Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction

As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstr...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 93; no. 2; pp. 025001 - 25008
Main Authors Chen, Jinyan, Liu, Pengzhan, Hu, Jie, Yang, Jianlin, Chen, Chao
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.02.2022
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1089-7623
DOI10.1063/5.0073669

Cover

Abstract As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.
AbstractList As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.
As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.
Author Yang, Jianlin
Chen, Jinyan
Hu, Jie
Liu, Pengzhan
Chen, Chao
Author_xml – sequence: 1
  givenname: Jinyan
  surname: Chen
  fullname: Chen, Jinyan
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Pengzhan
  surname: Liu
  fullname: Liu, Pengzhan
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: 3Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang 330045, People’s Republic of China
– sequence: 4
  givenname: Jianlin
  surname: Yang
  fullname: Yang, Jianlin
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35232161$$D View this record in MEDLINE/PubMed
BookMark eNqdkc9q3DAQxkVJaDbbHvoCRdBLW3AieWxZeyxJ_wQCubRnIUvjoGBLrmRv2D5FHzlavEsh9JS5aEC_-Wbmm3Ny4oNHQt5xdsGZgMv6grEGhNi8IivO5KZoRAknZMUYVIVoKnlGzlN6YDlqzl-TM6hLKLngK_L3GpO79zR0VHuqY9S7fT46_BNi_kqT2yLVLnZ9eKQJfQox0VYntDR4OmYmzRFpH7R1_p4OwSLtQqTJDXM_aY9hTtTihGZyYelzENtiH4ybdrmxpdbFhXhDTjvdJ3x7eNfk17evP69-FLd332-uvtwWBiRMRYu8MVbIyoAuGStN01rglhkhpUWQCAJlWWmpddtZgKputRaylhy7loGANfm46I4x_J4xTWpwyWDfLyOrUuxN2nBWZ_TDM_QhzNHn6TJVVpWoeXZ6Td4fqLkd0KoxukHHnTp6nYHLBTAxpBSxU3l7vd95itr1ijO1v6aq1eGaueLTs4qj6P_Yzwubjqovg7ch_gPVaDt4Ah_vvNQ
CODEN RSINAK
CitedBy_id crossref_primary_10_1002_admi_202300077
crossref_primary_10_1039_D2MH01482C
Cites_doi 10.1016/j.flowmeasinst.2019.04.010
10.1088/0964-1726/18/11/115002
10.3390/s16071056
10.1049/bsbt.2019.0043
10.1016/j.renene.2015.08.062
10.1016/j.isatra.2016.07.010
10.3390/s20164483
10.1021/acsnano.8b01532
10.1155/2019/8476489
10.1088/1361-6501/aaaa47
10.1088/0960-1317/21/8/085006
10.1016/j.sna.2010.08.012
10.1088/0960-1317/20/7/075024
10.1364/ao.52.003420
10.1063/5.0012244
10.1016/s0924-4247(03)00268-1
10.1088/0957-0233/24/6/065802
10.1007/s00542-017-3593-4
10.3390/s140100564
10.1016/j.sna.2013.01.010
10.1109/tim.2011.2164837
10.1177/0142331219894811
10.1109/tim.2017.2676190
10.1088/0964-1726/24/10/105001
10.1039/c1lc20161a
10.1088/0964-1726/21/11/113001
10.1002/adma.201908214
10.3390/mi12050504
10.1088/1361-665x/ab98ea
10.1021/nn4043157
10.1007/s10404-008-0383-4
10.1016/s0925-4005(03)00109-6
10.1016/j.measurement.2015.05.032
10.1007/s40820-020-00446-w
10.1109/jsen.2018.2860779
10.1016/j.sna.2016.02.018
10.1109/tim.2017.2714438
10.1088/0957-0233/26/10/107001
10.3390/s20020523
10.1109/jsen.2017.2701502
10.1088/1361-665x/ab18cb
10.1016/j.sna.2015.09.030
10.1109/jsen.2020.3048236
10.1007/s00542-008-0737-6
10.1016/j.sna.2019.06.020
10.1175/1520-0450(1972)011<0843:cartfw>2.0.co;2
10.1016/j.sna.2021.112832
10.1016/j.sna.2003.12.019
10.1016/j.sna.2014.10.013
10.1016/j.flowmeasinst.2005.04.003
10.2514/2.795
10.1063/1.5040171
10.1063/1.4723846
10.1016/j.mechatronics.2013.02.003
10.1002/elan.201700438
10.1016/j.mejo.2008.01.090
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0073669
