Modelling Compression Strength of Waste PET and SCM Blended Cementitious Grout Using Hybrid of LSSVM Models
Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cem...
        Saved in:
      
    
          | Published in | Materials Vol. 15; no. 15; p. 5242 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        29.07.2022
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1944 1996-1944  | 
| DOI | 10.3390/ma15155242 | 
Cover
| Abstract | Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects. | 
    
|---|---|
| AbstractList | Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects. Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects.Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects.  | 
    
| Author | Khan, Kaffayatullah Abu-Arab, Abdullah M. Al-Faiad, Majdi Adel Iqbal, Mudassir Jamal, Arshad Mohammed, Ibrahim Gudainiyan, Jitendra Amin, Muhammad Nasir  | 
    
| AuthorAffiliation | 3 Department of Civil Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan; mudassiriqbal@uetpeshawar.edu.pk 5 Applied Research Center for Metrology Standards and Testing, Research and Innovation, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; ibrahim@kfupm.edu.sa 1 Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf 31982, Saudi Arabia; mgadir@kfu.edu.sa (M.N.A.); malfaiad@kfu.edu.sa (M.A.A.-F.); 219041496@student.kfu.edu.sa (A.M.A.-A.) 4 Transportation and Traffic Engineering Department, College of Engineering, Imam Abdulrahman BinFaisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia; ajjamal@iau.edu.sa 2 Department of Civil Engineering, GLA University, Mathura 281 406, India; jitendra.gudainiyan@gla.ac.in  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Civil Engineering, GLA University, Mathura 281 406, India; jitendra.gudainiyan@gla.ac.in – name: 3 Department of Civil Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan; mudassiriqbal@uetpeshawar.edu.pk – name: 4 Transportation and Traffic Engineering Department, College of Engineering, Imam Abdulrahman BinFaisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia; ajjamal@iau.edu.sa – name: 5 Applied Research Center for Metrology Standards and Testing, Research and Innovation, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; ibrahim@kfupm.edu.sa – name: 1 Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf 31982, Saudi Arabia; mgadir@kfu.edu.sa (M.N.A.); malfaiad@kfu.edu.sa (M.A.A.-F.); 219041496@student.kfu.edu.sa (A.M.A.-A.)  | 
    
| Author_xml | – sequence: 1 givenname: Kaffayatullah orcidid: 0000-0001-7994-4642 surname: Khan fullname: Khan, Kaffayatullah – sequence: 2 givenname: Jitendra orcidid: 0000-0001-7728-4695 surname: Gudainiyan fullname: Gudainiyan, Jitendra – sequence: 3 givenname: Mudassir orcidid: 0000-0002-4317-3978 surname: Iqbal fullname: Iqbal, Mudassir – sequence: 4 givenname: Arshad orcidid: 0000-0001-7284-7348 surname: Jamal fullname: Jamal, Arshad – sequence: 5 givenname: Muhammad Nasir orcidid: 0000-0001-6524-4389 surname: Amin fullname: Amin, Muhammad Nasir – sequence: 6 givenname: Ibrahim orcidid: 0000-0002-6061-8772 surname: Mohammed fullname: Mohammed, Ibrahim – sequence: 7 givenname: Majdi Adel orcidid: 0000-0001-8544-2550 surname: Al-Faiad fullname: Al-Faiad, Majdi Adel – sequence: 8 givenname: Abdullah M. surname: Abu-Arab fullname: Abu-Arab, Abdullah M.  | 
    
| BookMark | eNp9kF9rFDEUxYNU7B_74icI-CKWbZNJspO8CHWobWEXhW31MWQmd7apM8mazCj77c24hdoi5iXh5nfO5ZxDtOeDB4TeUHLKmCJnvaGCClHw4gU6oErNZ1RxvvfXex8dp3RP8mGMykK9QvtMKCFoKQ_Q92Ww0HXOr3EV-k2ElFzweDVE8OvhDocWfzNpAPzl4gYbb_GqWuKPHXgLFlfQgx_c4MKY8GUM44Bv02R1ta2js5N4sVp9XeI_S9Jr9LI1XYLjh_sI3X66uKmuZovPl9fV-WLWMMmGGYAslRSMCsJLwkzDGDOWldbSPK1rxgthCcybRoFsQJSK0JZnrm6BUwB2hE52vqPfmO0v03V6E11v4lZToqfW9GNrmf6wozdj3YNtcqJoHhXBOP30x7s7vQ4_tWJzxWWZDd49GMTwY4Q06N6lJpdqPORidFGSgkophMro22fofRijz2VMFCk5YXKeKbKjmhhSitDqxg0mtzztd92_Q7x_JvlP4t9wra1P | 
    
| CitedBy_id | crossref_primary_10_3390_polym15132869 crossref_primary_10_1088_2053_1591_acf6fc crossref_primary_10_3390_polym14214534 crossref_primary_10_3390_polym14224822 crossref_primary_10_3390_su15054271 crossref_primary_10_3390_ma16175739  | 
    
