DC vacuum breakdown in an external magnetic field

The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler–Nordheim equation makes it possible to take into account the influence of a magnetic field pa...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 908; pp. 318 - 324
Main Authors Lebedynskyi, S., Karpenko, O., Kholodov, R., Baturin, V., