Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 30...
Saved in:
Published in | Journal of iron and steel research, international Vol. 23; no. 4; pp. 329 - 337 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.04.2016
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1006-706X 2210-3988 |
DOI | 10.1016/S1006-706X(16)30053-X |
Cover
Abstract | The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. |
---|---|
AbstractList | The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. |
Author | Tao SUN Feng YUE Hua-jie WU Chun GUO Ying LI Zhong-cun MA |
AuthorAffiliation | Metallurgical Engineering Research Institute,University of Science and Technology Beijing,Beijing 100083,China Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China Beiman Special Steel Co.,Ltd.,Qiqihaer 161041,Heilongjiang,China |
Author_xml | – sequence: 1 givenname: Tao surname: SUN fullname: SUN, Tao email: suntaoking@126.com organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Feng surname: YUE fullname: YUE, Feng email: yuefeng@nercar.ustb.edu.cn organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Hua-jie surname: WU fullname: WU, Hua-jie organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China – sequence: 4 givenname: Chun surname: GUO fullname: GUO, Chun organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China – sequence: 5 givenname: Ying surname: LI fullname: LI, Ying organization: Beiman Special Steel Co., Ltd., Qiqihaer 161041, Heilongjiang, China – sequence: 6 givenname: Zhong-cun surname: MA fullname: MA, Zhong-cun organization: Beiman Special Steel Co., Ltd., Qiqihaer 161041, Heilongjiang, China |
BookMark | eNqFkMtKAzEUhoMoWGsfQQiudDGaTGYyM7gQLfUCFcEqdBfSXGrKNKlJRvDtTS-4cNNsckLy_SfnOwGH1lkFwBlGVxhhej3BCNGsQnR6geklQagk2fQA9PIco4w0dX0Ien9PjsEghAVar4aSvO4BPXGtkUYbwaNxFk6i70TsvIJOw6Gz0djOdQEOeUjlHI65nyv45jor4b1pWxUDTLXy8MW1Eo5aJaJ3Sz63KhqR4oz3iTsFR5q3QQ12ex98PIzeh0_Z-PXxeXg3zgSpScx0M1OF4iXRqpKlLPOq1IIUYkZ5USFUiQrzpsA6L3nF63TfSER1nUs0K3CCSB-U21zhXQheabbyZsn9D8OIrX2xjS-2lsHSaeOLTRN3848TJm6MRM9Nu5emWzqs1sMqzxau8zYNuhe83YIqOfk2CQzCKCuUND6JZNKZvQnnu49_Ojv_St3_Jqa0rhHFeU5-AdU5pbM |
CitedBy_id | crossref_primary_10_1007_s42243_023_00972_y crossref_primary_10_1007_s11663_022_02544_z crossref_primary_10_3390_met13081435 crossref_primary_10_1007_s42243_023_00975_9 crossref_primary_10_1016_j_matpr_2019_07_669 crossref_primary_10_1109_ACCESS_2022_3192541 crossref_primary_10_1177_03019233241298612 crossref_primary_10_1002_srin_202200796 crossref_primary_10_1051_metal_2024029 crossref_primary_10_1007_s42243_024_01416_x crossref_primary_10_1007_s42243_021_00682_3 crossref_primary_10_1016_S1006_706X_17_30101_2 crossref_primary_10_1007_s42243_022_00778_4 crossref_primary_10_1080_03019233_2022_2106065 crossref_primary_10_1016_S1006_706X_17_30073_0 crossref_primary_10_1007_s42243_021_00600_7 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_019 crossref_primary_10_3390_met7030072 crossref_primary_10_1007_s11837_022_05542_3 crossref_primary_10_1007_s12598_018_1175_y crossref_primary_10_3390_ma17030682 crossref_primary_10_1007_s42243_021_00592_4 crossref_primary_10_1007_s42243_017_0006_y crossref_primary_10_1007_s42243_024_01374_4 crossref_primary_10_1016_j_icheatmasstransfer_2024_108155 crossref_primary_10_1080_13640461_2023_2188682 |
Cites_doi | 10.2355/isijinternational.46.903 10.1007/BF02654255 10.1016/0022-0248(88)90216-3 10.1002/srin.201000303 10.1007/s11661-999-0226-2 10.1016/0956-7151(93)90065-Z 10.2355/isijinternational.51.1448 10.4028/www.scientific.net/RC.35 10.1080/01495728008961767 10.1007/978-1-4757-3333-4_22 10.2355/isijinternational.52.1301 10.1088/0965-0393/5/4/008 10.1016/0001-6160(86)90056-8 10.1016/0020-7403(96)00052-5 10.1016/S1359-6454(99)00325-0 10.2355/tetsutohagane1955.89.2_265 10.1016/0956-7151(94)90302-6 10.1007/BF02670257 10.1002/srin.199501112 |
ContentType | Journal Article |
Copyright | 2016 Central Iron and Steel Research Institute China Iron and Steel Research Institute Group 2016 |
Copyright_xml | – notice: 2016 Central Iron and Steel Research Institute – notice: China Iron and Steel Research Institute Group 2016 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1016/S1006-706X(16)30053-X |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
DocumentTitleAlternate | Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring |
EISSN | 2210-3988 |
EndPage | 337 |
ExternalDocumentID | 10_1016_S1006_706X_16_30053_X S1006706X1630053X 668806122 |
GroupedDBID | --K --M -02 -0B -EM -SB -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92H 92I 92L 92M 92R 93N 9D9 9DB AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFNM ABFTV ABJNI ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABXRA ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFO ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AEZYN AFKWA AFNRJ AFQWF AFRZQ AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CQIGP CS3 CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IKXTQ IWAJR J-C J1W JUIAU JZLTJ KOV LLZTM M41 M4Y MAGPM MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 PC. PT4 Q-- Q38 R-B RIG RLLFE ROL RSV RT2 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SPD SRMVM SSLCW SSM SSZ STPWE T5K T8R TCJ TGT TSG U1F U1G U5B U5L UOJIU UTJUX VEKWB VFIZW W92 Z7S Z7Y Z7Z Z85 ZMTXR ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABWVN ACDTI ACPIV ACRPL ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH |
ID | FETCH-LOGICAL-c383t-f9be4ea53fe7d5d5275fc34cb6a47007c71a941f25a7a8d529d06f82d0b413fe3 |
IEDL.DBID | AIKHN |
ISSN | 1006-706X |
IngestDate | Thu Apr 24 23:06:17 EDT 2025 Tue Jul 01 03:19:46 EDT 2025 Fri Feb 21 02:31:57 EST 2025 Fri Feb 23 02:34:08 EST 2024 Wed Feb 14 10:19:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | central equiaxed grain zone grain size mold electromagnetic stirring solidification structure cellular-automaton-finite-element method continuous casting large round billet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-f9be4ea53fe7d5d5275fc34cb6a47007c71a941f25a7a8d529d06f82d0b413fe3 |
Notes | continuous casting large round billet; solidification structure; cellular-automaton-finite-element method;mold electromagnetic stirring; central equiaxed grain zone; grain size 11-3678/TF The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_S1006_706X_16_30053_X crossref_citationtrail_10_1016_S1006_706X_16_30053_X springer_journals_10_1016_S1006_706X_16_30053_X elsevier_sciencedirect_doi_10_1016_S1006_706X_16_30053_X chongqing_primary_668806122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of iron and steel research, international |
PublicationTitleAbbrev | J. Iron Steel Res. Int |
PublicationTitleAlternate | Journal of Iron and Steel Research |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | Rappaz, Gandin (bib6) 1993; 41 Kurz, Fisher (bib18) 1998 Hou, Jiang, Cheng (bib5) 2012; 52 Yu, Yi, Chen, Chen (bib20) 1987 Yamazaki, Natsume, Harada, Ohsasa (bib4) 2006; 46 Lally, Biegler, Henein (bib12) 1990; 21 Straffelini, Lutterotti, Tonolli, Lestani (bib2) 2011; 51 Harada, Miyazawa, Matsumiya (bib1) 2003; 89 Gandin, Rappaz (bib7) 1994; 42 Schwerdtfeger (bib15) 2003 Kurz, Giovanola, Trivedi (bib17) 1986; 34 Choudhary, Mazumdar (bib14) 1995; 66 Bobadilla, Lacaze, Lesoult (bib19) 1988; 89 Chen (bib21) 2004 Baliga, Patankar (bib10) 1980; 3 Tieu, Kim (bib13) 1997; 39 Li (bib22) 2001 Mizikar (bib24) 1967; 239 Wu, Chuedoung, Zhang (bib11) 2001 Nastac, Stefanescu (bib8) 1997; 5 Thévoz, Desbiolles, Rappaz (bib16) 1989; 20 Gandin, Desbiolles, Rappaz, Thevoz (bib23) 1999; 30 Nastac (bib9) 1999; 47 Jing, Wang, Jiang (bib3) 2011; 82 HouZ. B.JiangF.ChengG. G.ISIJ Int.2012521301130910.2355/isijinternational.52.1301 SchwerdtfegerK. J.The Casting Volume of the Making, Shaping and Treating of Steel200311thPittsburgh, PAThe AISE Steel Foundation RappazM.GandinC. A.Acta Metall. Mater.19934134536010.1016/0956-7151(93)90065-Z TieuA.KimI.Int. J. Mech. Sci.19973918519210.1016/0020-7403(96)00052-5 YuJ. Q.YiW. Z.ChenB. D.ChenH. J.Binary Alloy Phase Diagram1987ShanghaiShanghai Science and Technology Press WuY. H.ChuedoungM.ZhangG.Optimization Methods and Applications2001New YorkSpringer-Verlag New York Inc.39941210.1007/978-1-4757-3333-4_22 ChenJ. X.Ferrous Metallurgy2004BeijingMetallurgical Industry Press LiW. C.Physical Chemistry of Metallurgy and Materials2001BeijingMetallurgical Industry Press HaradaH.MiyazawaK.MatsumiyaT.Tetsu-to-Hagané20038926527210.2355/tetsutohagane1955.89.2_265 GandinC. A.DesbiollesJ. L.RappazM.ThevozP.Metall. Mater. Trans. A1999303153316510.1007/s11661-999-0226-2 MizikarE. A.Trans. Metall. Soc. AIME196723917471753 BobadillaM.LacazeJ.LesoultG.J. Cryst. Growth19888953154410.1016/0022-0248(88)90216-3 JingC. L.WangX. L.JiangM.Steel Res. Int.2011821173117910.1002/srin.201000303 NastacL.StefanescuD. M.Model. Simul. Mater. Sci. Eng.1997539142010.1088/0965-0393/5/4/008 ChoudharyS. K.MazumdarD.Steel Res. Int.19956619920510.1002/srin.199501112 KurzW.FisherD. J.Fundaments of Solidification19984thAedermannsdorf, SwitzerlandTrans. Tech. Publishers StraffeliniG.LutterottiL.TonolliM.LestaniM.ISIJ Int.2011511448145310.2355/isijinternational.51.1448 BaligaB. R.PatankarS. V.Numer. Heat Transfer1980339340910.1080/01495728008961767 YamazakiM.NatsumeY.HaradaH.OhsasaK.ISIJ Int.20064690390810.2355/isijinternational.46.903 GandinC. A.RappazM.Acta Metall. Mater.1994422233224610.1016/0956-7151(94)90302-6 ThévozPh.DesbiollesJ. L.RappazM.Metall. Trans. A19892031132210.1007/BF02670257 LallyB.BieglerL.HeneinH.Metall. Trans. B19902176177010.1007/BF02654255 KurzW.GiovanolaB.TrivediR.Acta Metall.19863482383010.1016/0001-6160(86)90056-8 NastacL.Acta Mater.1999474253426210.1016/S1359-6454(99)00325-0 L. Nastac (2304329_CR9) 1999; 47 C. A. Gandin (2304329_CR7) 1994; 42 K. J. Schwerdtfeger (2304329_CR15) 2003 J. X. Chen (2304329_CR21) 2004 B. R. Baliga (2304329_CR10) 1980; 3 S. K. Choudhary (2304329_CR14) 1995; 66 M. Rappaz (2304329_CR6) 1993; 41 W. C. Li (2304329_CR22) 2001 G. Straffelini (2304329_CR2) 2011; 51 W. Kurz (2304329_CR17) 1986; 34 A. Tieu (2304329_CR13) 1997; 39 W. Kurz (2304329_CR18) 1998 M. Yamazaki (2304329_CR4) 2006; 46 L. Nastac (2304329_CR8) 1997; 5 Ph. Thévoz (2304329_CR16) 1989; 20 C. L. Jing (2304329_CR3) 2011; 82 B. Lally (2304329_CR12) 1990; 21 C. A. Gandin (2304329_CR23) 1999; 30 Z. B. Hou (2304329_CR5) 2012; 52 H. Harada (2304329_CR1) 2003; 89 J. Q. Yu (2304329_CR20) 1987 Y. H. Wu (2304329_CR11) 2001 E. A. Mizikar (2304329_CR24) 1967; 239 M. Bobadilla (2304329_CR19) 1988; 89 |
References_xml | – year: 1987 ident: bib20 publication-title: Binary Alloy Phase Diagram – volume: 20 start-page: 311 year: 1989 end-page: 322 ident: bib16 publication-title: Metall. Trans. A – volume: 239 start-page: 1747 year: 1967 end-page: 1753 ident: bib24 publication-title: Trans. Metall. Soc. AIME – volume: 52 start-page: 1301 year: 2012 end-page: 1309 ident: bib5 publication-title: ISIJ Int. – year: 2003 ident: bib15 publication-title: The Casting Volume of the Making, Shaping and Treating of Steel – volume: 42 start-page: 2233 year: 1994 end-page: 2246 ident: bib7 publication-title: Acta Metall. Mater. – start-page: 399 year: 2001 end-page: 412 ident: bib11 publication-title: Optimization Methods and Applications – volume: 3 start-page: 393 year: 1980 end-page: 409 ident: bib10 publication-title: Numer. Heat Transfer – volume: 21 start-page: 761 year: 1990 end-page: 770 ident: bib12 publication-title: Metall. Trans. B – volume: 82 start-page: 1173 year: 2011 end-page: 1179 ident: bib3 publication-title: Steel Res. Int. – volume: 41 start-page: 345 year: 1993 end-page: 360 ident: bib6 publication-title: Acta Metall. Mater. – volume: 39 start-page: 185 year: 1997 end-page: 192 ident: bib13 publication-title: Int. J. Mech. Sci. – volume: 34 start-page: 823 year: 1986 end-page: 830 ident: bib17 publication-title: Acta Metall. – volume: 51 start-page: 1448 year: 2011 end-page: 1453 ident: bib2 publication-title: ISIJ Int. – volume: 89 start-page: 265 year: 2003 end-page: 272 ident: bib1 publication-title: Tetsu-to-Hagané – volume: 5 start-page: 391 year: 1997 end-page: 420 ident: bib8 publication-title: Model. Simul. Mater. Sci. Eng. – volume: 46 start-page: 903 year: 2006 end-page: 908 ident: bib4 publication-title: ISIJ Int. – volume: 89 start-page: 531 year: 1988 end-page: 544 ident: bib19 publication-title: J. Cryst. Growth – year: 2001 ident: bib22 publication-title: Physical Chemistry of Metallurgy and Materials – volume: 66 start-page: 199 year: 1995 end-page: 205 ident: bib14 publication-title: Steel Res. Int. – year: 1998 ident: bib18 publication-title: Fundaments of Solidification – volume: 30 start-page: 3153 year: 1999 end-page: 3165 ident: bib23 publication-title: Metall. Mater. Trans. A – volume: 47 start-page: 4253 year: 1999 end-page: 4262 ident: bib9 publication-title: Acta Mater. – year: 2004 ident: bib21 publication-title: Ferrous Metallurgy – reference: YamazakiM.NatsumeY.HaradaH.OhsasaK.ISIJ Int.20064690390810.2355/isijinternational.46.903 – reference: TieuA.KimI.Int. J. Mech. Sci.19973918519210.1016/0020-7403(96)00052-5 – reference: ChenJ. X.Ferrous Metallurgy2004BeijingMetallurgical Industry Press – reference: StraffeliniG.LutterottiL.TonolliM.LestaniM.ISIJ Int.2011511448145310.2355/isijinternational.51.1448 – reference: RappazM.GandinC. A.Acta Metall. Mater.19934134536010.1016/0956-7151(93)90065-Z – reference: YuJ. Q.YiW. Z.ChenB. D.ChenH. J.Binary Alloy Phase Diagram1987ShanghaiShanghai Science and Technology Press – reference: LiW. C.Physical Chemistry of Metallurgy and Materials2001BeijingMetallurgical Industry Press – reference: KurzW.FisherD. J.Fundaments of Solidification19984thAedermannsdorf, SwitzerlandTrans. Tech. Publishers – reference: MizikarE. A.Trans. Metall. Soc. AIME196723917471753 – reference: HaradaH.MiyazawaK.MatsumiyaT.Tetsu-to-Hagané20038926527210.2355/tetsutohagane1955.89.2_265 – reference: LallyB.BieglerL.HeneinH.Metall. Trans. B19902176177010.1007/BF02654255 – reference: SchwerdtfegerK. J.The Casting Volume of the Making, Shaping and Treating of Steel200311thPittsburgh, PAThe AISE Steel Foundation – reference: BobadillaM.LacazeJ.LesoultG.J. Cryst. Growth19888953154410.1016/0022-0248(88)90216-3 – reference: GandinC. A.DesbiollesJ. L.RappazM.ThevozP.Metall. Mater. Trans. A1999303153316510.1007/s11661-999-0226-2 – reference: NastacL.StefanescuD. M.Model. Simul. Mater. Sci. Eng.1997539142010.1088/0965-0393/5/4/008 – reference: BaligaB. R.PatankarS. V.Numer. Heat Transfer1980339340910.1080/01495728008961767 – reference: KurzW.GiovanolaB.TrivediR.Acta Metall.19863482383010.1016/0001-6160(86)90056-8 – reference: JingC. L.WangX. L.JiangM.Steel Res. Int.2011821173117910.1002/srin.201000303 – reference: HouZ. B.JiangF.ChengG. G.ISIJ Int.2012521301130910.2355/isijinternational.52.1301 – reference: ThévozPh.DesbiollesJ. L.RappazM.Metall. Trans. A19892031132210.1007/BF02670257 – reference: NastacL.Acta Mater.1999474253426210.1016/S1359-6454(99)00325-0 – reference: WuY. H.ChuedoungM.ZhangG.Optimization Methods and Applications2001New YorkSpringer-Verlag New York Inc.39941210.1007/978-1-4757-3333-4_22 – reference: GandinC. A.RappazM.Acta Metall. Mater.1994422233224610.1016/0956-7151(94)90302-6 – reference: ChoudharyS. K.MazumdarD.Steel Res. Int.19956619920510.1002/srin.199501112 – volume: 46 start-page: 903 year: 2006 ident: 2304329_CR4 publication-title: ISIJ Int. doi: 10.2355/isijinternational.46.903 – volume: 21 start-page: 761 year: 1990 ident: 2304329_CR12 publication-title: Metall. Trans. B doi: 10.1007/BF02654255 – volume: 89 start-page: 531 year: 1988 ident: 2304329_CR19 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(88)90216-3 – volume-title: Physical Chemistry of Metallurgy and Materials year: 2001 ident: 2304329_CR22 – volume: 82 start-page: 1173 year: 2011 ident: 2304329_CR3 publication-title: Steel Res. Int. doi: 10.1002/srin.201000303 – volume: 30 start-page: 3153 year: 1999 ident: 2304329_CR23 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-999-0226-2 – volume: 41 start-page: 345 year: 1993 ident: 2304329_CR6 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(93)90065-Z – volume-title: Ferrous Metallurgy year: 2004 ident: 2304329_CR21 – volume: 51 start-page: 1448 year: 2011 ident: 2304329_CR2 publication-title: ISIJ Int. doi: 10.2355/isijinternational.51.1448 – volume-title: The Casting Volume of the Making, Shaping and Treating of Steel year: 2003 ident: 2304329_CR15 – volume-title: Fundaments of Solidification year: 1998 ident: 2304329_CR18 doi: 10.4028/www.scientific.net/RC.35 – volume: 3 start-page: 393 year: 1980 ident: 2304329_CR10 publication-title: Numer. Heat Transfer doi: 10.1080/01495728008961767 – start-page: 399 volume-title: Optimization Methods and Applications year: 2001 ident: 2304329_CR11 doi: 10.1007/978-1-4757-3333-4_22 – volume: 52 start-page: 1301 year: 2012 ident: 2304329_CR5 publication-title: ISIJ Int. doi: 10.2355/isijinternational.52.1301 – volume: 5 start-page: 391 year: 1997 ident: 2304329_CR8 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/5/4/008 – volume-title: Binary Alloy Phase Diagram year: 1987 ident: 2304329_CR20 – volume: 34 start-page: 823 year: 1986 ident: 2304329_CR17 publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90056-8 – volume: 39 start-page: 185 year: 1997 ident: 2304329_CR13 publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(96)00052-5 – volume: 47 start-page: 4253 year: 1999 ident: 2304329_CR9 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00325-0 – volume: 239 start-page: 1747 year: 1967 ident: 2304329_CR24 publication-title: Trans. Metall. Soc. AIME – volume: 89 start-page: 265 year: 2003 ident: 2304329_CR1 publication-title: Tetsu-to-Hagané doi: 10.2355/tetsutohagane1955.89.2_265 – volume: 42 start-page: 2233 year: 1994 ident: 2304329_CR7 publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90302-6 – volume: 20 start-page: 311 year: 1989 ident: 2304329_CR16 publication-title: Metall. Trans. A doi: 10.1007/BF02670257 – volume: 66 start-page: 199 year: 1995 ident: 2304329_CR14 publication-title: Steel Res. Int. doi: 10.1002/srin.199501112 |
SSID | ssj0000096328 |
Score | 2.190675 |
Snippet | The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST... |
SourceID | crossref springer elsevier chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 329 |
SubjectTerms | Applied and Technical Physics cellular-automaton-finite-element method central equiaxed grain zone continuous casting large round billet Engineering grain size Machines Manufacturing Materials Engineering Materials Science Metallic Materials Metallurgy and Metal Working mold electromagnetic stirring Physical Chemistry ProCAST Processes solidification structure 低过热度 冷却强度 凝固结构 结晶器电磁搅拌 耦合模型 连铸圆坯 铸造速度 |
Title | Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring |
URI | http://lib.cqvip.com/qk/86787X/201604/668806122.html https://dx.doi.org/10.1016/S1006-706X(16)30053-X https://link.springer.com/article/10.1016/S1006-706X(16)30053-X |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QE4ICgg0kK1Bw5wcNP1vuxjiVoFQntoqPBttV7vFkvBbuPkym9nx4_wkKASJ8trzdjaGc_Dnm8G4I3BFizBIkapYTbijvIo8bkIOY8VaWq5UwbxzheXcnbNP2Yi24HpgIXBssre9nc2vbXW_cqk383JbVlOFrTFmMiMYtcowbJd2IuDt09GsHf6YT673H5qwTCdxR0oLuTPSPMTy9PxaRffUvmuZRVl2Gnha13d3AX_8TeP9cef09YhnT-Bx30kSU67h30KO67ahwcD0LjZh0e_9Bp8Bn5RL8sCC4NaWZBF2zh2s3Kk9gR7VJXVpt40ZGoarIQmn7BEnFzh1CXyHgGD64Yg4GxFLuplQc668TnfzE2FMMjArlzhjZ7D9fnZ5-ks6ocsRDYkp-vIp7njzgjmnSpEIWIlvGXc5tJwFQIIq6hJOfWxMMok4XpanEifxMVJHvyfd-wFjKq6ci-BYLqrYlZYyhJuQuqVKFbETAkqHaPOjeFwu6n6tmumoaUMFiRoSzwGPmyztn1_chyTsdTbQjSUlEZJ6XDWSkpnYzjekg087yFIBhnq3zRNBydyH-lkkLnuX_Xm3xQH_3-zQ3gYgjPZVQm9glHQCvc6BEDr_Ah2j7_To17N8Ti_-jL_AXec_uM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4VKWASB-wBw5wMOl6X_axRK1SmuRAWsm31Xq9bi0Fu8TJ_--OH-EhQSWOXmtmrZ3xPOz5ZgA-GGzB4i1iEBtmA-4oD6I8FT7nsSKOLXfKIN55NpeTW_41EckOjHssDJZVdra_temNte5WRt1pjh6KYrSgDcZEJhS7RgmWPINdjkOtB7B7fnU9mW8_tWCYzsIWFOfzZ6T5ieVp-TSLH6n81LAKEuy0cF-Vdz-8__ibx_rjz2njkC4PYL-LJMl5-7AvYceVh7DXA43rQ3jxS6_BV5AvqmWRYWFQIwuyaBrHblaOVDnBHlVFuak2NRmbGiuhyRRLxMk3nLpEviBgcF0TBJytyKxaZuSiHZ_z3dyVCIP07IoVbvQabi8vbsaToBuyEFifnK6DPE4dd0aw3KlMZCJUIreM21QarnwAYRU1Mad5KIwykb8fZ2cyj8LsLPX-L3fsDQzKqnRvgWC6q0KWWcoibnzqFSmWhUwJKh2jzg3heHuo-qFtpqGl9BbEa0s4BN4fs7Zdf3Ick7HU20I0lJRGSWl_1UhKJ0P4vCXreT5BEPUy1L9pmvZO5CnSUS9z3b3q9b8pjv5_s_ewN7mZTfX0an59DM99oCbbiqETGHgNcac-GFqn7zplfwR-uv8m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solidification+structure+of+continuous+casting+large+round+billets+under+mold+electromagnetic+stirring&rft.jtitle=Journal+of+iron+and+steel+research%2C+international&rft.au=Sun%2C+Tao&rft.au=Yue%2C+Feng&rft.au=Wu%2C+Hua-jie&rft.au=Guo%2C+Chun&rft.date=2016-04-01&rft.pub=Springer+Singapore&rft.issn=1006-706X&rft.eissn=2210-3988&rft.volume=23&rft.issue=4&rft.spage=329&rft.epage=337&rft_id=info:doi/10.1016%2FS1006-706X%2816%2930053-X&rft.externalDocID=10_1016_S1006_706X_16_30053_X |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86787X%2F86787X.jpg |