| Cites_doi | 10.1016/j.jenvman.2021.112420 10.1007/s11831-022-09748-1 10.1016/j.jobe.2020.102105 10.1126/science.220.4598.671 10.1016/j.compstruc.2012.07.010 10.1002/cssc.202001905 10.1016/j.conbuildmat.2019.01.103 10.1007/s41939-021-00092-8 10.1016/S0893-6080(00)00077-0 10.1016/S0025-326X(02)00220-5 10.1016/j.future.2020.03.055 10.1007/s12046-021-01640-1 10.1007/978-3-540-30217-9_29 10.1155/2018/6490169 10.1109/TSMC.2017.2695577 10.1016/j.advengsoft.2016.01.008 10.1016/j.swevo.2014.02.002 10.1109/CEC.2007.4425083 10.4018/IJGEE.298988 10.1007/s11440-021-01257-y 10.1007/BF00113892 10.1109/4235.771163 10.1109/TEVC.2009.2011992 10.1016/S0969-806X(03)00452-3 10.1023/A:1008202821328 10.3390/ma15093077 10.1016/j.conbuildmat.2020.118382 10.1016/j.advengsoft.2017.07.002 10.1016/j.egyr.2017.11.001 10.1016/S0008-8846(00)00345-8 10.1016/j.advengsoft.2013.12.007 10.3390/buildings12060796 10.1007/s12649-010-9021-y 10.1016/j.conbuildmat.2021.126027 10.1109/TNNLS.2014.2333879 10.1140/epjst/e2018-00057-1 10.1016/j.oceaneng.2021.109134 10.1155/2015/231394 10.1016/j.jrmge.2021.06.015 10.1016/j.conbuildmat.2019.07.214 10.1016/j.cad.2010.12.015 10.1016/j.trgeo.2021.100678 10.1109/CICT51604.2020.9312112 10.1016/j.ndteint.2009.09.003 10.1016/j.conbuildmat.2020.122140 10.1016/j.conbuildmat.2012.02.066 10.1088/1757-899X/416/1/012065 10.1016/j.enggeo.2021.106239 10.1016/j.measurement.2021.109632 10.3390/pr9030486 10.1016/j.cemconres.2021.106449 10.1016/j.jcsr.2018.07.030 10.1016/j.enconman.2015.05.065 10.1061/(ASCE)CP.1943-5487.0000607 10.1016/j.conbuildmat.2019.06.079 10.1109/JAS.2019.1911753 10.1007/978-3-642-83814-9_6 10.1016/j.compositesa.2011.01.016 10.1016/j.wasman.2017.09.033 10.1016/j.conbuildmat.2021.124450 10.1016/j.jrmge.2021.12.018 10.1016/j.compstruct.2022.115823 10.1016/j.conbuildmat.2020.119146 10.3390/polym14112270 10.1007/s13369-022-06607-w 10.1080/15321799508014598 10.1016/j.measurement.2022.111300 10.1016/j.cie.2021.107250 10.1007/s10898-007-9149-x 10.1016/j.ijthermalsci.2021.107427 10.1016/j.jobe.2020.101710 10.1016/j.future.2019.02.028 10.1007/s00366-021-01329-3 10.3390/polym13162610 10.3390/infrastructures6090129 10.3390/ma13071495 10.1109/ACCESS.2019.2907012 10.1109/TAP.2013.2238654 10.1126/sciadv.1700782 10.1016/j.resconrec.2019.104584 10.1109/TEVC.2008.919004 10.1016/j.ins.2009.03.004 10.1016/j.conbuildmat.2022.127454 10.1016/j.advengsoft.2015.01.010 10.1029/2000JD900719 10.1016/j.jclepro.2020.122960 10.1177/003754970107600201 10.1016/j.cemconcomp.2009.11.002 10.1002/pen.20616 10.1155/2021/6627447 10.1016/j.ins.2015.08.004 10.1007/s11356-021-14707-7 10.1016/j.trgeo.2021.100608 10.1016/j.asoc.2017.11.043 10.1007/s00366-021-01466-9 10.1007/s41062-021-00631-9 10.1016/j.ceramint.2015.06.037 10.1016/j.asoc.2013.12.005 10.1016/j.rser.2021.111315 10.1155/2022/5639203 10.1007/s12205-015-0511-0 10.1016/j.asoc.2021.107595  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022  | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022  | 
    
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/ma15155242 | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1944 | 
    
| ExternalDocumentID | 10.3390/ma15155242 PMC9369487 10_3390_ma15155242  | 
    
| GrantInformation_xml | – fundername: Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia grantid: GRANT328  | 
    
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC COVID DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c383t-ee8798531504703ac333ad37dd1853bb3425d0e6cc9e8ce57901f43acbfe41ee3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1996-1944 | 
    
| IngestDate | Sun Oct 26 04:16:31 EDT 2025 Tue Sep 30 16:52:43 EDT 2025 Fri Sep 05 06:33:53 EDT 2025 Fri Jul 25 11:40:21 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Thu Oct 16 04:43:42 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c383t-ee8798531504703ac333ad37dd1853bb3425d0e6cc9e8ce57901f43acbfe41ee3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7284-7348 0000-0001-7728-4695 0000-0002-4317-3978 0000-0001-7994-4642 0000-0001-8544-2550 0000-0001-6524-4389 0000-0002-6061-8772  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/15/15/5242/pdf?version=1659091778 | 
    
| PMID | 35955178 | 
    
| PQID | 2700740386 | 
    
| PQPubID | 2032366 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_ma15155242 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9369487 proquest_miscellaneous_2702188559 proquest_journals_2700740386 crossref_citationtrail_10_3390_ma15155242 crossref_primary_10_3390_ma15155242  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220729 | 
    
| PublicationDateYYYYMMDD | 2022-07-29 | 
    
| PublicationDate_xml | – month: 7 year: 2022 text: 20220729 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Materials | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | ref_94 Samadi (ref_119) 2020; 34 Yuan (ref_53) 2015; 101 Asteris (ref_61) 2021; 303 Sharma (ref_116) 2022; 198 Li (ref_67) 2020; 111 Almeshal (ref_3) 2020; 253 Heidari (ref_92) 2019; 97 Asteris (ref_44) 2021; 145 Mall (ref_51) 2015; 26 ref_95 Kim (ref_14) 2010; 32 Jalal (ref_45) 2021; 289 Kardani (ref_108) 2021; 173 Bardhan (ref_99) 2021; 110 Bardhan (ref_110) 2022; 13 Basha (ref_13) 2020; 32 ref_23 ref_22 Henry (ref_41) 1988; 3 Kashan (ref_75) 2014; 16 Suykens (ref_60) 2001; 14 Gencel (ref_21) 2011; 42 Biswas (ref_103) 2021; 28 Nazari (ref_38) 2015; 41 Abualigah (ref_89) 2021; 157 Jog (ref_18) 1995; 35 (ref_20) 2004; 69 Mirjalili (ref_66) 2014; 69 ref_74 Tamura (ref_86) 2017; 50 Ni (ref_49) 2000; 30 Storn (ref_82) 1997; 11 Iqbal (ref_47) 2021; 4 Golewski (ref_26) 2021; 181 Saikia (ref_16) 2012; 34 ref_83 Ghani (ref_97) 2021; 46 Khan (ref_29) 2019; 203 Jalal (ref_34) 2021; 28 ref_81 Khan (ref_30) 2020; 244 Moosavian (ref_76) 2014; 17 Kaloop (ref_42) 2022; 16 Rafi (ref_50) 2015; 44 Bardhan (ref_98) 2021; 128 Kirkpatrick (ref_91) 1983; 220 Mirjalili (ref_65) 2015; 83 ref_85 Alfahdawi (ref_15) 2019; 225 Weinberg (ref_24) 2018; 227 Kardani (ref_62) 2020; 35 Bardhan (ref_102) 2021; 13 Chandra (ref_114) 2018; 4 Kattan (ref_19) 2006; 46 Huang (ref_11) 2021; 2021 Eskandar (ref_87) 2012; 110–111 Ferreira (ref_48) 2010; 43 Geyer (ref_4) 2017; 3 ref_58 ref_57 Mirjalili (ref_70) 2016; 95 ref_56 Simon (ref_80) 2008; 12 Bayraktar (ref_88) 2013; 61 Taylor (ref_117) 2001; 106 Topal (ref_93) 2022; 295 ref_59 Mirjalili (ref_68) 2017; 114 Iqbal (ref_32) 2021; 232 Karaboga (ref_64) 2007; 39 Jalal (ref_39) 2020; 273 Bardhan (ref_36) 2021; 291 Ameri (ref_28) 2019; 222 Bardhan (ref_106) 2021; 32 Liu (ref_2) 2019; 154 Jafar (ref_7) 2015; 20 ref_69 Liu (ref_77) 2016; 326 Yao (ref_84) 1999; 3 Prayogo (ref_52) 2018; 2018 Heidarabadizadeh (ref_118) 2021; 275 ref_63 Roy (ref_115) 2019; 6 Mark (ref_6) 2020; 13 Bardhan (ref_37) 2022; 337 Kaloop (ref_100) 2021; 148 Wabnitz (ref_5) 2010; 129 Hannawi (ref_9) 2010; 1 Rao (ref_78) 2011; 43 Sarde (ref_12) 2021; 318 Chai (ref_55) 2015; 2015 Gil (ref_27) 2018; 416 ref_35 ref_33 He (ref_72) 2009; 13 ref_111 ref_113 ref_112 Pan (ref_40) 2022; 2022 Rashedi (ref_90) 2009; 179 Xue (ref_54) 2017; 31 Kardani (ref_101) 2021; 17 Schaefer (ref_17) 2018; 71 Abdullah (ref_71) 2019; 7 ref_105 Derraik (ref_1) 2002; 44 ref_107 ref_109 Li (ref_25) 2018; 150 (ref_10) 2021; 13 Moghdani (ref_79) 2018; 64 ref_43 Emad (ref_31) 2021; 15 Pradeep (ref_104) 2021; 7 Geem (ref_73) 2001; 76 Dhilipkumar (ref_96) 2021; 12 ref_8 Jalal (ref_46) 2021; 30  | 
    
| References_xml | – volume: 44 start-page: 20140139 year: 2015 ident: ref_50 article-title: Models for Prediction of 28-Day Concrete Compressive Strength publication-title: J. Test. Eval. – volume: 289 start-page: 112420 year: 2021 ident: ref_45 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112420 – ident: ref_111 doi: 10.1007/s11831-022-09748-1 – volume: 35 start-page: 102105 year: 2020 ident: ref_62 article-title: Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.102105 – volume: 220 start-page: 671 year: 1983 ident: ref_91 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 110–111 start-page: 151 year: 2012 ident: ref_87 article-title: Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 13 start-page: 5808 year: 2020 ident: ref_6 article-title: The use of heterogeneous catalysis in the chemical valorization of plastic waste publication-title: ChemSusChem doi: 10.1002/cssc.202001905 – volume: 203 start-page: 174 year: 2019 ident: ref_29 article-title: Improvement in concrete behavior with fly ash, silica-fume and coconut fibres publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.103 – volume: 4 start-page: 207 year: 2021 ident: ref_47 article-title: Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques publication-title: Multiscale Multidiscip. Model. Exp. Des. doi: 10.1007/s41939-021-00092-8 – volume: 14 start-page: 23 year: 2001 ident: ref_60 article-title: Optimal control by least squares support vector machines publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00077-0 – volume: 44 start-page: 842 year: 2002 ident: ref_1 article-title: The pollution of the marine environment by plastic debris: A review publication-title: Mar. Pollut. Bull. doi: 10.1016/S0025-326X(02)00220-5 – volume: 111 start-page: 300 year: 2020 ident: ref_67 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 46 start-page: 113 year: 2021 ident: ref_97 article-title: A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models publication-title: Sādhanā doi: 10.1007/s12046-021-01640-1 – ident: ref_81 doi: 10.1007/978-3-540-30217-9_29 – volume: 2018 start-page: 6490169 year: 2018 ident: ref_52 article-title: Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine publication-title: Adv. Civ. Eng. doi: 10.1155/2018/6490169 – volume: 15 start-page: e00600 year: 2021 ident: ref_31 article-title: Experimental study using ASTM and BS standards and model evaluations to predict the compressive strength of the cement grouted sands modified with polymer publication-title: Case Stud. Constr. Mater. – volume: 50 start-page: 360 year: 2017 ident: ref_86 article-title: The Spiral Optimization Algorithm: Convergence Conditions and Settings publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2017.2695577 – volume: 95 start-page: 51 year: 2016 ident: ref_70 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 17 start-page: 14 year: 2014 ident: ref_76 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.002 – ident: ref_74 doi: 10.1109/CEC.2007.4425083 – volume: 13 start-page: 88 year: 2022 ident: ref_110 article-title: Application of Artificial Intelligence Techniques in Slope Stability Analysis: A Short Review and Future Prospects publication-title: Int. J. Geotech. Earthq. Eng. doi: 10.4018/IJGEE.298988 – volume: 17 start-page: 1239 year: 2021 ident: ref_101 article-title: Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine publication-title: Acta Geotech. doi: 10.1007/s11440-021-01257-y – volume: 3 start-page: 95 year: 1988 ident: ref_41 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1007/BF00113892 – volume: 3 start-page: 82 year: 1999 ident: ref_84 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: ref_59 – volume: 13 start-page: 973 year: 2009 ident: ref_72 article-title: Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2011992 – volume: 69 start-page: 155 year: 2004 ident: ref_20 article-title: Studies on the rubber phase stability in gamma irradiated polystyrene-SBR blends by using FT-IR and Raman spectroscopy publication-title: Radiat. Phys. Chem. doi: 10.1016/S0969-806X(03)00452-3 – volume: 11 start-page: 341 year: 1997 ident: ref_82 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref_56 doi: 10.3390/ma15093077 – volume: 244 start-page: 118382 year: 2020 ident: ref_30 article-title: Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118382 – volume: 114 start-page: 163 year: 2017 ident: ref_68 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 4 start-page: 252 year: 2018 ident: ref_114 article-title: Soft computing based approach to evaluate the performance of solar PV module considering wind effect in laboratory condition publication-title: Energy Rep. doi: 10.1016/j.egyr.2017.11.001 – volume: 30 start-page: 1245 year: 2000 ident: ref_49 article-title: Prediction of compressive strength of concrete by neural networks publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(00)00345-8 – volume: 16 start-page: e00955 year: 2022 ident: ref_42 article-title: Soft computing approaches towards tensile strength estimation of GFRP rebars subjected to alkaline-concrete environment publication-title: Case Stud. Constr. Mater. – volume: 69 start-page: 46 year: 2014 ident: ref_66 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_35 doi: 10.3390/buildings12060796 – volume: 1 start-page: 251 year: 2010 ident: ref_9 article-title: Effect of thermoplastic aggregates incorporation on physical, mechanical and transfer behaviour of cementitious materials publication-title: Waste Biomass Valorization doi: 10.1007/s12649-010-9021-y – volume: 12 start-page: 18 year: 2021 ident: ref_96 article-title: Predicting Probability of Liquefaction Susceptibility based on a wide range of CPT data publication-title: Int. J. Geotech. Earthq. Eng. – volume: 318 start-page: 126027 year: 2021 ident: ref_12 article-title: Effect of calcined kaolin clay on mechanical and durability properties of pet waste-based polymer mortar composites publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126027 – volume: 26 start-page: 1086 year: 2015 ident: ref_51 article-title: Very sparse LSSVM reductions for large-scale data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2333879 – volume: 129 start-page: 1 year: 2010 ident: ref_5 article-title: Plastic pollution: An ocean emergency publication-title: Mar. Turt. Newsl. – volume: 227 start-page: 167 year: 2018 ident: ref_24 article-title: On the tensile resistance of UHPC at impact publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2018-00057-1 – volume: 232 start-page: 109134 year: 2021 ident: ref_32 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109134 – volume: 2015 start-page: 231394 year: 2015 ident: ref_55 article-title: A hybrid least square support vector machine model with parameters optimization for stock forecasting. Mathematical Problems in Engineering publication-title: Math. Probl. Eng. doi: 10.1155/2015/231394 – volume: 13 start-page: 1398 year: 2021 ident: ref_102 article-title: Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.06.015 – ident: ref_112 – volume: 225 start-page: 358 year: 2019 ident: ref_15 article-title: Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.214 – volume: 43 start-page: 303 year: 2011 ident: ref_78 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 13 start-page: 13003 year: 2021 ident: ref_10 article-title: Wine as a Tourist Resource: New Manifestations and Consequences of a Quality Product from the Perspective of Sustainability publication-title: Case Anal. Prov. Málaga. Sustain. – volume: 32 start-page: 100678 year: 2021 ident: ref_106 article-title: A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100678 – ident: ref_113 doi: 10.1109/CICT51604.2020.9312112 – ident: ref_22 – volume: 43 start-page: 55 year: 2010 ident: ref_48 article-title: NDT measurements for the prediction of 28-day compressive strength publication-title: NDT E Int. doi: 10.1016/j.ndteint.2009.09.003 – volume: 275 start-page: 122140 year: 2021 ident: ref_118 article-title: Prediction of the resilient modulus of non-cohesive subgrade soils and unbound subbase materials using a hybrid support vector machine method and colliding bodies optimization algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.122140 – volume: 34 start-page: 385 year: 2012 ident: ref_16 article-title: Use of plastic waste as aggregate in cement mortar and concrete preparation: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.02.066 – volume: 416 start-page: 012065 year: 2018 ident: ref_27 article-title: Effect of Silica Fume and Siliceous Fly Ash Addition on the Fracture Toughness of Plain Concrete in Mode I publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/416/1/012065 – volume: 291 start-page: 106239 year: 2021 ident: ref_36 article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106239 – volume: 181 start-page: 109632 year: 2021 ident: ref_26 article-title: Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method publication-title: Measurement doi: 10.1016/j.measurement.2021.109632 – ident: ref_95 doi: 10.3390/pr9030486 – volume: 145 start-page: 106449 year: 2021 ident: ref_44 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106449 – volume: 150 start-page: 209 year: 2018 ident: ref_25 article-title: Design of concrete-filled high strength steel tubular joints subjected to compression publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2018.07.030 – volume: 101 start-page: 393 year: 2015 ident: ref_53 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.065 – volume: 31 start-page: 04016041 year: 2017 ident: ref_54 article-title: Prediction of Slope Stability Based on Hybrid PSO and LSSVM publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000607 – volume: 222 start-page: 49 year: 2019 ident: ref_28 article-title: Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.06.079 – volume: 6 start-page: 1365 year: 2019 ident: ref_115 article-title: Forecasting of software reliability using neighborhood fuzzy particle swarm optimization based novel neural network publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911753 – ident: ref_83 doi: 10.1007/978-3-642-83814-9_6 – volume: 42 start-page: 567 year: 2011 ident: ref_21 article-title: Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2011.01.016 – volume: 71 start-page: 426 year: 2018 ident: ref_17 article-title: Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.09.033 – volume: 303 start-page: 124450 year: 2021 ident: ref_61 article-title: Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124450 – ident: ref_107 doi: 10.1016/j.jrmge.2021.12.018 – ident: ref_58 – volume: 295 start-page: 115823 year: 2022 ident: ref_93 article-title: Maximization of the fundamental frequency of the FG-CNTRC quadrilateral plates using a new hybrid PSOG algorithm publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115823 – volume: 253 start-page: 119146 year: 2020 ident: ref_3 article-title: Use of recycled plastic as fine aggregate in cementitious composites: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119146 – ident: ref_33 doi: 10.3390/polym14112270 – ident: ref_109 doi: 10.1007/s13369-022-06607-w – volume: 35 start-page: 531 year: 1995 ident: ref_18 article-title: Crystallization of Polyethyleneterephthalate publication-title: J. Macromol. Sci. Part C Polym. Rev. doi: 10.1080/15321799508014598 – ident: ref_69 – volume: 198 start-page: 111300 year: 2022 ident: ref_116 article-title: Query expansion–Hybrid framework using fuzzy logic and PRF publication-title: Measurement doi: 10.1016/j.measurement.2022.111300 – volume: 157 start-page: 107250 year: 2021 ident: ref_89 article-title: Aquila Optimizer: A novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 39 start-page: 459 year: 2007 ident: ref_64 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 173 start-page: 107427 year: 2021 ident: ref_108 article-title: Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.107427 – volume: 32 start-page: 101710 year: 2020 ident: ref_13 article-title: Mechanical and thermal properties of lightweight recycled plastic aggregate concrete publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101710 – volume: 97 start-page: 849 year: 2019 ident: ref_92 article-title: Harris hawks optimization: Algorithm and applications publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – ident: ref_94 doi: 10.1007/s00366-021-01329-3 – ident: ref_23 doi: 10.3390/polym13162610 – ident: ref_105 doi: 10.3390/infrastructures6090129 – ident: ref_8 doi: 10.3390/ma13071495 – volume: 28 start-page: 221 year: 2021 ident: ref_103 article-title: Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete publication-title: Comput. Concr. – volume: 7 start-page: 43473 year: 2019 ident: ref_71 article-title: Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907012 – volume: 61 start-page: 2745 year: 2013 ident: ref_88 article-title: The Wind Driven Optimization Technique and its Application in Electromagnetics publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2013.2238654 – volume: 3 start-page: e1700782 year: 2017 ident: ref_4 article-title: Production, use, and fate of all plastics ever made publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 154 start-page: 104584 year: 2019 ident: ref_2 article-title: Stocks and flows of polyvinyl chloride (PVC) in China: 1980–2050 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2019.104584 – volume: 12 start-page: 702 year: 2008 ident: ref_80 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 179 start-page: 2232 year: 2009 ident: ref_90 article-title: GSA: A Gravitational Search Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 337 start-page: 127454 year: 2022 ident: ref_37 article-title: A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127454 – volume: 83 start-page: 80 year: 2015 ident: ref_65 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 106 start-page: 7183 year: 2001 ident: ref_117 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900719 – volume: 273 start-page: 122960 year: 2020 ident: ref_39 article-title: RETRACTED: Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122960 – volume: 76 start-page: 60 year: 2001 ident: ref_73 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 32 start-page: 232 year: 2010 ident: ref_14 article-title: Material and structural performance evaluation of recycled PET fiber reinforced concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.11.002 – ident: ref_63 – volume: 46 start-page: 1374 year: 2006 ident: ref_19 article-title: Thermal behavior of gamma-irradiated amorphous poly (ethylene terephthalate) films publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20616 – volume: 2021 start-page: 6627447 year: 2021 ident: ref_11 article-title: Study on Mechanical Properties of PET Fiber-Reinforced Coal Gangue Fine Aggregate Concrete publication-title: Geofluids doi: 10.1155/2021/6627447 – volume: 326 start-page: 315 year: 2016 ident: ref_77 article-title: Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.08.004 – volume: 28 start-page: 43287 year: 2021 ident: ref_34 article-title: Fractal approach in expansive clay-based materials with special focus on compacted GMZ bentonite in nuclear waste disposal: A systematic review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-14707-7 – volume: 30 start-page: 100608 year: 2021 ident: ref_46 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100608 – volume: 64 start-page: 161 year: 2018 ident: ref_79 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – ident: ref_43 doi: 10.1007/s00366-021-01466-9 – ident: ref_85 – volume: 128 start-page: 1033 year: 2021 ident: ref_98 article-title: Reliability Analysis of Piled Raft Foundation Using a Novel Hybrid Approach of ANN and Equilibrium Optimizer publication-title: Comput. Model. Eng. Sci. – volume: 7 start-page: 37 year: 2021 ident: ref_104 article-title: Prediction of rock strain using soft computing framework publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-021-00631-9 – volume: 41 start-page: 12164 year: 2015 ident: ref_38 article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.06.037 – volume: 16 start-page: 171 year: 2014 ident: ref_75 article-title: League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.12.005 – volume: 148 start-page: 111315 year: 2021 ident: ref_100 article-title: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111315 – volume: 34 start-page: 691 year: 2020 ident: ref_119 article-title: Explicit data-driven models for prediction of pressure fluctuations occur during turbulent flows on sloping channels publication-title: Stoch. Hydrol. Hydraul. – volume: 2022 start-page: 5639203 year: 2022 ident: ref_40 article-title: Applying ANFIS and LSSVM Models for the Estimation of Biochar Aromaticity publication-title: Int. J. Chem. Eng. doi: 10.1155/2022/5639203 – volume: 20 start-page: 243 year: 2015 ident: ref_7 article-title: Utilisation of waste plastic in bituminous mix for improved performance of roads publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0511-0 – ident: ref_57 – volume: 110 start-page: 107595 year: 2021 ident: ref_99 article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107595  | 
    
| SSID | ssj0000331829 | 
    
| Score | 2.3754375 | 
    
| Snippet | Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The... | 
    
| SourceID | unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 5242 | 
    
| SubjectTerms | Additives Aggregates Algorithms By products Cement Civil engineering Compressive strength Concrete Construction industry Fly ash Gene expression Grout Industrial wastes Investigations Laboratories Landfill Mathematical models Natural resources Neural networks Parameter sensitivity Particle swarm optimization Performance indices Polyethylene terephthalate Portland cements Radiation Reinforced concrete Sensitivity analysis Silica fume Support vector machines Swarm intelligence  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8rDxgPYpMtjkabzwEJHGTpM8TNOoiqpprRCFjbfIXwFE53Zrqon_fnduktJp4tlObN35fJ_-HcCh7mmhYsHx9lMyFFKYMLM2C8u0jEyuVCk8dudo3Bteiq9XydUWjJu3MFRW2dyJ_qI2M00x8mNKkKYi4lnv8_xXSF2jKLvatNCQdWsF88lDjD2B7ZiQsTqwfTIYn523UZeI4xmO8xVOKUd___inJJWexCLe1Exrc_PfYsmnSzeX93_kdPpAE50-h93ahGRfVjx_AVvWvYSdB8CCr-COWpx5tG1GAr-qdXWMUtDuurphs5L9kMhfdja4YNIZNumP2MnUh8NZ30cMqZRruWAUm6qYLyxgw3t63kUff5tMvo-YX2TxGi5PBxf9YVi3VQg1uqNViKxIc9TSaAoKlHepOefS8NQY0t1KcRRjE9me1rnNtE1SNBlKgfNUaUXXWv4GOm7m7B4wnSSJVSJGncYF_jfvEtinkpwnsiu0CuCoIWmha8xxan0xLdD3IPIXa_IH8LGdO18hbfx31kHDmaKWtkWxPhsBfGiHUU4o-SGdRXLRHLRmMnSgAkg3ONquRkjbmyPu9sYjblPXQ_TsAjhsef_IHt8-vsd9eBbTG4ooDeP8ADrV76V9h5ZNpd7Xx_UvIJH6bQ priority: 102 providerName: ProQuest  | 
    
| Title | Modelling Compression Strength of Waste PET and SCM Blended Cementitious Grout Using Hybrid of LSSVM Models | 
    
| URI | https://www.proquest.com/docview/2700740386 https://www.proquest.com/docview/2702188559 https://pubmed.ncbi.nlm.nih.gov/PMC9369487 https://www.mdpi.com/1996-1944/15/15/5242/pdf?version=1659091778  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9i7QE48D0RGJURu3DImtTO1wltVbsK0aqiK5RTZDsOm1ayiqag8dfznpN27YQQElIOifwcO3n2-_LzzwCHOtRCdQRH6aekK6TI3NiY2M2j3MsSpXJhsTuHo3AwFe9nwWxrFz-lVaIrfmGFtM2QRS9btP2ArgD1SXuR5e9-1LEkPwwSVHhRFO9BE-9DrwHN6Wh8_MUuJte1K1RSjt59-5skBU7v2dVDN8bl7dTIu6tiIa9_yvl8S-_0H4Jc97hKN7k8WpXqSP-6Beb4P5_0CB7URik7rkbRY7hjiidwfwuq8Clc0qFpFr-bkQipsmcLRovaxdfynF3l7LPEEcPGvTMmi4xNukN2MrcBdta1MUhKDlstGUW7SmZTFdjgmjaMUeUPk8mnIbONLJ_BtN876w7c-qAGV6ODW7rI3ChBvY_GpUAJIjXnXGY8yjKyBpTiKBgyz4RaJybWJojQCMkF0qncCN8Yvg-N4qowz4HpIAiMEh3UklzgexOf4EOV5DyQvtDKgbdrtqW6RjGnwzTmKXozxOL0hsUOvNnQLirsjj9SHay5n9bzd5nScnwkPB6HDrzeFOPMo-UUWRj8XUSD9lGMLpkD0c6o2bRG2N27JcXFucXwpnMU0Vd04HAzvv7Sxxf_RvYS7nVod4YXuZ3kABrl95V5hTZTqVqwF_dPW9A86Y3GH_HpdOa36qnyG96XFZY | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IJ7CpcAiyoGDVce7ju1DhWhIldIkqkgKvZl9mVZNnbRxVOXP8duYcWynQai3nj3eXc3OzmtnvwHY0U0tlC84aj8lXSGFcSNrIzcNU8_ESqWiwO7s9ZudE_HtNDhdgz_VWxgqq6x0YqGozVhTjnyXLkhD4fGo-Xly5VLXKLpdrVpoyLK1gtkrIMbKhx1Hdn6DIdx07_Ar7vdH3z9oD1sdt-wy4GqMznIXVxbGaLTQMxIo_lJzzqXhoTFkypTiKNXGs02tYxtpG4RoQVOBdCq1omEtx3EfwIbgIsbgb2O_3T_-Xmd5PI5nxo8XuKicx97upSQXIvCFv2oJl-7tv8WZm7NsIuc3cjS6ZfkOnsDj0mVlXxYy9hTWbPYMHt0CMnwOF9RSrUD3ZqRgFrW1GaMr7-x3fsbGKfspUZ7YcXvIZGbYoNVj-6Mi_c5aRYaSSsdmU0a5sJwVhQysM6fnZPRzdzD40WPFJNMXcHIvDH4J69k4s6-A6SAIrBI-2lAucNy4QeCiSnIeyIbQyoFPFUsTXWKcU6uNUYKxDrE_WbLfgQ817WSB7PFfqu1qZ5LydE-TpSw68L7-jOeSLltkZpFdRIPeU4QBmwPhyo7WsxGy9-qX7PysQPimLosYSTqwU-_9HWvcunuN72CzM-x1k-5h_-g1PPTp_YYXun68Dev59cy-Qa8qV29L0WXw675Py1-d8Dea | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIfHxgPgUgQFGjAceoqax0yQPCEG30rF1mtQN9hZsx2GI4haaauq_xl_HnfPRFaG97TmObZ3vfJ_-HcC27mmhQsHx9lPSF1LkfmJM4hdxEeSpUoVw2J2jw97wRHw6jU434E_zFobKKps70V3U-VRTjLxDCdJYBDzpdYq6LOJoZ_Bu9sunDlKUaW3aaVQssm-W5-i-zd_u7eBZvw7Dwe5xf-jXHQZ8jZ5Z6eOu4hQVFlpFAllfas65zHmc56TGlOLI0XlgelqnJtEmilF7FgLHqcKIrjEc570G12NCcadX6oOPbXwn4CgtYVohonKeBp2fkoyHKBThug5cGbb_lmXeXNiZXJ7LyeSCzhvchTu1screV9x1DzaMvQ-3L0AYPoAf1EzN4XozulqqqlrLKNltv5VnbFqwLxI5iR3tHjNpczbuj9iHiQu8s76LTVLR2GLOKApWMlfCwIZLekhGPx-Mx59HzC0yfwgnV0LeR7Bpp9Y8BqajKDJKhKg9ucB50y7BiirJeSS7QisP3jQkzXSNbk5NNiYZejlE_mxFfg9etWNnFabHf0dtNSeT1XI9z1Zc6MHL9jNKJKVZpDVILhqDdlOCrpoH8dqJtqsRpvf6F_v9zGF7U39F9CE92G7P_pI9Prl8jy_gBspIdrB3uP8UboX0cCOI_TDdgs3y98I8Q3OqVM8d3zL4etWC8hchyDU0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-C7gAcGF8TYQMZsQuHrEltx8lpGtWmCtFpUlcYp8h2HDatZBVNmcZfz3tO2rUTQkhIOUTy80fy7Pfl558Bdm1ihekJjtLP6FBoUYSpc2lYqjIqMmNK4bE7h8fJYCw-nsmzlVP8lFaJrviFF9I-Qxa9bNGNJT0S9Ul3WpT7P9tYUpzIDBWeUul92MD3JOrAxvj45OCr30xuazeopBy9--53TQqc2lnXQ7fG5d3UyAfzaqpvrvVksqJ3jjZBL0bcpJtc7s1rs2d_3QFz_J9PegKPW6OUHTSz6Cncc9UzeLQCVfgcLunSNI_fzUiENNmzFaNN7epbfc6uSvZF44xhJ4enTFcFG_WH7MPEB9hZ38cgKTlsPmMU7aqZT1Vggxs6MEaVP41Gn4fMdzJ7AeOjw9P-IGwvaggtOrh1iMxVGep9NC4FShBtOee64KooyBowhqNgKCKXWJu51Dqp0AgpBdKZ0onYOb4Fneqqci-BWSmlM6KHWpILbDeLCT7UaM6ljoU1AbxfsC23LYo5XaYxydGbIRbntywO4N2Sdtpgd_yRamfB_bxdv7OctuOViHiaBPB2WYwrj7ZTdOXwdxEN2kcpumQBqLVZs-yNsLvXS6qLc4_hTfcooq8YwO5yfv1ljK_-jWwbHvbodEakwl62A536x9y9RpupNm_aZfEbWbMSJQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+Compression+Strength+of+Waste+PET+and+SCM+Blended+Cementitious+Grout+Using+Hybrid+of+LSSVM+Models&rft.jtitle=Materials&rft.au=Khan%2C+Kaffayatullah&rft.au=Gudainiyan%2C+Jitendra&rft.au=Iqbal%2C+Mudassir&rft.au=Jamal%2C+Arshad&rft.date=2022-07-29&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Fma15155242&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |