Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model

•Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relat...

Full description

Saved in:
Bibliographic Details
Published inAquatic toxicology Vol. 142-143; pp. 114 - 122
Main Authors Tipping, E., Lofts, S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.10.2013
Subjects
Online AccessGet full text
ISSN0166-445X
1879-1514
1879-1514
DOI10.1016/j.aquatox.2013.08.003

Cover

Abstract •Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relatively little variability amongst individual test organisms is indicated. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
AbstractList The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
•Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic potency of individual bound metals is quantified by fitting toxicity data.•Eleven laboratory mixture toxicity data sets were parameterised.•Relatively little variability amongst individual test organisms is indicated. The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r2=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H+, Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αᵢ) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r²=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H⁺, Al, Cu, Zn, Cd, Pb and UO₂ were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αᵢ, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn–Cu–Pb–UO₂)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient (αi) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r(2)=0.89, root mean squared deviation=0.44), supporting the use of HA binding as a proxy. Calculated loadings of H(+), Al, Cu, Zn, Cd, Pb and UO2 were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-FTOX gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of αi, the toxicity of bound cations can tentatively be ranked in the order: H<Al<(Zn-Cu-Pb-UO2)<Cd. The WHAM-FTOX analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to encapsulate knowledge contained within laboratory data, thereby permitting its application to field situations.
Author Tipping, E.
Lofts, S.
Author_xml – sequence: 1
  givenname: E.
  surname: Tipping
  fullname: Tipping, E.
  email: et@ceh.ac.uk
– sequence: 2
  givenname: S.
  surname: Lofts
  fullname: Lofts, S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23994673$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFz1CAYhhmnjt1Wf4LK0UtiCBASPXR2OrZ1pp0ebMfeGAJflJ1sSIHo7r8v26wevKxc4PC8Hy8PJ-hocAMg9JYUOSlI9XGVq8dJRbfJy4LQvKjzoqAv0ILUoskIJ-wILRJXZYzxh2N0EsKqSKtkzSt0XNKmYZWgCwQ3EFWP13YTJw84zbPaxm064Of5VuPWuqiwHXCvWufTlX6LYTOCt2sYYviEl-PYW51YN2DX4fgT8Per5U12cXf7gNfOQP8avexUH-DNfj9F9xdf7s6vsuvby6_ny-tM05rRDBQwQyhoorVQhDZ1UxveQUsqVqmSt6ptusYIYUpRawWcl8qImjaq1NyIlp6iap47DaPa_lZ9L8dUU_mtJIXceZMrufcmd95kUcvkLQU_zMHRu8cJQpRrGzT0vRrATUESnmBOBeOHUcaqWhBWVgl9t0endg3mb5c_-hPweQa0dyF46GSS_ywyemX7g6X5P-n_fez7OdcpJ9UPb4O8_5YAVqQMI82u-NlMQPqsXxa8DNrCoMFYDzpK4-yBO54AeaLP8A
CitedBy_id crossref_primary_10_1002_etc_2824
crossref_primary_10_1002_etc_3999
crossref_primary_10_1016_j_chemosphere_2016_12_017
crossref_primary_10_1007_s11356_016_7034_1
crossref_primary_10_1002_etc_3332
crossref_primary_10_1002_etc_4563
crossref_primary_10_1002_etc_3437
crossref_primary_10_1016_j_aquatox_2015_01_032
crossref_primary_10_1002_etc_2688
crossref_primary_10_1002_etc_2820
crossref_primary_10_1002_etc_5038
crossref_primary_10_1002_etc_5533
crossref_primary_10_1002_etc_2642
crossref_primary_10_1002_etc_2862
crossref_primary_10_1016_j_ecoenv_2020_111346
crossref_primary_10_1080_10643389_2020_1862560
crossref_primary_10_1016_j_watres_2017_10_031
crossref_primary_10_1002_etc_4560
crossref_primary_10_1016_j_chemosphere_2014_11_003
crossref_primary_10_1016_j_jhazmat_2019_121940
crossref_primary_10_1016_j_aquatox_2023_106503
crossref_primary_10_1016_j_envpol_2017_04_001
crossref_primary_10_1016_j_envpol_2013_11_012
crossref_primary_10_3390_antibiotics11101362
crossref_primary_10_1021_acs_est_5b05133
crossref_primary_10_1007_s11783_017_0916_8
crossref_primary_10_1021_acs_est_6b06608
crossref_primary_10_1007_s11356_015_5130_2
crossref_primary_10_1002_etc_2773
crossref_primary_10_1002_etc_2792
crossref_primary_10_1002_etc_4057
crossref_primary_10_1021_acs_est_7b06554
crossref_primary_10_1002_etc_3204
crossref_primary_10_1080_15376516_2017_1351019
crossref_primary_10_3389_fmicb_2016_01728
crossref_primary_10_1016_j_scitotenv_2014_07_023
crossref_primary_10_1016_j_aquatox_2024_107169
crossref_primary_10_1016_j_aquatox_2020_105708
crossref_primary_10_1080_10643389_2017_1321476
crossref_primary_10_1021_acs_est_6b03195
crossref_primary_10_1016_j_chemosphere_2015_06_057
crossref_primary_10_1016_j_aquatox_2019_04_022
crossref_primary_10_1038_s41598_017_00449_5
crossref_primary_10_1016_j_chemosphere_2018_02_097
Cites_doi 10.1016/j.aquatox.2013.02.007
10.1016/S0016-7037(01)00587-7
10.1021/es048947e
10.1021/es000253s
10.1016/j.jcis.2005.01.015
10.1007/s10498-008-9040-5
10.1016/j.chemosphere.2012.02.052
10.1897/07-425.1
10.1002/tox.20348
10.1002/etc.5620190332
10.1016/j.envint.2006.05.007
10.1016/j.envpol.2008.05.010
10.1016/0043-1354(95)00019-H
10.1007/BF00008374
10.1897/02-593
10.1002/etc.5620210628
10.1139/f93-154
10.1016/j.aquatox.2010.07.018
10.1002/etc.556
10.1016/j.aquatox.2004.01.017
10.1071/EN11016
10.1016/j.chemosphere.2005.04.089
10.1016/0098-3004(94)90038-8
10.1080/10807030801934929
10.1002/etc.5620220322
10.1002/etc.5620130115
10.1152/physrev.00050.2003
10.1016/j.envpol.2004.02.010
10.1897/05-243R.1
10.1016/j.envpol.2008.03.001
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.aquatox.2013.08.003
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1514
EndPage 122
ExternalDocumentID 10.1016/j.aquatox.2013.08.003
23994673
10_1016_j_aquatox_2013_08_003
US201400164196
S0166445X13001987
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
KOM
LW9
LY9
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCU
SDF
SDG
SDP
SEN
SES
SPCBC
SSA
SSZ
T5K
TN5
~02
~G-
~KM
6TJ
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
ABFNM
ABGRD
ABWVN
ACRPL
ADMUD
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
EJD
FBQ
FEDTE
FGOYB
G-2
HLV
HMT
HVGLF
HZ~
R2-
SEW
SPT
SSH
WUQ
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c3843-eae4d13ec1cc7a139898d5feb1646a25bab9f9d77d278cae552ad7839a2c5d7b3
IEDL.DBID UNPAY
ISSN 0166-445X
1879-1514
IngestDate Tue Aug 19 20:43:01 EDT 2025
Sat Sep 27 19:47:23 EDT 2025
Sun Sep 28 11:16:09 EDT 2025
Thu Apr 03 06:52:30 EDT 2025
Wed Oct 01 03:07:21 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Thu Apr 03 09:44:01 EDT 2025
Fri Feb 23 02:31:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chemical speciation
Aquatic organisms
WHAM-FTOX
Toxicity
WHAM
Metals
WHAM-F(TOX)
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3843-eae4d13ec1cc7a139898d5feb1646a25bab9f9d77d278cae552ad7839a2c5d7b3
Notes http://dx.doi.org/10.1016/j.aquatox.2013.08.003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0166445X13001987
PMID 23994673
PQID 1446871426
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_aquatox_2013_08_003
proquest_miscellaneous_1501353745
proquest_miscellaneous_1446871426
pubmed_primary_23994673
crossref_citationtrail_10_1016_j_aquatox_2013_08_003
crossref_primary_10_1016_j_aquatox_2013_08_003
fao_agris_US201400164196
elsevier_sciencedirect_doi_10_1016_j_aquatox_2013_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Oct-15
PublicationDateYYYYMMDD 2013-10-15
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-Oct-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Aquatic toxicology
PublicationTitleAlternate Aquat Toxicol
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Borgmann, Norwood, Dixon (bib0190) 2008; 14
Yee, Fein (bib0185) 2001; 65
Norwood (bib0110) 2007
Rainbow (bib0130) 2007; 33
Evans, Piermarini, Choe (bib0045) 2005; 85
Kamo, Nagai (bib0195) 2008; 27
Ivorra, Kraak, Admiraal (bib0070) 1995; 29
Stockdale, Tipping, Fjellheim, Garmo, Hildrew, Lofts, Monteith, Ormerod, Shilland (bib0145) 2013
Couillard, Grapentine, Borgmann, Doylea, Masson (bib0030) 2008; 156
Antunes, Scornaienchi, Roshon (bib0005) 2012; 88
Jho, An, Nam (bib0080) 2011; 30
Kooijman (bib0085) 1996
Stockdale, Tipping, Lofts, Ormerod, Clements, Blust (bib0140) 2010; 100
Hassler, Wilkinson (bib0050) 2003; 22
Borgmann, Norwood, Clarke (bib0010) 1993; 259
Preston, Coad, Townend, Killham, Paton (bib9190) 2000; 19
Tipping, Vincent, Lawlor, Lofts (bib0170) 2008; 156
Borgmann, Norwood, Dixon (bib0015) 2004; 131
De Schamphelaere, Janssen (bib0040) 2004; 23
Paquin, Gorsuch, Apte, Batley, Bowles, Campbell, Delos, Di Toro, Dwyer, Galvez, Gensemer, Goss, Hogstrand, Janssen, McGeer, Naddy, Playle, Santore, Schneider, Stubblefield, Wood, Wua (bib0120) 2002; 133
Tipping, Lofts, Sonke (bib0175) 2011; 8
Iwasaki, Cadmus, Clements (bib0075) 2013; 132–133
Borrock, Fein (bib0020) 2005; 286
Kraak, Lavy, Schoon, Toussaint, Peeters, van Straalen (bib0090) 1994; 13
Heijerick, De Schamphelaere, Janssen (bib0060) 2002; 21
Shaw, Dempsey, Chen, Hamilton, Folt (bib0135) 2006; 25
Charles, Markich, Ralph (bib0025) 2006; 62
Newman, Ungar (bib0105) 2003
Tipping (bib0155) 1994; 20
Hickie, Hutchinson, Dixon, Hodson (bib0065) 1993; 50
Playle (bib0125) 2004; 67
Lofts, Tipping, Hamilton-Taylor (bib0095) 2008; 14
De Schamphelaere, Janssen (bib0035) 2002; 36
Luoma, Rainbow (bib0100) 2005; 39
Hatano, Shoji (bib0055) 2008; 23
Jho (10.1016/j.aquatox.2013.08.003_bib0080) 2011; 30
Norwood (10.1016/j.aquatox.2013.08.003_bib0110) 2007
Hickie (10.1016/j.aquatox.2013.08.003_bib0065) 1993; 50
Rainbow (10.1016/j.aquatox.2013.08.003_bib0130) 2007; 33
Couillard (10.1016/j.aquatox.2013.08.003_bib0030) 2008; 156
Stockdale (10.1016/j.aquatox.2013.08.003_bib0145) 2013
Borgmann (10.1016/j.aquatox.2013.08.003_bib0190) 2008; 14
Paquin (10.1016/j.aquatox.2013.08.003_bib0120) 2002; 133
Yee (10.1016/j.aquatox.2013.08.003_bib0185) 2001; 65
Antunes (10.1016/j.aquatox.2013.08.003_bib0005) 2012; 88
De Schamphelaere (10.1016/j.aquatox.2013.08.003_bib0035) 2002; 36
Iwasaki (10.1016/j.aquatox.2013.08.003_bib0075) 2013; 132–133
Newman (10.1016/j.aquatox.2013.08.003_bib0105) 2003
Preston (10.1016/j.aquatox.2013.08.003_bib9190) 2000; 19
Kooijman (10.1016/j.aquatox.2013.08.003_bib0085) 1996
Luoma (10.1016/j.aquatox.2013.08.003_bib0100) 2005; 39
Playle (10.1016/j.aquatox.2013.08.003_bib0125) 2004; 67
Evans (10.1016/j.aquatox.2013.08.003_bib0045) 2005; 85
Shaw (10.1016/j.aquatox.2013.08.003_bib0135) 2006; 25
Borrock (10.1016/j.aquatox.2013.08.003_bib0020) 2005; 286
Heijerick (10.1016/j.aquatox.2013.08.003_bib0060) 2002; 21
Tipping (10.1016/j.aquatox.2013.08.003_bib0170) 2008; 156
Borgmann (10.1016/j.aquatox.2013.08.003_bib0010) 1993; 259
Charles (10.1016/j.aquatox.2013.08.003_bib0025) 2006; 62
Tipping (10.1016/j.aquatox.2013.08.003_bib0155) 1994; 20
Stockdale (10.1016/j.aquatox.2013.08.003_bib0140) 2010; 100
Lofts (10.1016/j.aquatox.2013.08.003_bib0095) 2008; 14
Borgmann (10.1016/j.aquatox.2013.08.003_bib0015) 2004; 131
Ivorra (10.1016/j.aquatox.2013.08.003_bib0070) 1995; 29
De Schamphelaere (10.1016/j.aquatox.2013.08.003_bib0040) 2004; 23
Tipping (10.1016/j.aquatox.2013.08.003_bib0175) 2011; 8
Kamo (10.1016/j.aquatox.2013.08.003_bib0195) 2008; 27
Hatano (10.1016/j.aquatox.2013.08.003_bib0055) 2008; 23
Kraak (10.1016/j.aquatox.2013.08.003_bib0090) 1994; 13
Hassler (10.1016/j.aquatox.2013.08.003_bib0050) 2003; 22
References_xml – volume: 30
  start-page: 1697
  year: 2011
  end-page: 1703
  ident: bib0080
  article-title: Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data
  publication-title: Environ. Toxicol. Chem.
– volume: 131
  start-page: 469
  year: 2004
  end-page: 484
  ident: bib0015
  article-title: Re-evaluation of metal bioaccumulation and chronic toxicity in
  publication-title: Environ. Pollut.
– year: 2007
  ident: bib0110
  article-title: Metal mixture toxicity to
– volume: 33
  start-page: 576
  year: 2007
  end-page: 582
  ident: bib0130
  article-title: Trace metal bioaccumulation: models, metabolic activity and toxicity
  publication-title: Environ. Int.
– year: 2003
  ident: bib0105
  article-title: Fundamentals of Ecotoxicology
– volume: 85
  start-page: 97
  year: 2005
  end-page: 177
  ident: bib0045
  article-title: The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste
  publication-title: Physiol. Rev
– volume: 36
  start-page: 48
  year: 2002
  end-page: 54
  ident: bib0035
  article-title: A Biotic Ligand Model predicting acute copper toxicity for
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 266
  year: 2008
  end-page: 289
  ident: bib0190
  article-title: Modelling bioaccumulation and toxicity of metal mixtures
  publication-title: Human Ecol. Risk Assess.
– year: 2013
  ident: bib0145
  article-title: Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model
  publication-title: Ecol. Indicat.
– volume: 39
  start-page: 1921
  year: 2005
  end-page: 1931
  ident: bib0100
  article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
  publication-title: Environ. Sci. Technol.
– volume: 156
  start-page: 936
  year: 2008
  end-page: 943
  ident: bib0170
  article-title: Metal accumulation by stream bryophytes, related to chemical speciation
  publication-title: Environ. Pollut.
– volume: 23
  start-page: 1115
  year: 2004
  end-page: 1122
  ident: bib0040
  article-title: Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to
  publication-title: Environ. Toxicol. Chem.
– volume: 23
  start-page: 372
  year: 2008
  end-page: 378
  ident: bib0055
  article-title: Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model
  publication-title: Environ. Toxicol.
– volume: 156
  start-page: 1314
  year: 2008
  end-page: 1324
  ident: bib0030
  article-title: The amphipod
  publication-title: Environ. Pollut.
– volume: 133
  start-page: 3
  year: 2002
  end-page: 35
  ident: bib0120
  article-title: The biotic ligand model: a historical overview
  publication-title: Comp. Biochem. Physiol. Part C
– volume: 25
  start-page: 182
  year: 2006
  end-page: 189
  ident: bib0135
  article-title: Comparative toxicity of cadmium, zinc and mixtures of cadmium and zinc to daphnids
  publication-title: Environ. Toxicol. Chem.
– volume: 100
  start-page: 112
  year: 2010
  end-page: 119
  ident: bib0140
  article-title: Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability
  publication-title: Aquat. Toxicol.
– volume: 21
  start-page: 1309
  year: 2002
  end-page: 1315
  ident: bib0060
  article-title: Predicting acute zinc toxicity for
  publication-title: Environ. Toxicol. Chem.
– volume: 88
  start-page: 389
  year: 2012
  end-page: 394
  ident: bib0005
  article-title: Copper toxicity to
  publication-title: Chemosphere
– volume: 50
  start-page: 1348
  year: 1993
  end-page: 1355
  ident: bib0065
  article-title: Toxicity of trace metal mixtures to alevin rainbow trout (
  publication-title: Can. J. Fish. Aq. Sci.
– volume: 29
  start-page: 2113
  year: 1995
  end-page: 2117
  ident: bib0070
  article-title: Use of lake water in testing copper toxicity to desmid species
  publication-title: Water Res.
– volume: 13
  start-page: 109
  year: 1994
  end-page: 114
  ident: bib0090
  article-title: Ecotoxicity of mixtures of metals to the zebra mussel
  publication-title: Environ. Toxicol. Chem.
– volume: 67
  start-page: 359
  year: 2004
  end-page: 370
  ident: bib0125
  article-title: Using multiple metal–gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results
  publication-title: Aquat. Toxicol.
– volume: 22
  start-page: 620
  year: 2003
  end-page: 626
  ident: bib0050
  article-title: Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by
  publication-title: Environ. Toxicol. Chem.
– volume: 259
  start-page: 79
  year: 1993
  end-page: 89
  ident: bib0010
  article-title: Accumulation, regulation and toxicity of copper, zinc, lead and mercury in
  publication-title: Hydrobiologia
– volume: 20
  start-page: 973
  year: 1994
  end-page: 1023
  ident: bib0155
  article-title: WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances
  publication-title: Comp. Geosci.
– volume: 8
  start-page: 225
  year: 2011
  end-page: 235
  ident: bib0175
  article-title: Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances
  publication-title: Environ. Chem.
– volume: 14
  start-page: 337
  year: 2008
  end-page: 358
  ident: bib0095
  article-title: The chemical speciation of Fe(III) in freshwaters
  publication-title: Aquat. Geochem.
– volume: 27
  start-page: 1479
  year: 2008
  end-page: 1487
  ident: bib0195
  article-title: An application of the biotic ligand model to predict the toxic effects of metal mixtures
  publication-title: Environ. Toxicol. Chem.
– volume: 286
  start-page: 110
  year: 2005
  end-page: 126
  ident: bib0020
  article-title: The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models
  publication-title: J. Colloid Interface Sci.
– volume: 19
  start-page: 775
  year: 2000
  end-page: 780
  ident: bib9190
  article-title: Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic?
  publication-title: Environ. Toxicol. Chem.
– year: 1996
  ident: bib0085
  article-title: Toxic effects as process perturbations. Chapter 2
  publication-title: The Analysis of Aquatic Toxicity Data
– volume: 132–133
  start-page: 151
  year: 2013
  end-page: 156
  ident: bib0075
  article-title: Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms
  publication-title: Aquat. Toxicol.
– volume: 62
  start-page: 1224
  year: 2006
  end-page: 1233
  ident: bib0025
  article-title: Toxicity of uranium and copper individually and in combination, to a tropical freshwater macrophyte (
  publication-title: Chemosphere
– volume: 65
  start-page: 2037
  year: 2001
  end-page: 2042
  ident: bib0185
  article-title: Cd adsorption onto bacterial surfaces: a universal adsorption edge?
  publication-title: Geochim. Cosmochim. Acta
– volume: 132–133
  start-page: 151
  year: 2013
  ident: 10.1016/j.aquatox.2013.08.003_bib0075
  article-title: Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2013.02.007
– volume: 65
  start-page: 2037
  year: 2001
  ident: 10.1016/j.aquatox.2013.08.003_bib0185
  article-title: Cd adsorption onto bacterial surfaces: a universal adsorption edge?
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00587-7
– volume: 39
  start-page: 1921
  year: 2005
  ident: 10.1016/j.aquatox.2013.08.003_bib0100
  article-title: Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048947e
– volume: 36
  start-page: 48
  year: 2002
  ident: 10.1016/j.aquatox.2013.08.003_bib0035
  article-title: A Biotic Ligand Model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000253s
– year: 2013
  ident: 10.1016/j.aquatox.2013.08.003_bib0145
  article-title: Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model
  publication-title: Ecol. Indicat.
– volume: 286
  start-page: 110
  year: 2005
  ident: 10.1016/j.aquatox.2013.08.003_bib0020
  article-title: The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.01.015
– volume: 14
  start-page: 337
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0095
  article-title: The chemical speciation of Fe(III) in freshwaters
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-008-9040-5
– volume: 88
  start-page: 389
  year: 2012
  ident: 10.1016/j.aquatox.2013.08.003_bib0005
  article-title: Copper toxicity to Lemna minor modelled using humic acid as a surrogate for the plant root
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.02.052
– volume: 27
  start-page: 1479
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0195
  article-title: An application of the biotic ligand model to predict the toxic effects of metal mixtures
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/07-425.1
– year: 2003
  ident: 10.1016/j.aquatox.2013.08.003_bib0105
– volume: 23
  start-page: 372
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0055
  article-title: Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.20348
– year: 2007
  ident: 10.1016/j.aquatox.2013.08.003_bib0110
– volume: 133
  start-page: 3
  year: 2002
  ident: 10.1016/j.aquatox.2013.08.003_bib0120
  article-title: The biotic ligand model: a historical overview
  publication-title: Comp. Biochem. Physiol. Part C
– volume: 19
  start-page: 775
  year: 2000
  ident: 10.1016/j.aquatox.2013.08.003_bib9190
  article-title: Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic?