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 35232161
10_1063_5_0073669
rsi
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51575259
  funderid: https://doi.org/10.13039/501100001809
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: https://doi.org/10.13039/501100012246
– fundername: Funding for Science and Technology Project of Jiangxi Education Department
  grantid: GJJ200452
– fundername: Startup Research Fund of Jiangxi Agricultural University
  grantid: 9232307722
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c383t-be17cd684c3a2002c7bd31d0c688de38e36e824a8aabfd3345baa68581efb0363
ISSN 0034-6748
1089-7623
IngestDate Wed Oct 01 13:54:11 EDT 2025
Mon Jun 30 05:02:31 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Wed Oct 01 03:37:46 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Fri Jun 21 00:13:49 EDT 2024
Thu Jun 23 13:36:10 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c383t-be17cd684c3a2002c7bd31d0c688de38e36e824a8aabfd3345baa68581efb0363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4238-4703
0000-0001-8145-3287
0000-0003-3228-133X
0000-0003-4555-9687
s0000000342384703
s0000000181453287
s000000033228133X
s0000000345559687
PMID 35232161
PQID 2624465100
PQPubID 2050675
PageCount 8
ParticipantIDs proquest_miscellaneous_2635239105
proquest_journals_2624465100
pubmed_primary_35232161
scitation_primary_10_1063_5_0073669
crossref_citationtrail_10_1063_5_0073669
crossref_primary_10_1063_5_0073669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220201
2022-02-01
2022-Feb-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 20220201
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Yang, Hu, Wu (c33) 2016; 16
Hu, Peng, Mao, Liu, Guo, Lu, Bai, Zhao (c55) 2019; 67
Seo, Kim (c35) 2010; 20
Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (c39) 2013; 7
Wu, Kang, Chen, Tai (c10) 2016; 241
Meng, Qi, Wu, Zhu, Zeng (c36) 2017; 66
Abolpour Moshizi, Azadi, Belford, Razmjou, Wu, Han, Asadnia (c42) 2020; 12
Lopes, Pereira da Silva, de Franca, de Morais Franca, de Souza Ribeiro, Moreira, Elias (c27) 2017; 66
Tao, Yu (c7) 2012; 21
Liu, Hu (c24) 2020; 29
Ma, Li, Jiang, Liang, Luo, Cheng (c37) 2012; 61
Choi, Lim, Lee (c18) 2018; 24
Idjeri, Laghrouche, Boussey (c48) 2017; 17
Ma, Teng, Zhu, Zhou, Ju, Liu (c29) 2020; 20
Shirai, Büttner, Czarske, Müller, Durst (c31) 2005; 16
Pindado, Ramos-Cenzano, Cubas (c4) 2015; 26
Tomimatsu, Takahashi, Kuwana, Kobayashi, Matsumoto, Shimoyama, Itoh, Maeda (c22) 2013; 23
Cheri, Latifi, Aghbolagh, Naeini, Taghavi, Ghaderi (c38) 2013; 52
Hu, Peng, Yao (c49) 2018; 89
Kim, Nam, Park (c46) 2004; 114
Agrawal, Patel, Boolchandani, Rangra (c52) 2018; 18
Chen, Tran, Du, Wang, Chen (c54) 2021; 12
Kanaparthi (c25) 2017; 29
Wang, Chen, Chang, Lin, Lin, Fu, Lee (c6) 2009; 6
Li, Sun, Gao, Shi, Liu, Wu (c30) 2016; 65
Sun, Cui, Zhang, Chen, Cai, Li (c12) 2013; 193
Hu, Peng, Yao, Liu, Lu, Zhao (c56) 2020; 42
Baseer, Meyer, Rehman, Alam, Al-Hadhrami, Lashin (c5) 2016; 86
Kottapalli, Tan, Olfatnia, Miao, Barbastathis, Triantafyllou (c51) 2011; 21
Barmpakos, Famelis, Moschos, Marinatos, Kaltsas (c14); 2019
Hyson (c1) 1972; 11
Liu, Zhang, Kathiresan, Kobayashi, Lee (c23) 2012; 100
Jiang, Shen, Liu, Ma, Zhao, Feng, Zhang (c16) 2019; 28
Becker, Durst, Lienhart (c32) 1999; 37
Jiang, Zhao, Ma, Shen, Liu, Zhang (c43) 2020; 6
Wang, Ding, Pan, Wu, Yu, Yang, Liao, Wang (c40) 2018; 12
Bian, Liu, Huang, Hong, Huang, Hui (c21) 2015; 24
Que, Zhu (c47) 2014; 14
Hamdollahi, Rahbar-Shahrouzi (c17) 2018; 29
Ejeian, Azadi, Razmjou, Orooji, Kottapalli, Ebrahimi Warkiani, Asadnia (c8) 2019; 295
Aiyar, Song, Kim, Allen (c19) 2009; 18
Han, Kim, Park (c28) 2008; 39
Liu, Mwangi, Li, O’Brien, Whitesides (c53) 2011; 11
Wang, Li, Wang, Wang, Shen, Zhang, Lu, He, Zhang (c15) 2020; 32
Pindado, Cubas, Sorribes-Palmer (c3) 2015; 73
Park, Kim, Kim, Kim (c45) 2003; 91
Cubukcu, Zernickel, Buerklin, Urban (c13) 2010; 163
Nguyen, Dinh, Dau, Tran, Phan, Nguyen, Nguyen, Riduan, Guzman, Nguyen, Dao (c41) 2021; 21
Djuzhev, Ryabov, Demin, Makhiboroda, Evsikov, Pozdnyakov, Bespalov (c9) 2021; 330
Ma, Chou, Wang, Hsueh, Fu, Lee (c50) 2009; 15
Miau, Leu, Yu, Tu, Wang, Lebiga, Mironov, Pak, Zinovyev, Chung (c11) 2015; 235
Liang, Guo, Yang, Zhang (c34) 2020; 20
Kim, Kim, Kim, Park (c44) 2003; 108
Nguyen, Paprotny, Wright, White (c26) 2015; 231
Shi, Holmes, Yeatman (c20) 2020; 116
Pindado, Pérez, Aguado (c2) 2013; 24
(2023081008493974600_c25) 2017; 29
(2023081008493974600_c35) 2010; 20
(2023081008493974600_c20) 2020; 116
(2023081008493974600_c5) 2016; 86
(2023081008493974600_c36) 2017; 66
(2023081008493974600_c46) 2004; 114
(2023081008493974600_c17) 2018; 29
(2023081008493974600_c49) 2018; 89
(2023081008493974600_c53) 2011; 11
(2023081008493974600_c45) 2003; 91
(2023081008493974600_c14); 2019
(2023081008493974600_c50) 2009; 15
(2023081008493974600_c34) 2020; 20
(2023081008493974600_c47) 2014; 14
(2023081008493974600_c6) 2009; 6
(2023081008493974600_c22) 2013; 23
(2023081008493974600_c9) 2021; 330
(2023081008493974600_c32) 1999; 37
(2023081008493974600_c33) 2016; 16
(2023081008493974600_c19) 2009; 18
(2023081008493974600_c30) 2016; 65
(2023081008493974600_c51) 2011; 21
(2023081008493974600_c55) 2019; 67
(2023081008493974600_c24) 2020; 29
(2023081008493974600_c1) 1972; 11
(2023081008493974600_c21) 2015; 24
(2023081008493974600_c57) 2010
(2023081008493974600_c7) 2012; 21
(2023081008493974600_c8) 2019; 295
(2023081008493974600_c39) 2013; 7
(2023081008493974600_c52) 2018; 18
(2023081008493974600_c16) 2019; 28
(2023081008493974600_c26) 2015; 231
(2023081008493974600_c54) 2021; 12
(2023081008493974600_c13) 2010; 163
(2023081008493974600_c28) 2008; 39
(2023081008493974600_c31) 2005; 16
(2023081008493974600_c3) 2015; 73
(2023081008493974600_c12) 2013; 193
(2023081008493974600_c27) 2017; 66
(2023081008493974600_c10) 2016; 241
(2023081008493974600_c38) 2013; 52
(2023081008493974600_c40) 2018; 12
(2023081008493974600_c43) 2020; 6
(2023081008493974600_c56) 2020; 42
(2023081008493974600_c44) 2003; 108
(2023081008493974600_c41) 2021; 21
(2023081008493974600_c23) 2012; 100
(2023081008493974600_c2) 2013; 24
(2023081008493974600_c11) 2015; 235
(2023081008493974600_c37) 2012; 61
(2023081008493974600_c15) 2020; 32
(2023081008493974600_c48) 2017; 17
(2023081008493974600_c29) 2020; 20
(2023081008493974600_c18) 2018; 24
(2023081008493974600_c4) 2015; 26
(2023081008493974600_c42) 2020; 12
References_xml – volume: 108
  start-page: 64
  year: 2003
  ident: c44
  article-title: A circular-type thermal flow direction sensor free from temperature compensation
  publication-title: Sens. Actuators, A
– volume: 20
  start-page: 075024
  year: 2010
  ident: c35
  article-title: A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration
  publication-title: J. Micromech. Microeng.
