3s9C_6pNFVPDT0GGWt4RtaWT07DykGpUZkaKt67H2nABplSGcrULpqfaMprMbYE_HOX96RA2IZUUL22OtGe7aLoRJj9Fn4cX-rTv-20jf_v9IT9oTuyBUH8pTtr67X7i1irFX2rv6JfgB_XSPx priority: 102 providerName: Elsevier |
| Title | Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model |
| URI | https://dx.doi.org/10.1016/j.aquatox.2013.08.003 https://www.ncbi.nlm.nih.gov/pubmed/23994673 https://www.proquest.com/docview/1446871426 https://www.proquest.com/docview/1501353745 https://www.sciencedirect.com/science/article/pii/S0166445X13001987 |
| UnpaywallVersion | publishedVersion |
| Volume | 142-143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-1514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: AKRWK dateStart: 19810401 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB41iVDhwKM8Gh7RInF1Etu7XptbFDUKoASkNiKcrPHuGrkEO7SJaDnw25mN7YSXKIibbe3IGs94vm80uzMAz4zsYxBKTrmJjw5PQ-NgisZxQ6kJjtE1oT3vPJkG4xl_ORfzPRjWZ2Hstsoq9pcxfROtqye96mv2llnWOyayQmAu5rYgY1PnBrQCQYS8Ca3Z9M3gXdnVO3DsGpt2hTJyCN_47hxP77SLn9aU3F7YPV7-ppdnPT3rV4RqpFj8jofegP11vsTLz7hYfIdNo1uga63KLSkfuutV0lVffmr4-J9q34abFXdlg3LdHdgz-QHsD-uRcQdw7WjTA_vyLpiJIVbPPmYXtkLBSPdMEd-nC7b5FpliSVaskGU5q_ywOLtku3kD58_ZYFdbZ0XKiKmyt-PBxBmdvJ6zzQSfezAbHZ0Mx0410cFRfsh9x6Dh2vWNcpWSSOQzjEItUsKLgAfoiQSTKI20lNqToUIjhIdaEodDTwktE_8-NPMiN4fAUqREB3kiIm14P4kwSmRE5lWpZ7TRQRt4bcVYVe3O7dSNRVzvazuNK-PH1vixncbZ99vQ3Yoty34fVwmEtYvEP1gwJky6SvSQXCrG9xTO49mxZ5Nd2_GMgmIbntZ-FpMNbREHc1Osz2Obv1OSS8TqD2tE344zkVy04UHppFtl7FlmAkd6eW_rtX-n6cN_lngE1-2dhXpXPIbm6mxtnhCHWyUdaHS_uh1oDV68Gk871R_7DT43Rwk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RSjlgKA8Gp6LxNVxbO96bW5R1ChAUw5NRG6r8XqNXAU7bRPRXPjtzPqRgEAUcbNsr7y7M575Pu08AN4a2ccwkpy4SYAOzyLjYIbG8SKZkjtGz0Q233lyFo5n_MNczPdg2ObC2LDKxvbXNr2y1s0dt9lNd5nn7jmBFXLmYm4PZCx13oc7XPjSMrDe912ch62JVxf4Dh37-i6Nx73o4eWauO2NDfEKqlKebfOs3x3Ufobln2DoPeisiyVuvuFi8ZNrGj2A-w2mZIN62g9hzxRH0Bm2rdyO4O5JVZt68wjMxBDaZl_zG3tywGhSuSYcThesmmSuWZKXK2R5wRr9KK82bNcH4PodG-zOvFmZMUKQ7PN4MHFG009zVnXWeQyz0cl0OHaaTguODiIeOAYNT73AaE9riQQKozhKRUZ2POQh-iLBJM7iVMrUl5FGI4SPqSRshb4WqUyCJ3BQlIU5BpYhERDkiYhTw_tJjHEiY4IVOvNNatKwC7zdXqWbMuS2G8ZCtfFmF6qRirJSUbZLZj_oQm87bFnX4bhtQNTKTv2iUIp8xW1Dj0nWCr-QmVWzc9-SUFuJjIxVF960CqBIhvZwBQtTrq-V5dVEPgnw_OUd0bdtRiQXXXhaa892MTbHmJwWfdzdqtO_rfTZ_6_0NXTG08mpOn1_9vE5HNon1i974gUcrK7W5iUBrlXyqvqhfgAysicU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tndDGAx-DsfIlI_GatknsOOGtqlZVSB1IW0V5si62gzJKUrZWrPz1nJuk5UsMxFsS-RRd7nK_3-nsO4CXVvYwiiWn3CREj2ex9TBD6_mxNATH6NvYnXcen0ajCX89FdMdGDRnYdy2yjr2VzF9Ha3rJ936a3bned49I7JCYC6mriDjUudd2IsEEfIW7E1O3_bfV129I8-tcWlXLBOP8I1vz_F0Lzr4eUnJ7bXb4xWue3k207N-RajdDMvf8dDbsL8s5rj6grPZd9g0vAum0arakvKxs1ykHf31p4aP_6n2PbhTc1fWr9bdhx1bHML-oBkZdwi3TtY9sFcPwI4tsXr2Kb92FQpGuuea-D5dsPW3yDVL83KBLC9Y7Yfl5Ypt5w1cvWL9bW2dlRkjpsrejfpjb3j-ZsrWE3wewmR4cj4YefVEB0-HMQ89i5YbP7Ta11oikc84iY3ICC8iHmEgUkyTLDFSmkDGGq0QARpJHA4DLYxMwyNoFWVhj4FlSIkO8lQkxvJemmCSyoTMq7PAGmuiNvDGikrX7c7d1I2Zava1Xaja-MoZX7lpnL2wDZ2N2Lzq93GTQNy4iPrBgoow6SbRY3IphR8onKvJWeCSXdfxjIJiG140fqbIhq6Ig4Utl1fK5e-U5BKx-sMa0XPjTCQXbXhUOelGGXeWmcCRXt7deO3fafr4nyWewIG7c1Dvi6fQWlwu7TPicIv0ef2PfgNyyER9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+mixture+toxicity+to+aquatic+biota+in+laboratory+experiments%3A+application+of+the+WHAM-FTOX+model&rft.jtitle=Aquatic+toxicology&rft.au=Tipping%2C+E&rft.au=Lofts%2C+S&rft.date=2013-10-15&rft.eissn=1879-1514&rft.volume=142-143&rft.spage=114&rft_id=info:doi/10.1016%2Fj.aquatox.2013.08.003&rft_id=info%3Apmid%2F23994673&rft.externalDocID=23994673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-445X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-445X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-445X&client=summon |