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620190332
– volume: 33
  start-page: 576
  year: 2007
  ident: 10.1016/j.aquatox.2013.08.003_bib0130
  article-title: Trace metal bioaccumulation: models, metabolic activity and toxicity
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2006.05.007
– volume: 156
  start-page: 936
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0170
  article-title: Metal accumulation by stream bryophytes, related to chemical speciation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.05.010
– year: 1996
  ident: 10.1016/j.aquatox.2013.08.003_bib0085
  article-title: Toxic effects as process perturbations. Chapter 2
– volume: 29
  start-page: 2113
  year: 1995
  ident: 10.1016/j.aquatox.2013.08.003_bib0070
  article-title: Use of lake water in testing copper toxicity to desmid species
  publication-title: Water Res.
  doi: 10.1016/0043-1354(95)00019-H
– volume: 259
  start-page: 79
  year: 1993
  ident: 10.1016/j.aquatox.2013.08.003_bib0010
  article-title: Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella azteca
  publication-title: Hydrobiologia
  doi: 10.1007/BF00008374
– volume: 23
  start-page: 1115
  year: 2004
  ident: 10.1016/j.aquatox.2013.08.003_bib0040
  article-title: Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/02-593
– volume: 21
  start-page: 1309
  year: 2002
  ident: 10.1016/j.aquatox.2013.08.003_bib0060
  article-title: Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620210628
– volume: 50
  start-page: 1348
  year: 1993
  ident: 10.1016/j.aquatox.2013.08.003_bib0065
  article-title: Toxicity of trace metal mixtures to alevin rainbow trout (Oncorhynchus mykiss) and larval fathead minnow (Pimephales promelas) in soft, acidic water
  publication-title: Can. J. Fish. Aq. Sci.
  doi: 10.1139/f93-154
– volume: 100
  start-page: 112
  year: 2010
  ident: 10.1016/j.aquatox.2013.08.003_bib0140
  article-title: Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2010.07.018
– volume: 30
  start-page: 1697
  year: 2011
  ident: 10.1016/j.aquatox.2013.08.003_bib0080
  article-title: Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.556
– volume: 67
  start-page: 359
  issue: 2004
  year: 2004
  ident: 10.1016/j.aquatox.2013.08.003_bib0125
  article-title: Using multiple metal–gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2004.01.017
– volume: 8
  start-page: 225
  year: 2011
  ident: 10.1016/j.aquatox.2013.08.003_bib0175
  article-title: Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances
  publication-title: Environ. Chem.
  doi: 10.1071/EN11016
– volume: 62
  start-page: 1224
  year: 2006
  ident: 10.1016/j.aquatox.2013.08.003_bib0025
  article-title: Toxicity of uranium and copper individually and in combination, to a tropical freshwater macrophyte (Lemna aequinoctialis)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.04.089
– volume: 20
  start-page: 973
  year: 1994
  ident: 10.1016/j.aquatox.2013.08.003_bib0155
  article-title: WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances
  publication-title: Comp. Geosci.
  doi: 10.1016/0098-3004(94)90038-8
– volume: 14
  start-page: 266
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0190
  article-title: Modelling bioaccumulation and toxicity of metal mixtures
  publication-title: Human Ecol. Risk Assess.
  doi: 10.1080/10807030801934929
– volume: 22
  start-page: 620
  year: 2003
  ident: 10.1016/j.aquatox.2013.08.003_bib0050
  article-title: Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620220322
– volume: 13
  start-page: 109
  year: 1994
  ident: 10.1016/j.aquatox.2013.08.003_bib0090
  article-title: Ecotoxicity of mixtures of metals to the zebra mussel Dreissena polymorpha
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620130115
– volume: 85
  start-page: 97
  year: 2005
  ident: 10.1016/j.aquatox.2013.08.003_bib0045
  article-title: The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste
  publication-title: Physiol. Rev
  doi: 10.1152/physrev.00050.2003
– volume: 131
  start-page: 469
  year: 2004
  ident: 10.1016/j.aquatox.2013.08.003_bib0015
  article-title: Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2004.02.010
– volume: 25
  start-page: 182
  year: 2006
  ident: 10.1016/j.aquatox.2013.08.003_bib0135
  article-title: Comparative toxicity of cadmium, zinc and mixtures of cadmium and zinc to daphnids
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/05-243R.1
– volume: 156
  start-page: 1314
  year: 2008
  ident: 10.1016/j.aquatox.2013.08.003_bib0030
  article-title: The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.03.001
SSID ssj0000249
Score 2.301871
Snippet •Metal accumulation by living organisms is successfully simulated with WHAM.•Modelled organism-bound metal provides a measure of toxic exposure.•The toxic...
The WHAM-FTOX model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear...
SourceID unpaywall
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms Animals
Aquatic Organisms
Aquatic Organisms - drug effects
bacteria
Bacteria - drug effects
binding sites
cations
Chemical speciation
Chlorophyta
Chlorophyta - drug effects
drug effects
fish
invertebrates
Invertebrates - drug effects
macrophytes
Metals
Metals - toxicity
Models, Biological
protons
Toxicity
toxicity testing
Toxicity Tests
Toxicity Tests - standards
Water Pollutants, Chemical
Water Pollutants, Chemical - toxicity
WHAM
WHAM-FTOX
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJDT2gGB8rGwgI_GapknsOOGtqlZVSIWHraJv1sV2UKaSdFurrS_727nLRwsCMcRbEsWK7bvc_U6-ux9jH5waQJwogbFJBJ7IE-dBDs4LEmXRHUPgEqp3nn6OJzPxaS7ne2zU1cJQWmVr-xubXlvr9onf7qa_LAr_HMEKOnM5pwMZCp2pgl0oYjHo3-_SPKglXtPfO_bo7V0Vj3_Zh6s1hrZ3lOEV1Z08O-6s3_3ToxyqP6HQQ3awLpewuYXF4ifPNH7GnraQkg-bWT9ne648YgejjsntiD0-q1tTb14wN3UItvn34o4ODjhOqjAIw_GC15MsDM-KagW8KHmrHtX1hu9oAG4-8uHuyJtXOUcAyb9OhlNvfPFlzmtinZdsNj67GE28lmjBM1EiIs-BEzaInAmMUYCYMEkTK3M047GIIZQZZGmeWqVsqBIDTsoQrEJoBaGRVmXRK7ZfVqU7ZjwHjD9AZDK1TgyyFNJMpYgqTB4662zcY6LbXm3aLuREhrHQXbrZpW6lokkqmkgyB1GP9bfDlk0bjocGJJ3s9C_6pNFVPDT0GGWt4RtaWT07DykGpUZkaKt67H2nABplSGcrULpqfaMprMbYE_HOX96RA2IZUUL22OtGe7aLoRJj9Fn4cX-rTv-20jf_v9IT9oTuyBUH8pTtr67X7i1irFX2rv6JfgB_XSPx
  priority: 102
  providerName: Elsevier
Title Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model
URI https://dx.doi.org/10.1016/j.aquatox.2013.08.003
https://www.ncbi.nlm.nih.gov/pubmed/23994673
https://www.proquest.com/docview/1446871426
https://www.proquest.com/docview/1501353745
https://www.sciencedirect.com/science/article/pii/S0166445X13001987
UnpaywallVersion publishedVersion
Volume 142-143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: AKRWK
  dateStart: 19810401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB41iVDhwKM8Gh7RInF1Etu7XptbFDUKoASkNiKcrPHuGrkEO7SJaDnw25mN7YSXKIibbe3IGs94vm80uzMAz4zsYxBKTrmJjw5PQ-NgisZxQ6kJjtE1oT3vPJkG4xl_ORfzPRjWZ2Hstsoq9pcxfROtqye96mv2llnWOyayQmAu5rYgY1PnBrQCQYS8Ca3Z9M3gXdnVO3DsGpt2hTJyCN_47hxP77SLn9aU3F7YPV7-ppdnPT3rV4RqpFj8jofegP11vsTLz7hYfIdNo1uga63KLSkfuutV0lVffmr4-J9q34abFXdlg3LdHdgz-QHsD-uRcQdw7WjTA_vyLpiJIVbPPmYXtkLBSPdMEd-nC7b5FpliSVaskGU5q_ywOLtku3kD58_ZYFdbZ0XKiKmyt-PBxBmdvJ6zzQSfezAbHZ0Mx0410cFRfsh9x6Dh2vWNcpWSSOQzjEItUsKLgAfoiQSTKI20lNqToUIjhIdaEodDTwktE_8-NPMiN4fAUqREB3kiIm14P4kwSmRE5lWpZ7TRQRt4bcVYVe3O7dSNRVzvazuNK-PH1vixncbZ99vQ3Yoty34fVwmEtYvEP1gwJky6SvSQXCrG9xTO49mxZ5Nd2_GMgmIbntZ-FpMNbREHc1Osz2Obv1OSS8TqD2tE344zkVy04UHppFtl7FlmAkd6eW_rtX-n6cN_lngE1-2dhXpXPIbm6mxtnhCHWyUdaHS_uh1oDV68Gk871R_7DT43Rwk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RSjlgKA8Gp6LxNVxbO96bW5R1ChAUw5NRG6r8XqNXAU7bRPRXPjtzPqRgEAUcbNsr7y7M575Pu08AN4a2ccwkpy4SYAOzyLjYIbG8SKZkjtGz0Q233lyFo5n_MNczPdg2ObC2LDKxvbXNr2y1s0dt9lNd5nn7jmBFXLmYm4PZCx13oc7XPjSMrDe912ch62JVxf4Dh37-i6Nx73o4eWauO2NDfEKqlKebfOs3x3Ufobln2DoPeisiyVuvuFi8ZNrGj2A-w2mZIN62g9hzxRH0Bm2rdyO4O5JVZt68wjMxBDaZl_zG3tywGhSuSYcThesmmSuWZKXK2R5wRr9KK82bNcH4PodG-zOvFmZMUKQ7PN4MHFG009zVnXWeQyz0cl0OHaaTguODiIeOAYNT73AaE9riQQKozhKRUZ2POQh-iLBJM7iVMrUl5FGI4SPqSRshb4WqUyCJ3BQlIU5BpYhERDkiYhTw_tJjHEiY4IVOvNNatKwC7zdXqWbMuS2G8ZCtfFmF6qRirJSUbZLZj_oQm87bFnX4bhtQNTKTv2iUIp8xW1Dj0nWCr-QmVWzc9-SUFuJjIxVF960CqBIhvZwBQtTrq-V5dVEPgnw_OUd0bdtRiQXXXhaa892MTbHmJwWfdzdqtO_rfTZ_6_0NXTG08mpOn1_9vE5HNon1i974gUcrK7W5iUBrlXyqvqhfgAysicU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tndDGAx-DsfIlI_GatknsOOGtqlZVSB1IW0V5si62gzJKUrZWrPz1nJuk5UsMxFsS-RRd7nK_3-nsO4CXVvYwiiWn3CREj2ex9TBD6_mxNATH6NvYnXcen0ajCX89FdMdGDRnYdy2yjr2VzF9Ha3rJ936a3bned49I7JCYC6mriDjUudd2IsEEfIW7E1O3_bfV129I8-tcWlXLBOP8I1vz_F0Lzr4eUnJ7bXb4xWue3k207N-RajdDMvf8dDbsL8s5rj6grPZd9g0vAum0arakvKxs1ykHf31p4aP_6n2PbhTc1fWr9bdhx1bHML-oBkZdwi3TtY9sFcPwI4tsXr2Kb92FQpGuuea-D5dsPW3yDVL83KBLC9Y7Yfl5Ypt5w1cvWL9bW2dlRkjpsrejfpjb3j-ZsrWE3wewmR4cj4YefVEB0-HMQ89i5YbP7Ta11oikc84iY3ICC8iHmEgUkyTLDFSmkDGGq0QARpJHA4DLYxMwyNoFWVhj4FlSIkO8lQkxvJemmCSyoTMq7PAGmuiNvDGikrX7c7d1I2Zava1Xaja-MoZX7lpnL2wDZ2N2Lzq93GTQNy4iPrBgoow6SbRY3IphR8onKvJWeCSXdfxjIJiG140fqbIhq6Ig4Utl1fK5e-U5BKx-sMa0XPjTCQXbXhUOelGGXeWmcCRXt7deO3fafr4nyWewIG7c1Dvi6fQWlwu7TPicIv0ef2PfgNyyER9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+mixture+toxicity+to+aquatic+biota+in+laboratory+experiments%3A+application+of+the+WHAM-FTOX+model&rft.jtitle=Aquatic+toxicology&rft.au=Tipping%2C+E&rft.au=Lofts%2C+S&rft.date=2013-10-15&rft.eissn=1879-1514&rft.volume=142-143&rft.spage=114&rft_id=info:doi/10.1016%2Fj.aquatox.2013.08.003&rft_id=info%3Apmid%2F23994673&rft.externalDocID=23994673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-445X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-445X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-445X&client=summon