– volume: 24
  start-page: 1975
  year: 2018
  ident: c18
  article-title: Fabrication and evaluation of a drag-force type dual flow sensor with an embedded temperature sensor
  publication-title: Microsyst. Technol.
– volume: 12
  start-page: 3954
  year: 2018
  ident: c40
  article-title: Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 193
  start-page: 25
  year: 2013
  ident: c12
  article-title: Fabrication and characterization of a double-heater based MEMS thermal flow sensor
  publication-title: Sens. Actuators, A
– volume: 66
  start-page: 2836
  year: 2017
  ident: c27
  article-title: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 37
  start-page: 680
  year: 1999
  ident: c32
  article-title: Laser Doppler anemometer for in-flight velocity measurements on airplane wings
  publication-title: AIAA J.
– volume: 21
  start-page: 085006
  year: 2011
  ident: c51
  article-title: A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications
  publication-title: J. Micromech. Microeng.
– volume: 241
  start-page: 135
  year: 2016
  ident: c10
  article-title: MEMS thermal flow sensors
  publication-title: Sens. Actuators, A
– volume: 20
  start-page: 4483
  year: 2020
  ident: c34
  article-title: Design and characterization of a novel biaxial bionic hair flow sensor based on resonant sensing
  publication-title: Sensors
– volume: 11
  start-page: 843
  year: 1972
  ident: c1
  article-title: Cup anemometer response to fluctuating wind speeds
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 21
  start-page: 113001
  year: 2012
  ident: c7
  article-title: Hair flow sensors: From bio-inspiration to bio-mimicking—A review
  publication-title: Smart Mater. Struct.
– volume: 28
  start-page: 065028
  year: 2019
  ident: c16
  article-title: Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown
  publication-title: Smart Mater. Struct.
– volume: 163
  start-page: 449
  year: 2010
  ident: c13
  article-title: A 2D thermal flow sensor with sub-mW power consumption
  publication-title: Sens. Actuators, A
– volume: 20
  start-page: 523
  year: 2020
  ident: c29
  article-title: Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification
  publication-title: Sensors
– volume: 24
  start-page: 105001
  year: 2015
  ident: c21
  article-title: Design and fabrication of a metal core PVDF fiber for an air flow sensor
  publication-title: Smart Mater. Struct.
– volume: 52
  start-page: 3420
  year: 2013
  ident: c38
  article-title: Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber
  publication-title: Appl. Opt.
– volume: 12
  start-page: 109
  year: 2020
  ident: c42
  article-title: Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets
  publication-title: Nano-Micro Lett.
– volume: 65
  start-page: 437
  year: 2016
  ident: c30
  article-title: Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm
  publication-title: ISA Trans.
– volume: 42
  start-page: 840
  year: 2020
  ident: c56
  article-title: An investigation to the design of high-precision wind sensing device based on piezoelectric array
  publication-title: Trans. Inst. Meas. Control
– volume: 24
  start-page: 065802
  year: 2013
  ident: c2
  article-title: Fourier analysis of the aerodynamic behavior of cup anemometers
  publication-title: Meas. Sci. Technol.
– volume: 16
  start-page: 221
  year: 2005
  ident: c31
  article-title: Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows
  publication-title: Flow Meas. Instrum.
– volume: 73
  start-page: 401
  year: 2015
  ident: c3
  article-title: On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors
  publication-title: Measurement
– volume: 29
  start-page: 055301
  year: 2018
  ident: c17
  article-title: Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement
  publication-title: Meas. Sci. Technol.
– volume: 14
  start-page: 564
  year: 2014
  ident: c47
  article-title: A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network
  publication-title: Sensors
– volume: 18
  start-page: 7392
  year: 2018
  ident: c52
  article-title: Analytical modeling, simulation, and fabrication of a MEMS rectangular paddle piezo-resistive micro-cantilever-based wind speed sensor
  publication-title: IEEE Sens. J.
– volume: 231
  start-page: 28
  year: 2015
  ident: c26
  article-title: MEMS capacitive flow sensor for natural gas pipelines
  publication-title: Sens. Actuators, A
– volume: 26
  start-page: 107001
  year: 2015
  ident: c4
  article-title: Improved analytical method to study the cup anemometer performance
  publication-title: Meas. Sci. Technol.
– volume: 6
  start-page: 333
  year: 2009
  ident: c6
  article-title: MEMS-based gas flow sensors
  publication-title: Microfluid. Nanofluid.
– volume: 29
  start-page: 087004
  year: 2020
  ident: c24
  article-title: An internal miniature diversion channel-integrated piezoelectric airflow sensor
  publication-title: Smart Mater. Struct.
– volume: 18
  start-page: 115002
  year: 2009
  ident: c19
  article-title: An all-polymer airflow sensor using a piezoresistive composite elastomer
  publication-title: Smart Mater. Struct.
– volume: 91
  start-page: 347
  year: 2003
  ident: c45
  article-title: A flow direction sensor fabricated using MEMS technology and its simple interface circuit
  publication-title: Sens. Actuators, B
– volume: 66
  start-page: 2074
  year: 2017
  ident: c36
  article-title: 2-D wind velocity measurement using a vertically suspended optical fiber combined with a photosensor array
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 29
  start-page: 2680
  year: 2017
  ident: c25
  article-title: Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor
  publication-title: Electroanalysis
– volume: 12
  start-page: 504
  year: 2021
  ident: c54
  article-title: A direct-writing approach for fabrication of CNT/paper-based piezoresistive pressure sensors for airflow sensing
  publication-title: Micromachines
– volume: 116
  start-page: 264101
  year: 2020
  ident: c20
  article-title: Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 1201
  year: 2009
  ident: c50
  article-title: A microcantilever-based gas flow sensor for flow rate and direction detection
  publication-title: Microsyst. Technol.
– volume: 235
  start-page: 1
  year: 2015
  ident: c11
  article-title: Mems thermal film sensors for unsteady flow measurement
  publication-title: Sens. Actuators, A
– volume: 32
  start-page: 1908214
  year: 2020
  ident: c15
  article-title: Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor
  publication-title: Adv. Mater.
– volume: 7
  start-page: 9461
  year: 2013
  ident: c39
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
– volume: 2019
  start-page: 8476489
  ident: c14
  article-title: Design and evaluation of a multidirectional thermal flow sensor on flexible substrate
  publication-title: J. Sens.
– volume: 23
  start-page: 893
  year: 2013
  ident: c22
  article-title: A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node
  publication-title: Mechatronics
– volume: 330
  start-page: 112832
  year: 2021
  ident: c9
  article-title: Measurement system for wide-range flow evaluation and thermal characterization of MEMS-based thermoresistive flow-rate sensors
  publication-title: Sens. Actuators, A
– volume: 6
  start-page: 12
  year: 2020
  ident: c43
  article-title: Enhanced flow sensing with interfacial microstructures
  publication-title: Biosurf. Biotribology
– volume: 67
  start-page: 166
  year: 2019
  ident: c55
  article-title: An airflow sensor array based on polyvinylidene fluoride cantilevers for synchronously measuring airflow direction and velocity
  publication-title: Flow Meas. Instrum.
– volume: 89
  start-page: 085007
  year: 2018
  ident: c49
  article-title: Design of PVDF sensor array for determining airflow direction and velocity
  publication-title: Rev. Sci. Instrum.
– volume: 100
  start-page: 223905
  year: 2012
  ident: c23
  article-title: Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability
  publication-title: Appl. Phys. Lett.
– volume: 114
  start-page: 312
  year: 2004
  ident: c46
  article-title: Measurement of flow direction and velocity using a micromachined flow sensor
  publication-title: Sens. Actuators, A
– volume: 16
  start-page: 1056
  year: 2016
  ident: c33
  article-title: Design and analysis of a new hair sensor for multi-physical signal measurement
  publication-title: Sensors
– volume: 86
  start-page: 733
  year: 2016
  ident: c5
  article-title: Performance evaluation of cup-anemometers and wind speed characteristics analysis
  publication-title: Renewable Energy
– volume: 21
  start-page: 7308
  year: 2021
  ident: c41
  article-title: A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film
  publication-title: IEEE Sens. J.
– volume: 295
  start-page: 483
  year: 2019
  ident: c8
  article-title: Design and applications of MEMS flow sensors: A review
  publication-title: Sens. Actuators, A
– volume: 61
  start-page: 539
  year: 2012
  ident: c37
  article-title: A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  start-page: 4181
  year: 2017
  ident: c48
  article-title: Wind measurement based on MEMS micro-anemometer with high accuracy using ANN technique
  publication-title: IEEE Sens. J.
– volume: 11
  start-page: 2189
  year: 2011
  ident: c53
  article-title: Paper-based piezoresistive MEMS sensors
  publication-title: Lab Chip
– volume: 39
  start-page: 1195
  year: 2008
  ident: c28
  article-title: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor
  publication-title: Microelectron. J.
– volume: 67
  start-page: 166
  year: 2019
  ident: 2023081008493974600_c55
  article-title: An airflow sensor array based on polyvinylidene fluoride cantilevers for synchronously measuring airflow direction and velocity
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2019.04.010
– volume: 18
  start-page: 115002
  year: 2009
  ident: 2023081008493974600_c19
  article-title: An all-polymer airflow sensor using a piezoresistive composite elastomer
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/11/115002
– volume: 16
  start-page: 1056
  year: 2016
  ident: 2023081008493974600_c33
  article-title: Design and analysis of a new hair sensor for multi-physical signal measurement
  publication-title: Sensors
  doi: 10.3390/s16071056
– volume: 6
  start-page: 12
  year: 2020
  ident: 2023081008493974600_c43
  article-title: Enhanced flow sensing with interfacial microstructures
  publication-title: Biosurf. Biotribology
  doi: 10.1049/bsbt.2019.0043
– volume: 86
  start-page: 733
  year: 2016
  ident: 2023081008493974600_c5
  article-title: Performance evaluation of cup-anemometers and wind speed characteristics analysis
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.08.062
– volume: 65
  start-page: 437
  year: 2016
  ident: 2023081008493974600_c30
  article-title: Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.07.010
– volume: 20
  start-page: 4483
  year: 2020
  ident: 2023081008493974600_c34
  article-title: Design and characterization of a novel biaxial bionic hair flow sensor based on resonant sensing
  publication-title: Sensors
  doi: 10.3390/s20164483
– volume: 12
  start-page: 3954
  year: 2018
  ident: 2023081008493974600_c40
  article-title: Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01532
– volume: 2019
  start-page: 8476489
  ident: 2023081008493974600_c14
  article-title: Design and evaluation of a multidirectional thermal flow sensor on flexible substrate
  publication-title: J. Sens.
  doi: 10.1155/2019/8476489
– volume: 29
  start-page: 055301
  year: 2018
  ident: 2023081008493974600_c17
  article-title: Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaaa47
– volume: 21
  start-page: 085006
  year: 2011
  ident: 2023081008493974600_c51
  article-title: A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/21/8/085006
– volume: 163
  start-page: 449
  year: 2010
  ident: 2023081008493974600_c13
  article-title: A 2D thermal flow sensor with sub-mW power consumption
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2010.08.012
– volume: 20
  start-page: 075024
  year: 2010
  ident: 2023081008493974600_c35
  article-title: A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/20/7/075024
– volume: 52
  start-page: 3420
  year: 2013
  ident: 2023081008493974600_c38
  article-title: Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber
  publication-title: Appl. Opt.
  doi: 10.1364/ao.52.003420
– volume: 116
  start-page: 264101
  year: 2020
  ident: 2023081008493974600_c20
  article-title: Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0012244
– volume: 108
  start-page: 64
  year: 2003
  ident: 2023081008493974600_c44
  article-title: A circular-type thermal flow direction sensor free from temperature compensation
  publication-title: Sens. Actuators, A
  doi: 10.1016/s0924-4247(03)00268-1
– volume: 24
  start-page: 065802
  year: 2013
  ident: 2023081008493974600_c2
  article-title: Fourier analysis of the aerodynamic behavior of cup anemometers
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/6/065802
– volume: 24
  start-page: 1975
  year: 2018
  ident: 2023081008493974600_c18
  article-title: Fabrication and evaluation of a drag-force type dual flow sensor with an embedded temperature sensor
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-017-3593-4
– volume: 14
  start-page: 564
  year: 2014
  ident: 2023081008493974600_c47
  article-title: A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network
  publication-title: Sensors
  doi: 10.3390/s140100564
– volume: 193
  start-page: 25
  year: 2013
  ident: 2023081008493974600_c12
  article-title: Fabrication and characterization of a double-heater based MEMS thermal flow sensor
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2013.01.010
– volume: 61
  start-page: 539
  year: 2012
  ident: 2023081008493974600_c37
  article-title: A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2011.2164837
– volume: 42
  start-page: 840
  year: 2020
  ident: 2023081008493974600_c56
  article-title: An investigation to the design of high-precision wind sensing device based on piezoelectric array
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331219894811
– volume: 66
  start-page: 2074
  year: 2017
  ident: 2023081008493974600_c36
  article-title: 2-D wind velocity measurement using a vertically suspended optical fiber combined with a photosensor array
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2017.2676190
– volume: 24
  start-page: 105001
  year: 2015
  ident: 2023081008493974600_c21
  article-title: Design and fabrication of a metal core PVDF fiber for an air flow sensor
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105001
– volume: 11
  start-page: 2189
  year: 2011
  ident: 2023081008493974600_c53
  article-title: Paper-based piezoresistive MEMS sensors
  publication-title: Lab Chip
  doi: 10.1039/c1lc20161a
– volume: 21
  start-page: 113001
