Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction
As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstr...
        Saved in:
      
    
          | Published in | Review of scientific instruments Vol. 93; no. 2; pp. 025001 - 25008 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Institute of Physics
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0034-6748 1089-7623 1089-7623  | 
| DOI | 10.1063/5.0073669 | 
Cover
| Abstract | As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles. | 
    
|---|---|
| AbstractList | As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles. As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields of aerospace engineering, environmental engineering, sustainable energy exploitation, meteorology research, and so on. As one of the mainstream airflow sensing principles, piezoresistive airflow velocity sensors have experienced rapid growth over the years, while effective vector airflow sensors with the ability of detecting both airflow velocity and direction based on the piezoresistive principle are scarce. Here, on the basis of our developed piezoresistive airflow velocity sensors based on pressure loading mode, we design an array of these sensors and propose a corresponding explicit algorithm for simultaneous detection of airflow velocity and direction. This sensor array configuration enables an automatic recognition function of the quadrant of incoming airflow, which can significantly simplify the reverse calculation of airflow information compared with conventional vector airflow sensors. The experimental results demonstrate the decent performance of this sensor array for identifying both airflow velocity and direction. This study not only fills the gap between our developed airflow velocity sensor and the ability of detecting airflow direction but also presents a simple and universal array-based strategy for vector airflow sensing, which could be widely applied in airflow sensors based on other principles.  | 
    
| Author | Yang, Jianlin Chen, Jinyan Hu, Jie Liu, Pengzhan Chen, Chao  | 
    
| Author_xml | – sequence: 1 givenname: Jinyan surname: Chen fullname: Chen, Jinyan organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Pengzhan surname: Liu fullname: Liu, Pengzhan organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Jie surname: Hu fullname: Hu, Jie organization: 3Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang 330045, People’s Republic of China – sequence: 4 givenname: Jianlin surname: Yang fullname: Yang, Jianlin organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics – sequence: 5 givenname: Chao surname: Chen fullname: Chen, Chao organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35232161$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqdkc9q3DAQxkVJaDbbHvoCRdBLW3AieWxZeyxJ_wQCubRnIUvjoGBLrmRv2D5FHzlavEsh9JS5aEC_-Wbmm3Ny4oNHQt5xdsGZgMv6grEGhNi8IivO5KZoRAknZMUYVIVoKnlGzlN6YDlqzl-TM6hLKLngK_L3GpO79zR0VHuqY9S7fT46_BNi_kqT2yLVLnZ9eKQJfQox0VYntDR4OmYmzRFpH7R1_p4OwSLtQqTJDXM_aY9hTtTihGZyYelzENtiH4ybdrmxpdbFhXhDTjvdJ3x7eNfk17evP69-FLd332-uvtwWBiRMRYu8MVbIyoAuGStN01rglhkhpUWQCAJlWWmpddtZgKputRaylhy7loGANfm46I4x_J4xTWpwyWDfLyOrUuxN2nBWZ_TDM_QhzNHn6TJVVpWoeXZ6Td4fqLkd0KoxukHHnTp6nYHLBTAxpBSxU3l7vd95itr1ijO1v6aq1eGaueLTs4qj6P_Yzwubjqovg7ch_gPVaDt4Ah_vvNQ | 
    
| CODEN | RSINAK | 
    
| CitedBy_id | crossref_primary_10_1002_admi_202300077 crossref_primary_10_1039_D2MH01482C  | 
    
| Cites_doi | 10.1016/j.flowmeasinst.2019.04.010 10.1088/0964-1726/18/11/115002 10.3390/s16071056 10.1049/bsbt.2019.0043 10.1016/j.renene.2015.08.062 10.1016/j.isatra.2016.07.010 10.3390/s20164483 10.1021/acsnano.8b01532 10.1155/2019/8476489 10.1088/1361-6501/aaaa47 10.1088/0960-1317/21/8/085006 10.1016/j.sna.2010.08.012 10.1088/0960-1317/20/7/075024 10.1364/ao.52.003420 10.1063/5.0012244 10.1016/s0924-4247(03)00268-1 10.1088/0957-0233/24/6/065802 10.1007/s00542-017-3593-4 10.3390/s140100564 10.1016/j.sna.2013.01.010 10.1109/tim.2011.2164837 10.1177/0142331219894811 10.1109/tim.2017.2676190 10.1088/0964-1726/24/10/105001 10.1039/c1lc20161a 10.1088/0964-1726/21/11/113001 10.1002/adma.201908214 10.3390/mi12050504 10.1088/1361-665x/ab98ea 10.1021/nn4043157 10.1007/s10404-008-0383-4 10.1016/s0925-4005(03)00109-6 10.1016/j.measurement.2015.05.032 10.1007/s40820-020-00446-w 10.1109/jsen.2018.2860779 10.1016/j.sna.2016.02.018 10.1109/tim.2017.2714438 10.1088/0957-0233/26/10/107001 10.3390/s20020523 10.1109/jsen.2017.2701502 10.1088/1361-665x/ab18cb 10.1016/j.sna.2015.09.030 10.1109/jsen.2020.3048236 10.1007/s00542-008-0737-6 10.1016/j.sna.2019.06.020 10.1175/1520-0450(1972)011<0843:cartfw>2.0.co;2 10.1016/j.sna.2021.112832 10.1016/j.sna.2003.12.019 10.1016/j.sna.2014.10.013 10.1016/j.flowmeasinst.2005.04.003 10.2514/2.795 10.1063/1.5040171 10.1063/1.4723846 10.1016/j.mechatronics.2013.02.003 10.1002/elan.201700438 10.1016/j.mejo.2008.01.090  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing.  | 
    
| Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8  | 
    
| DOI | 10.1063/5.0073669 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1089-7623 | 
    
| ExternalDocumentID | 35232161 10_1063_5_0073669 rsi  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575259 funderid: https://doi.org/10.13039/501100001809 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions funderid: https://doi.org/10.13039/501100012246 – fundername: Funding for Science and Technology Project of Jiangxi Education Department grantid: GJJ200452 – fundername: Startup Research Fund of Jiangxi Agricultural University grantid: 9232307722  | 
    
| GroupedDBID | --- -DZ -~X .DC 123 1UP 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8  | 
    
| ID | FETCH-LOGICAL-c383t-be17cd684c3a2002c7bd31d0c688de38e36e824a8aabfd3345baa68581efb0363 | 
    
| ISSN | 0034-6748 1089-7623  | 
    
| IngestDate | Wed Oct 01 13:54:11 EDT 2025 Mon Jun 30 05:02:31 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Wed Oct 01 03:37:46 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Fri Jun 21 00:13:49 EDT 2024 Thu Jun 23 13:36:10 EDT 2022  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | Published under an exclusive license by AIP Publishing. | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c383t-be17cd684c3a2002c7bd31d0c688de38e36e824a8aabfd3345baa68581efb0363 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4238-4703 0000-0001-8145-3287 0000-0003-3228-133X 0000-0003-4555-9687 s0000000342384703 s0000000181453287 s000000033228133X s0000000345559687  | 
    
| PMID | 35232161 | 
    
| PQID | 2624465100 | 
    
| PQPubID | 2050675 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_miscellaneous_2635239105 proquest_journals_2624465100 pubmed_primary_35232161 scitation_primary_10_1063_5_0073669 crossref_citationtrail_10_1063_5_0073669 crossref_primary_10_1063_5_0073669  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220201 2022-02-01 2022-Feb-01  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 20220201 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Melville  | 
    
| PublicationTitle | Review of scientific instruments | 
    
| PublicationTitleAlternate | Rev Sci Instrum | 
    
| PublicationYear | 2022 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Yang, Hu, Wu (c33) 2016; 16 Hu, Peng, Mao, Liu, Guo, Lu, Bai, Zhao (c55) 2019; 67 Seo, Kim (c35) 2010; 20 Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (c39) 2013; 7 Wu, Kang, Chen, Tai (c10) 2016; 241 Meng, Qi, Wu, Zhu, Zeng (c36) 2017; 66 Abolpour Moshizi, Azadi, Belford, Razmjou, Wu, Han, Asadnia (c42) 2020; 12 Lopes, Pereira da Silva, de Franca, de Morais Franca, de Souza Ribeiro, Moreira, Elias (c27) 2017; 66 Tao, Yu (c7) 2012; 21 Liu, Hu (c24) 2020; 29 Ma, Li, Jiang, Liang, Luo, Cheng (c37) 2012; 61 Choi, Lim, Lee (c18) 2018; 24 Idjeri, Laghrouche, Boussey (c48) 2017; 17 Ma, Teng, Zhu, Zhou, Ju, Liu (c29) 2020; 20 Shirai, Büttner, Czarske, Müller, Durst (c31) 2005; 16 Pindado, Ramos-Cenzano, Cubas (c4) 2015; 26 Tomimatsu, Takahashi, Kuwana, Kobayashi, Matsumoto, Shimoyama, Itoh, Maeda (c22) 2013; 23 Cheri, Latifi, Aghbolagh, Naeini, Taghavi, Ghaderi (c38) 2013; 52 Hu, Peng, Yao (c49) 2018; 89 Kim, Nam, Park (c46) 2004; 114 Agrawal, Patel, Boolchandani, Rangra (c52) 2018; 18 Chen, Tran, Du, Wang, Chen (c54) 2021; 12 Kanaparthi (c25) 2017; 29 Wang, Chen, Chang, Lin, Lin, Fu, Lee (c6) 2009; 6 Li, Sun, Gao, Shi, Liu, Wu (c30) 2016; 65 Sun, Cui, Zhang, Chen, Cai, Li (c12) 2013; 193 Hu, Peng, Yao, Liu, Lu, Zhao (c56) 2020; 42 Baseer, Meyer, Rehman, Alam, Al-Hadhrami, Lashin (c5) 2016; 86 Kottapalli, Tan, Olfatnia, Miao, Barbastathis, Triantafyllou (c51) 2011; 21 Barmpakos, Famelis, Moschos, Marinatos, Kaltsas (c14); 2019 Hyson (c1) 1972; 11 Liu, Zhang, Kathiresan, Kobayashi, Lee (c23) 2012; 100 Jiang, Shen, Liu, Ma, Zhao, Feng, Zhang (c16) 2019; 28 Becker, Durst, Lienhart (c32) 1999; 37 Jiang, Zhao, Ma, Shen, Liu, Zhang (c43) 2020; 6 Wang, Ding, Pan, Wu, Yu, Yang, Liao, Wang (c40) 2018; 12 Bian, Liu, Huang, Hong, Huang, Hui (c21) 2015; 24 Que, Zhu (c47) 2014; 14 Hamdollahi, Rahbar-Shahrouzi (c17) 2018; 29 Ejeian, Azadi, Razmjou, Orooji, Kottapalli, Ebrahimi Warkiani, Asadnia (c8) 2019; 295 Aiyar, Song, Kim, Allen (c19) 2009; 18 Han, Kim, Park (c28) 2008; 39 Liu, Mwangi, Li, O’Brien, Whitesides (c53) 2011; 11 Wang, Li, Wang, Wang, Shen, Zhang, Lu, He, Zhang (c15) 2020; 32 Pindado, Cubas, Sorribes-Palmer (c3) 2015; 73 Park, Kim, Kim, Kim (c45) 2003; 91 Cubukcu, Zernickel, Buerklin, Urban (c13) 2010; 163 Nguyen, Dinh, Dau, Tran, Phan, Nguyen, Nguyen, Riduan, Guzman, Nguyen, Dao (c41) 2021; 21 Djuzhev, Ryabov, Demin, Makhiboroda, Evsikov, Pozdnyakov, Bespalov (c9) 2021; 330 Ma, Chou, Wang, Hsueh, Fu, Lee (c50) 2009; 15 Miau, Leu, Yu, Tu, Wang, Lebiga, Mironov, Pak, Zinovyev, Chung (c11) 2015; 235 Liang, Guo, Yang, Zhang (c34) 2020; 20 Kim, Kim, Kim, Park (c44) 2003; 108 Nguyen, Paprotny, Wright, White (c26) 2015; 231 Shi, Holmes, Yeatman (c20) 2020; 116 Pindado, Pérez, Aguado (c2) 2013; 24 (2023081008493974600_c25) 2017; 29 (2023081008493974600_c35) 2010; 20 (2023081008493974600_c20) 2020; 116 (2023081008493974600_c5) 2016; 86 (2023081008493974600_c36) 2017; 66 (2023081008493974600_c46) 2004; 114 (2023081008493974600_c17) 2018; 29 (2023081008493974600_c49) 2018; 89 (2023081008493974600_c53) 2011; 11 (2023081008493974600_c45) 2003; 91 (2023081008493974600_c14); 2019 (2023081008493974600_c50) 2009; 15 (2023081008493974600_c34) 2020; 20 (2023081008493974600_c47) 2014; 14 (2023081008493974600_c6) 2009; 6 (2023081008493974600_c22) 2013; 23 (2023081008493974600_c9) 2021; 330 (2023081008493974600_c32) 1999; 37 (2023081008493974600_c33) 2016; 16 (2023081008493974600_c19) 2009; 18 (2023081008493974600_c30) 2016; 65 (2023081008493974600_c51) 2011; 21 (2023081008493974600_c55) 2019; 67 (2023081008493974600_c24) 2020; 29 (2023081008493974600_c1) 1972; 11 (2023081008493974600_c21) 2015; 24 (2023081008493974600_c57) 2010 (2023081008493974600_c7) 2012; 21 (2023081008493974600_c8) 2019; 295 (2023081008493974600_c39) 2013; 7 (2023081008493974600_c52) 2018; 18 (2023081008493974600_c16) 2019; 28 (2023081008493974600_c26) 2015; 231 (2023081008493974600_c54) 2021; 12 (2023081008493974600_c13) 2010; 163 (2023081008493974600_c28) 2008; 39 (2023081008493974600_c31) 2005; 16 (2023081008493974600_c3) 2015; 73 (2023081008493974600_c12) 2013; 193 (2023081008493974600_c27) 2017; 66 (2023081008493974600_c10) 2016; 241 (2023081008493974600_c38) 2013; 52 (2023081008493974600_c40) 2018; 12 (2023081008493974600_c43) 2020; 6 (2023081008493974600_c56) 2020; 42 (2023081008493974600_c44) 2003; 108 (2023081008493974600_c41) 2021; 21 (2023081008493974600_c23) 2012; 100 (2023081008493974600_c2) 2013; 24 (2023081008493974600_c11) 2015; 235 (2023081008493974600_c37) 2012; 61 (2023081008493974600_c15) 2020; 32 (2023081008493974600_c48) 2017; 17 (2023081008493974600_c29) 2020; 20 (2023081008493974600_c18) 2018; 24 (2023081008493974600_c4) 2015; 26 (2023081008493974600_c42) 2020; 12  | 
    
| References_xml | – volume: 108 start-page: 64 year: 2003 ident: c44 article-title: A circular-type thermal flow direction sensor free from temperature compensation publication-title: Sens. Actuators, A – volume: 20 start-page: 075024 year: 2010 ident: c35 article-title: A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration publication-title: J. Micromech. Microeng. – volume: 24 start-page: 1975 year: 2018 ident: c18 article-title: Fabrication and evaluation of a drag-force type dual flow sensor with an embedded temperature sensor publication-title: Microsyst. Technol. – volume: 12 start-page: 3954 year: 2018 ident: c40 article-title: Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator publication-title: ACS Nano – volume: 193 start-page: 25 year: 2013 ident: c12 article-title: Fabrication and characterization of a double-heater based MEMS thermal flow sensor publication-title: Sens. Actuators, A – volume: 66 start-page: 2836 year: 2017 ident: c27 article-title: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds publication-title: IEEE Trans. Instrum. Meas. – volume: 37 start-page: 680 year: 1999 ident: c32 article-title: Laser Doppler anemometer for in-flight velocity measurements on airplane wings publication-title: AIAA J. – volume: 21 start-page: 085006 year: 2011 ident: c51 article-title: A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications publication-title: J. Micromech. Microeng. – volume: 241 start-page: 135 year: 2016 ident: c10 article-title: MEMS thermal flow sensors publication-title: Sens. Actuators, A – volume: 20 start-page: 4483 year: 2020 ident: c34 article-title: Design and characterization of a novel biaxial bionic hair flow sensor based on resonant sensing publication-title: Sensors – volume: 11 start-page: 843 year: 1972 ident: c1 article-title: Cup anemometer response to fluctuating wind speeds publication-title: J. Appl. Meteorol. Climatol. – volume: 21 start-page: 113001 year: 2012 ident: c7 article-title: Hair flow sensors: From bio-inspiration to bio-mimicking—A review publication-title: Smart Mater. Struct. – volume: 28 start-page: 065028 year: 2019 ident: c16 article-title: Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown publication-title: Smart Mater. Struct. – volume: 163 start-page: 449 year: 2010 ident: c13 article-title: A 2D thermal flow sensor with sub-mW power consumption publication-title: Sens. Actuators, A – volume: 20 start-page: 523 year: 2020 ident: c29 article-title: Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification publication-title: Sensors – volume: 24 start-page: 105001 year: 2015 ident: c21 article-title: Design and fabrication of a metal core PVDF fiber for an air flow sensor publication-title: Smart Mater. Struct. – volume: 52 start-page: 3420 year: 2013 ident: c38 article-title: Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber publication-title: Appl. Opt. – volume: 12 start-page: 109 year: 2020 ident: c42 article-title: Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets publication-title: Nano-Micro Lett. – volume: 65 start-page: 437 year: 2016 ident: c30 article-title: Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm publication-title: ISA Trans. – volume: 42 start-page: 840 year: 2020 ident: c56 article-title: An investigation to the design of high-precision wind sensing device based on piezoelectric array publication-title: Trans. Inst. Meas. Control – volume: 24 start-page: 065802 year: 2013 ident: c2 article-title: Fourier analysis of the aerodynamic behavior of cup anemometers publication-title: Meas. Sci. Technol. – volume: 16 start-page: 221 year: 2005 ident: c31 article-title: Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows publication-title: Flow Meas. Instrum. – volume: 73 start-page: 401 year: 2015 ident: c3 article-title: On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors publication-title: Measurement – volume: 29 start-page: 055301 year: 2018 ident: c17 article-title: Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement publication-title: Meas. Sci. Technol. – volume: 14 start-page: 564 year: 2014 ident: c47 article-title: A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network publication-title: Sensors – volume: 18 start-page: 7392 year: 2018 ident: c52 article-title: Analytical modeling, simulation, and fabrication of a MEMS rectangular paddle piezo-resistive micro-cantilever-based wind speed sensor publication-title: IEEE Sens. J. – volume: 231 start-page: 28 year: 2015 ident: c26 article-title: MEMS capacitive flow sensor for natural gas pipelines publication-title: Sens. Actuators, A – volume: 26 start-page: 107001 year: 2015 ident: c4 article-title: Improved analytical method to study the cup anemometer performance publication-title: Meas. Sci. Technol. – volume: 6 start-page: 333 year: 2009 ident: c6 article-title: MEMS-based gas flow sensors publication-title: Microfluid. Nanofluid. – volume: 29 start-page: 087004 year: 2020 ident: c24 article-title: An internal miniature diversion channel-integrated piezoelectric airflow sensor publication-title: Smart Mater. Struct. – volume: 18 start-page: 115002 year: 2009 ident: c19 article-title: An all-polymer airflow sensor using a piezoresistive composite elastomer publication-title: Smart Mater. Struct. – volume: 91 start-page: 347 year: 2003 ident: c45 article-title: A flow direction sensor fabricated using MEMS technology and its simple interface circuit publication-title: Sens. Actuators, B – volume: 66 start-page: 2074 year: 2017 ident: c36 article-title: 2-D wind velocity measurement using a vertically suspended optical fiber combined with a photosensor array publication-title: IEEE Trans. Instrum. Meas. – volume: 29 start-page: 2680 year: 2017 ident: c25 article-title: Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor publication-title: Electroanalysis – volume: 12 start-page: 504 year: 2021 ident: c54 article-title: A direct-writing approach for fabrication of CNT/paper-based piezoresistive pressure sensors for airflow sensing publication-title: Micromachines – volume: 116 start-page: 264101 year: 2020 ident: c20 article-title: Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force publication-title: Appl. Phys. Lett. – volume: 15 start-page: 1201 year: 2009 ident: c50 article-title: A microcantilever-based gas flow sensor for flow rate and direction detection publication-title: Microsyst. Technol. – volume: 235 start-page: 1 year: 2015 ident: c11 article-title: Mems thermal film sensors for unsteady flow measurement publication-title: Sens. Actuators, A – volume: 32 start-page: 1908214 year: 2020 ident: c15 article-title: Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor publication-title: Adv. Mater. – volume: 7 start-page: 9461 year: 2013 ident: c39 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano – volume: 2019 start-page: 8476489 ident: c14 article-title: Design and evaluation of a multidirectional thermal flow sensor on flexible substrate publication-title: J. Sens. – volume: 23 start-page: 893 year: 2013 ident: c22 article-title: A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node publication-title: Mechatronics – volume: 330 start-page: 112832 year: 2021 ident: c9 article-title: Measurement system for wide-range flow evaluation and thermal characterization of MEMS-based thermoresistive flow-rate sensors publication-title: Sens. Actuators, A – volume: 6 start-page: 12 year: 2020 ident: c43 article-title: Enhanced flow sensing with interfacial microstructures publication-title: Biosurf. Biotribology – volume: 67 start-page: 166 year: 2019 ident: c55 article-title: An airflow sensor array based on polyvinylidene fluoride cantilevers for synchronously measuring airflow direction and velocity publication-title: Flow Meas. Instrum. – volume: 89 start-page: 085007 year: 2018 ident: c49 article-title: Design of PVDF sensor array for determining airflow direction and velocity publication-title: Rev. Sci. Instrum. – volume: 100 start-page: 223905 year: 2012 ident: c23 article-title: Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability publication-title: Appl. Phys. Lett. – volume: 114 start-page: 312 year: 2004 ident: c46 article-title: Measurement of flow direction and velocity using a micromachined flow sensor publication-title: Sens. Actuators, A – volume: 16 start-page: 1056 year: 2016 ident: c33 article-title: Design and analysis of a new hair sensor for multi-physical signal measurement publication-title: Sensors – volume: 86 start-page: 733 year: 2016 ident: c5 article-title: Performance evaluation of cup-anemometers and wind speed characteristics analysis publication-title: Renewable Energy – volume: 21 start-page: 7308 year: 2021 ident: c41 article-title: A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film publication-title: IEEE Sens. J. – volume: 295 start-page: 483 year: 2019 ident: c8 article-title: Design and applications of MEMS flow sensors: A review publication-title: Sens. Actuators, A – volume: 61 start-page: 539 year: 2012 ident: c37 article-title: A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines publication-title: IEEE Trans. Instrum. Meas. – volume: 17 start-page: 4181 year: 2017 ident: c48 article-title: Wind measurement based on MEMS micro-anemometer with high accuracy using ANN technique publication-title: IEEE Sens. J. – volume: 11 start-page: 2189 year: 2011 ident: c53 article-title: Paper-based piezoresistive MEMS sensors publication-title: Lab Chip – volume: 39 start-page: 1195 year: 2008 ident: c28 article-title: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor publication-title: Microelectron. J. – volume: 67 start-page: 166 year: 2019 ident: 2023081008493974600_c55 article-title: An airflow sensor array based on polyvinylidene fluoride cantilevers for synchronously measuring airflow direction and velocity publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2019.04.010 – volume: 18 start-page: 115002 year: 2009 ident: 2023081008493974600_c19 article-title: An all-polymer airflow sensor using a piezoresistive composite elastomer publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/11/115002 – volume: 16 start-page: 1056 year: 2016 ident: 2023081008493974600_c33 article-title: Design and analysis of a new hair sensor for multi-physical signal measurement publication-title: Sensors doi: 10.3390/s16071056 – volume: 6 start-page: 12 year: 2020 ident: 2023081008493974600_c43 article-title: Enhanced flow sensing with interfacial microstructures publication-title: Biosurf. Biotribology doi: 10.1049/bsbt.2019.0043 – volume: 86 start-page: 733 year: 2016 ident: 2023081008493974600_c5 article-title: Performance evaluation of cup-anemometers and wind speed characteristics analysis publication-title: Renewable Energy doi: 10.1016/j.renene.2015.08.062 – volume: 65 start-page: 437 year: 2016 ident: 2023081008493974600_c30 article-title: Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.07.010 – volume: 20 start-page: 4483 year: 2020 ident: 2023081008493974600_c34 article-title: Design and characterization of a novel biaxial bionic hair flow sensor based on resonant sensing publication-title: Sensors doi: 10.3390/s20164483 – volume: 12 start-page: 3954 year: 2018 ident: 2023081008493974600_c40 article-title: Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.8b01532 – volume: 2019 start-page: 8476489 ident: 2023081008493974600_c14 article-title: Design and evaluation of a multidirectional thermal flow sensor on flexible substrate publication-title: J. Sens. doi: 10.1155/2019/8476489 – volume: 29 start-page: 055301 year: 2018 ident: 2023081008493974600_c17 article-title: Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aaaa47 – volume: 21 start-page: 085006 year: 2011 ident: 2023081008493974600_c51 article-title: A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/8/085006 – volume: 163 start-page: 449 year: 2010 ident: 2023081008493974600_c13 article-title: A 2D thermal flow sensor with sub-mW power consumption publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2010.08.012 – volume: 20 start-page: 075024 year: 2010 ident: 2023081008493974600_c35 article-title: A self-resonant micro flow velocity sensor based on a resonant frequency shift by flow-induced vibration publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/7/075024 – volume: 52 start-page: 3420 year: 2013 ident: 2023081008493974600_c38 article-title: Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber publication-title: Appl. Opt. doi: 10.1364/ao.52.003420 – volume: 116 start-page: 264101 year: 2020 ident: 2023081008493974600_c20 article-title: Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force publication-title: Appl. Phys. Lett. doi: 10.1063/5.0012244 – volume: 108 start-page: 64 year: 2003 ident: 2023081008493974600_c44 article-title: A circular-type thermal flow direction sensor free from temperature compensation publication-title: Sens. Actuators, A doi: 10.1016/s0924-4247(03)00268-1 – volume: 24 start-page: 065802 year: 2013 ident: 2023081008493974600_c2 article-title: Fourier analysis of the aerodynamic behavior of cup anemometers publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/6/065802 – volume: 24 start-page: 1975 year: 2018 ident: 2023081008493974600_c18 article-title: Fabrication and evaluation of a drag-force type dual flow sensor with an embedded temperature sensor publication-title: Microsyst. Technol. doi: 10.1007/s00542-017-3593-4 – volume: 14 start-page: 564 year: 2014 ident: 2023081008493974600_c47 article-title: A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network publication-title: Sensors doi: 10.3390/s140100564 – volume: 193 start-page: 25 year: 2013 ident: 2023081008493974600_c12 article-title: Fabrication and characterization of a double-heater based MEMS thermal flow sensor publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2013.01.010 – volume: 61 start-page: 539 year: 2012 ident: 2023081008493974600_c37 article-title: A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2011.2164837 – volume: 42 start-page: 840 year: 2020 ident: 2023081008493974600_c56 article-title: An investigation to the design of high-precision wind sensing device based on piezoelectric array publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219894811 – volume: 66 start-page: 2074 year: 2017 ident: 2023081008493974600_c36 article-title: 2-D wind velocity measurement using a vertically suspended optical fiber combined with a photosensor array publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2017.2676190 – volume: 24 start-page: 105001 year: 2015 ident: 2023081008493974600_c21 article-title: Design and fabrication of a metal core PVDF fiber for an air flow sensor publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/10/105001 – volume: 11 start-page: 2189 year: 2011 ident: 2023081008493974600_c53 article-title: Paper-based piezoresistive MEMS sensors publication-title: Lab Chip doi: 10.1039/c1lc20161a – volume: 21 start-page: 113001 year: 2012 ident: 2023081008493974600_c7 article-title: Hair flow sensors: From bio-inspiration to bio-mimicking—A review publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/21/11/113001 – volume: 32 start-page: 1908214 year: 2020 ident: 2023081008493974600_c15 article-title: Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor publication-title: Adv. Mater. doi: 10.1002/adma.201908214 – volume: 12 start-page: 504 year: 2021 ident: 2023081008493974600_c54 article-title: A direct-writing approach for fabrication of CNT/paper-based piezoresistive pressure sensors for airflow sensing publication-title: Micromachines doi: 10.3390/mi12050504 – volume: 29 start-page: 087004 year: 2020 ident: 2023081008493974600_c24 article-title: An internal miniature diversion channel-integrated piezoelectric airflow sensor publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/ab98ea – volume: 7 start-page: 9461 year: 2013 ident: 2023081008493974600_c39 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 6 start-page: 333 year: 2009 ident: 2023081008493974600_c6 article-title: MEMS-based gas flow sensors publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-008-0383-4 – volume: 91 start-page: 347 year: 2003 ident: 2023081008493974600_c45 article-title: A flow direction sensor fabricated using MEMS technology and its simple interface circuit publication-title: Sens. Actuators, B doi: 10.1016/s0925-4005(03)00109-6 – volume: 73 start-page: 401 year: 2015 ident: 2023081008493974600_c3 article-title: On the harmonic analysis of cup anemometer rotation speed: A principle to monitor performance and maintenance status of rotating meteorological sensors publication-title: Measurement doi: 10.1016/j.measurement.2015.05.032 – volume: 12 start-page: 109 year: 2020 ident: 2023081008493974600_c42 article-title: Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00446-w – volume: 18 start-page: 7392 year: 2018 ident: 2023081008493974600_c52 article-title: Analytical modeling, simulation, and fabrication of a MEMS rectangular paddle piezo-resistive micro-cantilever-based wind speed sensor publication-title: IEEE Sens. J. doi: 10.1109/jsen.2018.2860779 – volume: 241 start-page: 135 year: 2016 ident: 2023081008493974600_c10 article-title: MEMS thermal flow sensors publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2016.02.018 – volume: 66 start-page: 2836 year: 2017 ident: 2023081008493974600_c27 article-title: Development of 3-D ultrasonic anemometer with nonorthogonal geometry for the determination of high-intensity winds publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2017.2714438 – volume: 26 start-page: 107001 year: 2015 ident: 2023081008493974600_c4 article-title: Improved analytical method to study the cup anemometer performance publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/26/10/107001 – volume: 20 start-page: 523 year: 2020 ident: 2023081008493974600_c29 article-title: Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification publication-title: Sensors doi: 10.3390/s20020523 – volume: 17 start-page: 4181 year: 2017 ident: 2023081008493974600_c48 article-title: Wind measurement based on MEMS micro-anemometer with high accuracy using ANN technique publication-title: IEEE Sens. J. doi: 10.1109/jsen.2017.2701502 – volume: 28 start-page: 065028 year: 2019 ident: 2023081008493974600_c16 article-title: Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/ab18cb – volume: 235 start-page: 1 year: 2015 ident: 2023081008493974600_c11 article-title: Mems thermal film sensors for unsteady flow measurement publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2015.09.030 – volume: 21 start-page: 7308 year: 2021 ident: 2023081008493974600_c41 article-title: A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film publication-title: IEEE Sens. J. doi: 10.1109/jsen.2020.3048236 – volume: 15 start-page: 1201 year: 2009 ident: 2023081008493974600_c50 article-title: A microcantilever-based gas flow sensor for flow rate and direction detection publication-title: Microsyst. Technol. doi: 10.1007/s00542-008-0737-6 – volume: 295 start-page: 483 year: 2019 ident: 2023081008493974600_c8 article-title: Design and applications of MEMS flow sensors: A review publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2019.06.020 – volume: 11 start-page: 843 year: 1972 ident: 2023081008493974600_c1 article-title: Cup anemometer response to fluctuating wind speeds publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(1972)011<0843:cartfw>2.0.co;2 – volume: 330 start-page: 112832 year: 2021 ident: 2023081008493974600_c9 article-title: Measurement system for wide-range flow evaluation and thermal characterization of MEMS-based thermoresistive flow-rate sensors publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2021.112832 – volume: 114 start-page: 312 year: 2004 ident: 2023081008493974600_c46 article-title: Measurement of flow direction and velocity using a micromachined flow sensor publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2003.12.019 – volume: 231 start-page: 28 year: 2015 ident: 2023081008493974600_c26 article-title: MEMS capacitive flow sensor for natural gas pipelines publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2014.10.013 – volume: 16 start-page: 221 year: 2005 ident: 2023081008493974600_c31 article-title: Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2005.04.003 – volume: 37 start-page: 680 year: 1999 ident: 2023081008493974600_c32 article-title: Laser Doppler anemometer for in-flight velocity measurements on airplane wings publication-title: AIAA J. doi: 10.2514/2.795 – volume: 89 start-page: 085007 year: 2018 ident: 2023081008493974600_c49 article-title: Design of PVDF sensor array for determining airflow direction and velocity publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5040171 – volume: 100 start-page: 223905 year: 2012 ident: 2023081008493974600_c23 article-title: Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4723846 – volume-title: Fluid Mechanics year: 2010 ident: 2023081008493974600_c57 – volume: 23 start-page: 893 year: 2013 ident: 2023081008493974600_c22 article-title: A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node publication-title: Mechatronics doi: 10.1016/j.mechatronics.2013.02.003 – volume: 29 start-page: 2680 year: 2017 ident: 2023081008493974600_c25 article-title: Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor publication-title: Electroanalysis doi: 10.1002/elan.201700438 – volume: 39 start-page: 1195 year: 2008 ident: 2023081008493974600_c28 article-title: Two-dimensional ultrasonic anemometer using the directivity angle of an ultrasonic sensor publication-title: Microelectron. J. doi: 10.1016/j.mejo.2008.01.090  | 
    
| SSID | ssj0000511 | 
    
| Score | 2.3845785 | 
    
| Snippet | As an irreplaceable element for obtaining airflow information in many engineering scenarios, airflow sensors have gained increasing attention across the fields... | 
    
| SourceID | proquest pubmed crossref scitation  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 025001 | 
    
| SubjectTerms | Aerospace engineering Air flow Air Movements Algorithms Environmental engineering Equipment acquisition planning Meteorology Principles Scientific apparatus & instruments Sensor arrays Sensors Velocity Wearable Electronic Devices  | 
    
| Title | Design of an array of piezoresistive airflow sensors based on pressure loading mode for simultaneous detection of airflow velocity and direction | 
    
| URI | http://dx.doi.org/10.1063/5.0073669 https://www.ncbi.nlm.nih.gov/pubmed/35232161 https://www.proquest.com/docview/2624465100 https://www.proquest.com/docview/2635239105  | 
    
| Volume | 93 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7623 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000511 issn: 0034-6748 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ8F4QAwYFAYyHw9DVSCNEzd9nBiomhgvbNJ4ihzbgUolqfoxRP-K_cnc-auZNhDwEkWJE1u-n-_O9s93hLyCxslUVWUkcj2MwP-XMKQyEWVVwpNU4uEQXNA__sTHp-nRWXbW6Vy0WEurZflGrq89V_I_UoVnIFc8JfsPkg0_hQdwD_KFK0gYrn8l40NDvzBb-XVfzOfCbJfPJnrdwCwaR--57ovJvJo2P_oLmLBiZh20Wwr3CAwFFvcPpo0h0pusOIZ2uJggz1DUGvmxSi-19H6l_xkyjSQ68Ljubs2iF7CP9h3OxNgzl0hJQub7EqM1uPhRllfgjodM6p8tftBkZdnD9df1t83j8coWDWj84pa7jwDlUxdE3K1hwPQ3DnwQbfVunI8i0MusrZht6kQHwKSlZdFvs59fMQDgcYHUcJ1syLhNAtMCwuy7QQI4nSwZ8MHGBgZmon91g2wl0J64S7YODo8_ft5Yd_BQfYQqzt6GmrbJTf_tZRfnyrzlNrkFHW-JFi1f5uQuueMmIfTAImqHdHR9j-w4Nb-g-y4W-ev75MJCjDYVFTU1EMP7yxCjDhXUQYwaiNGmph5i1EGMIsQoQIy2IUYDxEw97mceYlCxogFiD8jph_cn78aRS-IRSZazZVTqwVAqnqeSCSQEyWGp2EDFkue50izXjOs8SUUuRFkpxtKsFAKTIgx0VSLLYJd066bWjwhlaSpkNkwqFuepgG_AQMlROeJSDgRXqkf2fb8XvoMx0cq0MEwLzoqscNLqkReh6MyGdbmu0J4XXuFG_aJAFZZysGRxjzwPr0En40ab7bUCAzwlDBzxrEceWqGHWjxIeuRlQMGfmnBNqfNmvilRzFT1-Le1PCHbm_G2R7owxvVT8KKX5TMH7F8UMM44 | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+array+of+piezoresistive+airflow+sensors+based+on+pressure+loading+mode+for+simultaneous+detection+of+airflow+velocity+and+direction&rft.jtitle=Review+of+scientific+instruments&rft.au=Chen%2C+Jinyan&rft.au=Liu%2C+Pengzhan&rft.au=Hu%2C+Jie&rft.au=Yang%2C+Jianlin&rft.date=2022-02-01&rft.eissn=1089-7623&rft.volume=93&rft.issue=2&rft.spage=025001&rft_id=info:doi/10.1063%2F5.0073669&rft_id=info%3Apmid%2F35232161&rft.externalDocID=35232161 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |