Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring

The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 30...

Full description

Saved in:
Bibliographic Details
Published inJournal of iron and steel research, international Vol. 23; no. 4; pp. 329 - 337
Main Authors SUN, Tao, YUE, Feng, WU, Hua-jie, GUO, Chun, LI, Ying, MA, Zhong-cun
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.04.2016
Springer Singapore
Subjects
Online AccessGet full text
ISSN1006-706X
2210-3988
DOI10.1016/S1006-706X(16)30053-X

Cover

Abstract The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
AbstractList The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
Author Tao SUN Feng YUE Hua-jie WU Chun GUO Ying LI Zhong-cun MA
AuthorAffiliation Metallurgical Engineering Research Institute,University of Science and Technology Beijing,Beijing 100083,China Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China Beiman Special Steel Co.,Ltd.,Qiqihaer 161041,Heilongjiang,China
Author_xml – sequence: 1
  givenname: Tao
  surname: SUN
  fullname: SUN, Tao
  email: suntaoking@126.com
  organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Feng
  surname: YUE
  fullname: YUE, Feng
  email: yuefeng@nercar.ustb.edu.cn
  organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Hua-jie
  surname: WU
  fullname: WU, Hua-jie
  organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 4
  givenname: Chun
  surname: GUO
  fullname: GUO, Chun
  organization: Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 5
  givenname: Ying
  surname: LI
  fullname: LI, Ying
  organization: Beiman Special Steel Co., Ltd., Qiqihaer 161041, Heilongjiang, China
– sequence: 6
  givenname: Zhong-cun
  surname: MA
  fullname: MA, Zhong-cun
  organization: Beiman Special Steel Co., Ltd., Qiqihaer 161041, Heilongjiang, China
BookMark eNqFkMtKAzEUhoMoWGsfQQiudDGaTGYyM7gQLfUCFcEqdBfSXGrKNKlJRvDtTS-4cNNsckLy_SfnOwGH1lkFwBlGVxhhej3BCNGsQnR6geklQagk2fQA9PIco4w0dX0Ien9PjsEghAVar4aSvO4BPXGtkUYbwaNxFk6i70TsvIJOw6Gz0djOdQEOeUjlHI65nyv45jor4b1pWxUDTLXy8MW1Eo5aJaJ3Sz63KhqR4oz3iTsFR5q3QQ12ex98PIzeh0_Z-PXxeXg3zgSpScx0M1OF4iXRqpKlLPOq1IIUYkZ5USFUiQrzpsA6L3nF63TfSER1nUs0K3CCSB-U21zhXQheabbyZsn9D8OIrX2xjS-2lsHSaeOLTRN3848TJm6MRM9Nu5emWzqs1sMqzxau8zYNuhe83YIqOfk2CQzCKCuUND6JZNKZvQnnu49_Ojv_St3_Jqa0rhHFeU5-AdU5pbM
CitedBy_id crossref_primary_10_1007_s42243_023_00972_y
crossref_primary_10_1007_s11663_022_02544_z
crossref_primary_10_3390_met13081435
crossref_primary_10_1007_s42243_023_00975_9
crossref_primary_10_1016_j_matpr_2019_07_669
crossref_primary_10_1109_ACCESS_2022_3192541
crossref_primary_10_1177_03019233241298612
crossref_primary_10_1002_srin_202200796
crossref_primary_10_1051_metal_2024029
crossref_primary_10_1007_s42243_024_01416_x
crossref_primary_10_1007_s42243_021_00682_3
crossref_primary_10_1016_S1006_706X_17_30101_2
crossref_primary_10_1007_s42243_022_00778_4
crossref_primary_10_1080_03019233_2022_2106065
crossref_primary_10_1016_S1006_706X_17_30073_0
crossref_primary_10_1007_s42243_021_00600_7
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_019
crossref_primary_10_3390_met7030072
crossref_primary_10_1007_s11837_022_05542_3
crossref_primary_10_1007_s12598_018_1175_y
crossref_primary_10_3390_ma17030682
crossref_primary_10_1007_s42243_021_00592_4
crossref_primary_10_1007_s42243_017_0006_y
crossref_primary_10_1007_s42243_024_01374_4
crossref_primary_10_1016_j_icheatmasstransfer_2024_108155
crossref_primary_10_1080_13640461_2023_2188682
Cites_doi 10.2355/isijinternational.46.903
10.1007/BF02654255
10.1016/0022-0248(88)90216-3
10.1002/srin.201000303
10.1007/s11661-999-0226-2
10.1016/0956-7151(93)90065-Z
10.2355/isijinternational.51.1448
10.4028/www.scientific.net/RC.35
10.1080/01495728008961767
10.1007/978-1-4757-3333-4_22
10.2355/isijinternational.52.1301
10.1088/0965-0393/5/4/008
10.1016/0001-6160(86)90056-8
10.1016/0020-7403(96)00052-5
10.1016/S1359-6454(99)00325-0
10.2355/tetsutohagane1955.89.2_265
10.1016/0956-7151(94)90302-6
10.1007/BF02670257
10.1002/srin.199501112
ContentType Journal Article
Copyright 2016 Central Iron and Steel Research Institute
China Iron and Steel Research Institute Group 2016
Copyright_xml – notice: 2016 Central Iron and Steel Research Institute
– notice: China Iron and Steel Research Institute Group 2016
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1016/S1006-706X(16)30053-X
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
DocumentTitleAlternate Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring
EISSN 2210-3988
EndPage 337
ExternalDocumentID 10_1016_S1006_706X_16_30053_X
S1006706X1630053X
668806122
GroupedDBID --K
--M
-02
-0B
-EM
-SB
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92L
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFNM
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABXRA
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFO
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AEZYN
AFKWA
AFNRJ
AFQWF
AFRZQ
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J-C
J1W
JUIAU
JZLTJ
KOV
LLZTM
M41
M4Y
MAGPM
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q38
R-B
RIG
RLLFE
ROL
RSV
RT2
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SPD
SRMVM
SSLCW
SSM
SSZ
STPWE
T5K
T8R
TCJ
TGT
TSG
U1F
U1G
U5B
U5L
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c383t-f9be4ea53fe7d5d5275fc34cb6a47007c71a941f25a7a8d529d06f82d0b413fe3
IEDL.DBID AIKHN
ISSN 1006-706X
IngestDate Thu Apr 24 23:06:17 EDT 2025
Tue Jul 01 03:19:46 EDT 2025
Fri Feb 21 02:31:57 EST 2025
Fri Feb 23 02:34:08 EST 2024
Wed Feb 14 10:19:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords central equiaxed grain zone
grain size
mold electromagnetic stirring
solidification structure
cellular-automaton-finite-element method
continuous casting large round billet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-f9be4ea53fe7d5d5275fc34cb6a47007c71a941f25a7a8d529d06f82d0b413fe3
Notes continuous casting large round billet; solidification structure; cellular-automaton-finite-element method;mold electromagnetic stirring; central equiaxed grain zone; grain size
11-3678/TF
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
PageCount 9
ParticipantIDs crossref_primary_10_1016_S1006_706X_16_30053_X
crossref_citationtrail_10_1016_S1006_706X_16_30053_X
springer_journals_10_1016_S1006_706X_16_30053_X
elsevier_sciencedirect_doi_10_1016_S1006_706X_16_30053_X
chongqing_primary_668806122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of iron and steel research, international
PublicationTitleAbbrev J. Iron Steel Res. Int
PublicationTitleAlternate Journal of Iron and Steel Research
PublicationYear 2016
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Rappaz, Gandin (bib6) 1993; 41
Kurz, Fisher (bib18) 1998
Hou, Jiang, Cheng (bib5) 2012; 52
Yu, Yi, Chen, Chen (bib20) 1987
Yamazaki, Natsume, Harada, Ohsasa (bib4) 2006; 46
Lally, Biegler, Henein (bib12) 1990; 21
Straffelini, Lutterotti, Tonolli, Lestani (bib2) 2011; 51
Harada, Miyazawa, Matsumiya (bib1) 2003; 89
Gandin, Rappaz (bib7) 1994; 42
Schwerdtfeger (bib15) 2003
Kurz, Giovanola, Trivedi (bib17) 1986; 34
Choudhary, Mazumdar (bib14) 1995; 66
Bobadilla, Lacaze, Lesoult (bib19) 1988; 89
Chen (bib21) 2004
Baliga, Patankar (bib10) 1980; 3
Tieu, Kim (bib13) 1997; 39
Li (bib22) 2001
Mizikar (bib24) 1967; 239
Wu, Chuedoung, Zhang (bib11) 2001
Nastac, Stefanescu (bib8) 1997; 5
Thévoz, Desbiolles, Rappaz (bib16) 1989; 20
Gandin, Desbiolles, Rappaz, Thevoz (bib23) 1999; 30
Nastac (bib9) 1999; 47
Jing, Wang, Jiang (bib3) 2011; 82
HouZ. B.JiangF.ChengG. G.ISIJ Int.2012521301130910.2355/isijinternational.52.1301
SchwerdtfegerK. J.The Casting Volume of the Making, Shaping and Treating of Steel200311thPittsburgh, PAThe AISE Steel Foundation
RappazM.GandinC. A.Acta Metall. Mater.19934134536010.1016/0956-7151(93)90065-Z
TieuA.KimI.Int. J. Mech. Sci.19973918519210.1016/0020-7403(96)00052-5
YuJ. Q.YiW. Z.ChenB. D.ChenH. J.Binary Alloy Phase Diagram1987ShanghaiShanghai Science and Technology Press
WuY. H.ChuedoungM.ZhangG.Optimization Methods and Applications2001New YorkSpringer-Verlag New York Inc.39941210.1007/978-1-4757-3333-4_22
ChenJ. X.Ferrous Metallurgy2004BeijingMetallurgical Industry Press
LiW. C.Physical Chemistry of Metallurgy and Materials2001BeijingMetallurgical Industry Press
HaradaH.MiyazawaK.MatsumiyaT.Tetsu-to-Hagané20038926527210.2355/tetsutohagane1955.89.2_265
GandinC. A.DesbiollesJ. L.RappazM.ThevozP.Metall. Mater. Trans. A1999303153316510.1007/s11661-999-0226-2
MizikarE. A.Trans. Metall. Soc. AIME196723917471753
BobadillaM.LacazeJ.LesoultG.J. Cryst. Growth19888953154410.1016/0022-0248(88)90216-3
JingC. L.WangX. L.JiangM.Steel Res. Int.2011821173117910.1002/srin.201000303
NastacL.StefanescuD. M.Model. Simul. Mater. Sci. Eng.1997539142010.1088/0965-0393/5/4/008
ChoudharyS. K.MazumdarD.Steel Res. Int.19956619920510.1002/srin.199501112
KurzW.FisherD. J.Fundaments of Solidification19984thAedermannsdorf, SwitzerlandTrans. Tech. Publishers
StraffeliniG.LutterottiL.TonolliM.LestaniM.ISIJ Int.2011511448145310.2355/isijinternational.51.1448
BaligaB. R.PatankarS. V.Numer. Heat Transfer1980339340910.1080/01495728008961767
YamazakiM.NatsumeY.HaradaH.OhsasaK.ISIJ Int.20064690390810.2355/isijinternational.46.903
GandinC. A.RappazM.Acta Metall. Mater.1994422233224610.1016/0956-7151(94)90302-6
ThévozPh.DesbiollesJ. L.RappazM.Metall. Trans. A19892031132210.1007/BF02670257
LallyB.BieglerL.HeneinH.Metall. Trans. B19902176177010.1007/BF02654255
KurzW.GiovanolaB.TrivediR.Acta Metall.19863482383010.1016/0001-6160(86)90056-8
NastacL.Acta Mater.1999474253426210.1016/S1359-6454(99)00325-0
L. Nastac (2304329_CR9) 1999; 47
C. A. Gandin (2304329_CR7) 1994; 42
K. J. Schwerdtfeger (2304329_CR15) 2003
J. X. Chen (2304329_CR21) 2004
B. R. Baliga (2304329_CR10) 1980; 3
S. K. Choudhary (2304329_CR14) 1995; 66
M. Rappaz (2304329_CR6) 1993; 41
W. C. Li (2304329_CR22) 2001
G. Straffelini (2304329_CR2) 2011; 51
W. Kurz (2304329_CR17) 1986; 34
A. Tieu (2304329_CR13) 1997; 39
W. Kurz (2304329_CR18) 1998
M. Yamazaki (2304329_CR4) 2006; 46
L. Nastac (2304329_CR8) 1997; 5
Ph. Thévoz (2304329_CR16) 1989; 20
C. L. Jing (2304329_CR3) 2011; 82
B. Lally (2304329_CR12) 1990; 21
C. A. Gandin (2304329_CR23) 1999; 30
Z. B. Hou (2304329_CR5) 2012; 52
H. Harada (2304329_CR1) 2003; 89
J. Q. Yu (2304329_CR20) 1987
Y. H. Wu (2304329_CR11) 2001
E. A. Mizikar (2304329_CR24) 1967; 239
M. Bobadilla (2304329_CR19) 1988; 89
References_xml – year: 1987
  ident: bib20
  publication-title: Binary Alloy Phase Diagram
– volume: 20
  start-page: 311
  year: 1989
  end-page: 322
  ident: bib16
  publication-title: Metall. Trans. A
– volume: 239
  start-page: 1747
  year: 1967
  end-page: 1753
  ident: bib24
  publication-title: Trans. Metall. Soc. AIME
– volume: 52
  start-page: 1301
  year: 2012
  end-page: 1309
  ident: bib5
  publication-title: ISIJ Int.
– year: 2003
  ident: bib15
  publication-title: The Casting Volume of the Making, Shaping and Treating of Steel
– volume: 42
  start-page: 2233
  year: 1994
  end-page: 2246
  ident: bib7
  publication-title: Acta Metall. Mater.
– start-page: 399
  year: 2001
  end-page: 412
  ident: bib11
  publication-title: Optimization Methods and Applications
– volume: 3
  start-page: 393
  year: 1980
  end-page: 409
  ident: bib10
  publication-title: Numer. Heat Transfer
– volume: 21
  start-page: 761
  year: 1990
  end-page: 770
  ident: bib12
  publication-title: Metall. Trans. B
– volume: 82
  start-page: 1173
  year: 2011
  end-page: 1179
  ident: bib3
  publication-title: Steel Res. Int.
– volume: 41
  start-page: 345
  year: 1993
  end-page: 360
  ident: bib6
  publication-title: Acta Metall. Mater.
– volume: 39
  start-page: 185
  year: 1997
  end-page: 192
  ident: bib13
  publication-title: Int. J. Mech. Sci.
– volume: 34
  start-page: 823
  year: 1986
  end-page: 830
  ident: bib17
  publication-title: Acta Metall.
– volume: 51
  start-page: 1448
  year: 2011
  end-page: 1453
  ident: bib2
  publication-title: ISIJ Int.
– volume: 89
  start-page: 265
  year: 2003
  end-page: 272
  ident: bib1
  publication-title: Tetsu-to-Hagané
– volume: 5
  start-page: 391
  year: 1997
  end-page: 420
  ident: bib8
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 46
  start-page: 903
  year: 2006
  end-page: 908
  ident: bib4
  publication-title: ISIJ Int.
– volume: 89
  start-page: 531
  year: 1988
  end-page: 544
  ident: bib19
  publication-title: J. Cryst. Growth
– year: 2001
  ident: bib22
  publication-title: Physical Chemistry of Metallurgy and Materials
– volume: 66
  start-page: 199
  year: 1995
  end-page: 205
  ident: bib14
  publication-title: Steel Res. Int.
– year: 1998
  ident: bib18
  publication-title: Fundaments of Solidification
– volume: 30
  start-page: 3153
  year: 1999
  end-page: 3165
  ident: bib23
  publication-title: Metall. Mater. Trans. A
– volume: 47
  start-page: 4253
  year: 1999
  end-page: 4262
  ident: bib9
  publication-title: Acta Mater.
– year: 2004
  ident: bib21
  publication-title: Ferrous Metallurgy
– reference: YamazakiM.NatsumeY.HaradaH.OhsasaK.ISIJ Int.20064690390810.2355/isijinternational.46.903
– reference: TieuA.KimI.Int. J. Mech. Sci.19973918519210.1016/0020-7403(96)00052-5
– reference: ChenJ. X.Ferrous Metallurgy2004BeijingMetallurgical Industry Press
– reference: StraffeliniG.LutterottiL.TonolliM.LestaniM.ISIJ Int.2011511448145310.2355/isijinternational.51.1448
– reference: RappazM.GandinC. A.Acta Metall. Mater.19934134536010.1016/0956-7151(93)90065-Z
– reference: YuJ. Q.YiW. Z.ChenB. D.ChenH. J.Binary Alloy Phase Diagram1987ShanghaiShanghai Science and Technology Press
– reference: LiW. C.Physical Chemistry of Metallurgy and Materials2001BeijingMetallurgical Industry Press
– reference: KurzW.FisherD. J.Fundaments of Solidification19984thAedermannsdorf, SwitzerlandTrans. Tech. Publishers
– reference: MizikarE. A.Trans. Metall. Soc. AIME196723917471753
– reference: HaradaH.MiyazawaK.MatsumiyaT.Tetsu-to-Hagané20038926527210.2355/tetsutohagane1955.89.2_265
– reference: LallyB.BieglerL.HeneinH.Metall. Trans. B19902176177010.1007/BF02654255
– reference: SchwerdtfegerK. J.The Casting Volume of the Making, Shaping and Treating of Steel200311thPittsburgh, PAThe AISE Steel Foundation
– reference: BobadillaM.LacazeJ.LesoultG.J. Cryst. Growth19888953154410.1016/0022-0248(88)90216-3
– reference: GandinC. A.DesbiollesJ. L.RappazM.ThevozP.Metall. Mater. Trans. A1999303153316510.1007/s11661-999-0226-2
– reference: NastacL.StefanescuD. M.Model. Simul. Mater. Sci. Eng.1997539142010.1088/0965-0393/5/4/008
– reference: BaligaB. R.PatankarS. V.Numer. Heat Transfer1980339340910.1080/01495728008961767
– reference: KurzW.GiovanolaB.TrivediR.Acta Metall.19863482383010.1016/0001-6160(86)90056-8
– reference: JingC. L.WangX. L.JiangM.Steel Res. Int.2011821173117910.1002/srin.201000303
– reference: HouZ. B.JiangF.ChengG. G.ISIJ Int.2012521301130910.2355/isijinternational.52.1301
– reference: ThévozPh.DesbiollesJ. L.RappazM.Metall. Trans. A19892031132210.1007/BF02670257
– reference: NastacL.Acta Mater.1999474253426210.1016/S1359-6454(99)00325-0
– reference: WuY. H.ChuedoungM.ZhangG.Optimization Methods and Applications2001New YorkSpringer-Verlag New York Inc.39941210.1007/978-1-4757-3333-4_22
– reference: GandinC. A.RappazM.Acta Metall. Mater.1994422233224610.1016/0956-7151(94)90302-6
– reference: ChoudharyS. K.MazumdarD.Steel Res. Int.19956619920510.1002/srin.199501112
– volume: 46
  start-page: 903
  year: 2006
  ident: 2304329_CR4
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.46.903
– volume: 21
  start-page: 761
  year: 1990
  ident: 2304329_CR12
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02654255
– volume: 89
  start-page: 531
  year: 1988
  ident: 2304329_CR19
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(88)90216-3
– volume-title: Physical Chemistry of Metallurgy and Materials
  year: 2001
  ident: 2304329_CR22
– volume: 82
  start-page: 1173
  year: 2011
  ident: 2304329_CR3
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201000303
– volume: 30
  start-page: 3153
  year: 1999
  ident: 2304329_CR23
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-999-0226-2
– volume: 41
  start-page: 345
  year: 1993
  ident: 2304329_CR6
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(93)90065-Z
– volume-title: Ferrous Metallurgy
  year: 2004
  ident: 2304329_CR21
– volume: 51
  start-page: 1448
  year: 2011
  ident: 2304329_CR2
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.51.1448
– volume-title: The Casting Volume of the Making, Shaping and Treating of Steel
  year: 2003
  ident: 2304329_CR15
– volume-title: Fundaments of Solidification
  year: 1998
  ident: 2304329_CR18
  doi: 10.4028/www.scientific.net/RC.35
– volume: 3
  start-page: 393
  year: 1980
  ident: 2304329_CR10
  publication-title: Numer. Heat Transfer
  doi: 10.1080/01495728008961767
– start-page: 399
  volume-title: Optimization Methods and Applications
  year: 2001
  ident: 2304329_CR11
  doi: 10.1007/978-1-4757-3333-4_22
– volume: 52
  start-page: 1301
  year: 2012
  ident: 2304329_CR5
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.52.1301
– volume: 5
  start-page: 391
  year: 1997
  ident: 2304329_CR8
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/5/4/008
– volume-title: Binary Alloy Phase Diagram
  year: 1987
  ident: 2304329_CR20
– volume: 34
  start-page: 823
  year: 1986
  ident: 2304329_CR17
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90056-8
– volume: 39
  start-page: 185
  year: 1997
  ident: 2304329_CR13
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(96)00052-5
– volume: 47
  start-page: 4253
  year: 1999
  ident: 2304329_CR9
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00325-0
– volume: 239
  start-page: 1747
  year: 1967
  ident: 2304329_CR24
  publication-title: Trans. Metall. Soc. AIME
– volume: 89
  start-page: 265
  year: 2003
  ident: 2304329_CR1
  publication-title: Tetsu-to-Hagané
  doi: 10.2355/tetsutohagane1955.89.2_265
– volume: 42
  start-page: 2233
  year: 1994
  ident: 2304329_CR7
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90302-6
– volume: 20
  start-page: 311
  year: 1989
  ident: 2304329_CR16
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02670257
– volume: 66
  start-page: 199
  year: 1995
  ident: 2304329_CR14
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.199501112
SSID ssj0000096328
Score 2.190675
Snippet The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST...
SourceID crossref
springer
elsevier
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 329
SubjectTerms Applied and Technical Physics
cellular-automaton-finite-element method
central equiaxed grain zone
continuous casting large round billet
Engineering
grain size
Machines
Manufacturing
Materials Engineering
Materials Science
Metallic Materials
Metallurgy and Metal Working
mold electromagnetic stirring
Physical Chemistry
ProCAST
Processes
solidification structure
低过热度
冷却强度
凝固结构
结晶器电磁搅拌
耦合模型
连铸圆坯
铸造速度
Title Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring
URI http://lib.cqvip.com/qk/86787X/201604/668806122.html
https://dx.doi.org/10.1016/S1006-706X(16)30053-X
https://link.springer.com/article/10.1016/S1006-706X(16)30053-X
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QE4ICgg0kK1Bw5wcNP1vuxjiVoFQntoqPBttV7vFkvBbuPkym9nx4_wkKASJ8trzdjaGc_Dnm8G4I3BFizBIkapYTbijvIo8bkIOY8VaWq5UwbxzheXcnbNP2Yi24HpgIXBssre9nc2vbXW_cqk383JbVlOFrTFmMiMYtcowbJd2IuDt09GsHf6YT673H5qwTCdxR0oLuTPSPMTy9PxaRffUvmuZRVl2Gnha13d3AX_8TeP9cef09YhnT-Bx30kSU67h30KO67ahwcD0LjZh0e_9Bp8Bn5RL8sCC4NaWZBF2zh2s3Kk9gR7VJXVpt40ZGoarIQmn7BEnFzh1CXyHgGD64Yg4GxFLuplQc668TnfzE2FMMjArlzhjZ7D9fnZ5-ks6ocsRDYkp-vIp7njzgjmnSpEIWIlvGXc5tJwFQIIq6hJOfWxMMok4XpanEifxMVJHvyfd-wFjKq6ci-BYLqrYlZYyhJuQuqVKFbETAkqHaPOjeFwu6n6tmumoaUMFiRoSzwGPmyztn1_chyTsdTbQjSUlEZJ6XDWSkpnYzjekg087yFIBhnq3zRNBydyH-lkkLnuX_Xm3xQH_3-zQ3gYgjPZVQm9glHQCvc6BEDr_Ah2j7_To17N8Ti_-jL_AXec_uM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4VKWASB-wBw5wMOl6X_axRK1SmuRAWsm31Xq9bi0Fu8TJ_--OH-EhQSWOXmtmrZ3xPOz5ZgA-GGzB4i1iEBtmA-4oD6I8FT7nsSKOLXfKIN55NpeTW_41EckOjHssDJZVdra_temNte5WRt1pjh6KYrSgDcZEJhS7RgmWPINdjkOtB7B7fnU9mW8_tWCYzsIWFOfzZ6T5ieVp-TSLH6n81LAKEuy0cF-Vdz-8__ibx_rjz2njkC4PYL-LJMl5-7AvYceVh7DXA43rQ3jxS6_BV5AvqmWRYWFQIwuyaBrHblaOVDnBHlVFuak2NRmbGiuhyRRLxMk3nLpEviBgcF0TBJytyKxaZuSiHZ_z3dyVCIP07IoVbvQabi8vbsaToBuyEFifnK6DPE4dd0aw3KlMZCJUIreM21QarnwAYRU1Mad5KIwykb8fZ2cyj8LsLPX-L3fsDQzKqnRvgWC6q0KWWcoibnzqFSmWhUwJKh2jzg3heHuo-qFtpqGl9BbEa0s4BN4fs7Zdf3Ick7HU20I0lJRGSWl_1UhKJ0P4vCXreT5BEPUy1L9pmvZO5CnSUS9z3b3q9b8pjv5_s_ewN7mZTfX0an59DM99oCbbiqETGHgNcac-GFqn7zplfwR-uv8m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solidification+structure+of+continuous+casting+large+round+billets+under+mold+electromagnetic+stirring&rft.jtitle=Journal+of+iron+and+steel+research%2C+international&rft.au=Sun%2C+Tao&rft.au=Yue%2C+Feng&rft.au=Wu%2C+Hua-jie&rft.au=Guo%2C+Chun&rft.date=2016-04-01&rft.pub=Springer+Singapore&rft.issn=1006-706X&rft.eissn=2210-3988&rft.volume=23&rft.issue=4&rft.spage=329&rft.epage=337&rft_id=info:doi/10.1016%2FS1006-706X%2816%2930053-X&rft.externalDocID=10_1016_S1006_706X_16_30053_X
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86787X%2F86787X.jpg