  year: 2012
  ident: 2023081008493974600_c7
  article-title: Hair flow sensors: From bio-inspiration to bio-mimicking—A review
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/21/11/113001
– volume: 32
  start-page: 1908214
  year: 2020
  ident: 2023081008493974600_c15
  article-title: Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908214
– volume: 12
  start-page: 504
  year: 2021
  ident: 2023081008493974600_c54
  article-title: A direct-writing approach for fabrication of CNT/paper-based piezoresistive pressure sensors for airflow sensing
  publication-title: Micromachines
  doi: 10.3390/mi12050504
– volume: 29
  start-page: 087004
  year: 2020
  ident: 2023081008493974600_c24
  article-title: An internal miniature diversion channel-integrated piezoelectric airflow sensor
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/ab98ea
– volume: 7
  start-page: 9461
  year: 2013
  ident: 2023081008493974600_c39
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 6
  start-page: 333
  year: 2009
  ident: 2023081008493974600_c6
  article-title: MEMS-based gas flow sensors
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-008-0383-4
– volume: 91
  start-page: 347
  year: 2003
  ident: 2023081008493974600_c45
  article-title: A flow direction sensor fabricated using MEMS technology and its simple interface circuit
  publication-title: Sens. Actuators, B
  doi: 10.1016/s0925-4005(03)00109-6
– volume: 73
  start-page: 401
  year: 2015
  ident: 2023081008493974600_c3
  article-title: On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.05.032
– volume: 12
  start-page: 109
  year: 2020
  ident: 2023081008493974600_c42
  article-title: Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00446-w
– volume: 18
  start-page: 7392
  year: 2018
  ident: 2023081008493974600_c52
  article-title: Analytical modeling, simulation, and fabrication of a MEMS rectangular paddle piezo-resistive micro-cantilever-based wind speed sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2018.2860779
– volume: 241
  start-page: 135
  year: 2016
  ident: 2023081008493974600_c10
  article-title: MEMS thermal flow sensors
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2016.02.018
– volume: 66
  start-page: 2836
  year: 2017
  ident: 2023081008493974600_c27
  article-title: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2017.2714438
– volume: 26
  start-page: 107001
  year: 2015
  ident: 2023081008493974600_c4
  article-title: Improved analytical method to study the cup anemometer performance
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/10/107001
– volume: 20
  start-page: 523
  year: 2020
  ident: 2023081008493974600_c29
  article-title: Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification
  publication-title: Sensors
  doi: 10.3390/s20020523
– volume: 17
  start-page: 4181
  year: 2017
  ident: 2023081008493974600_c48
  article-title: Wind measurement based on MEMS micro-anemometer with high accuracy using ANN technique
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2017.2701502
– volume: 28
  start-page: 065028
  year: 2019
  ident: 2023081008493974600_c16
  article-title: Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/ab18cb
– volume: 235
  start-page: 1
  year: 2015
  ident: 2023081008493974600_c11
  article-title: Mems thermal film sensors for unsteady flow measurement
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2015.09.030
– volume: 21
  start-page: 7308
  year: 2021
  ident: 2023081008493974600_c41
  article-title: A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2020.3048236
– volume: 15
  start-page: 1201
  year: 2009
  ident: 2023081008493974600_c50
  article-title: A microcantilever-based gas flow sensor for flow rate and direction detection
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-008-0737-6
– volume: 295
  start-page: 483
  year: 2019
  ident: 2023081008493974600_c8
  article-title: Design and applications of MEMS flow sensors: A review
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2019.06.020
– volume: 11
  start-page: 843
  year: 1972
  ident: 2023081008493974600_c1
  article-title: Cup anemometer response to fluctuating wind speeds
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(1972)011<0843:cartfw>2.0.co;2
– volume: 330
  start-page: 112832
  year: 2021
  ident: 2023081008493974600_c9
  article-title: Measurement system for wide-range flow evaluation and thermal characterization of MEMS-based thermoresistive flow-rate sensors
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2021.112832
– volume: 114
  start-page: 312
  year: 2004
  ident: 2023081008493974600_c46
  article-title: Measurement of flow direction and velocity using a micromachined flow sensor
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2003.12.019
– volume: 231
  start-page: 28
  year: 2015
  ident: 2023081008493974600_c26
  article-title: MEMS capacitive flow sensor for natural gas pipelines
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2014.10.013
– volume: 16
  start-page: 221
  year: 2005
  ident: 2023081008493974600_c31
  article-title: Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2005.04.003
– volume: 37
  start-page: 680
  year: 1999
  ident: 2023081008493974600_c32
  article-title: Laser Doppler anemometer for in-flight velocity measurements on airplane wings
  publication-title: AIAA J.
  doi: 10.2514/2.795
– volume: 89
  start-page: 085007
  year: 2018
  ident: 2023081008493974600_c49
  article-title: Design of PVDF sensor array for determining airflow direction and velocity
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5040171
– volume: 100
  start-page: 223905
  year: 2012
  ident: 2023081008493974600_c23
  article-title: Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4723846
– volume-title: Fluid Mechanics
  year: 2010
  ident: 2023081008493974600_c57
– volume: 23
  start-page: 893
  year: 2013
  ident: 2023081008493974600_c22
  article-title: A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2013.02.003
– volume: 29
  start-page: 2680
  year: 2017
  ident: 2023081008493974600_c25
  article-title: Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor
  publication-title: Electroanalysis
  doi: 10.1002/elan.201700438
– volume: 39
  start-page: 1195
  year: 2008
  ident: 2023081008493974600_c28
  article-title: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2008.01.090
SSID ssj0000511
Score 2.3845785
Snippet As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 025001
SubjectTerms Aerospace engineering
Air flow
Air Movements
Algorithms
Environmental engineering
Equipment acquisition planning
Meteorology
Principles
Scientific apparatus & instruments
Sensor arrays
Sensors
Velocity
Wearable Electronic Devices
Title Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction
URI http://dx.doi.org/10.1063/5.0073669
https://www.ncbi.nlm.nih.gov/pubmed/35232161
https://www.proquest.com/docview/2624465100
https://www.proquest.com/docview/2635239105
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7623
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000511
  issn: 0034-6748
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ8F4QAwYFAYyHw9DVSCNEzd9nBiomhgvbNJ4ihzbgUolqfoxRP-K_cnc-auZNhDwEkWJE1u-n-_O9s93hLyCxslUVWUkcj2MwP-XMKQyEWVVwpNU4uEQXNA__sTHp-nRWXbW6Vy0WEurZflGrq89V_I_UoVnIFc8JfsPkg0_hQdwD_KFK0gYrn8l40NDvzBb-XVfzOfCbJfPJnrdwCwaR--57ovJvJo2P_oLmLBiZh20Wwr3CAwFFvcPpo0h0pusOIZ2uJggz1DUGvmxSi-19H6l_xkyjSQ68Ljubs2iF7CP9h3OxNgzl0hJQub7EqM1uPhRllfgjodM6p8tftBkZdnD9df1t83j8coWDWj84pa7jwDlUxdE3K1hwPQ3DnwQbfVunI8i0MusrZht6kQHwKSlZdFvs59fMQDgcYHUcJ1syLhNAtMCwuy7QQI4nSwZ8MHGBgZmon91g2wl0J64S7YODo8_ft5Yd_BQfYQqzt6GmrbJTf_tZRfnyrzlNrkFHW-JFi1f5uQuueMmIfTAImqHdHR9j-w4Nb-g-y4W-ev75MJCjDYVFTU1EMP7yxCjDhXUQYwaiNGmph5i1EGMIsQoQIy2IUYDxEw97mceYlCxogFiD8jph_cn78aRS-IRSZazZVTqwVAqnqeSCSQEyWGp2EDFkue50izXjOs8SUUuRFkpxtKsFAKTIgx0VSLLYJd066bWjwhlaSpkNkwqFuepgG_AQMlROeJSDgRXqkf2fb8XvoMx0cq0MEwLzoqscNLqkReh6MyGdbmu0J4XXuFG_aJAFZZysGRxjzwPr0En40ab7bUCAzwlDBzxrEceWqGHWjxIeuRlQMGfmnBNqfNmvilRzFT1-Le1PCHbm_G2R7owxvVT8KKX5TMH7F8UMM44
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+array+of+piezoresistive+airflow+sensors+based+on+pressure+loading+mode+for+simultaneous+detection+of+airflow+velocity+and+direction&rft.jtitle=Review+of+scientific+instruments&rft.au=Chen%2C+Jinyan&rft.au=Liu%2C+Pengzhan&rft.au=Hu%2C+Jie&rft.au=Yang%2C+Jianlin&rft.date=2022-02-01&rft.eissn=1089-7623&rft.volume=93&rft.issue=2&rft.spage=025001&rft_id=info:doi/10.1063%2F5.0073669&rft_id=info%3Apmid%2F35232161&rft.externalDocID=35232161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon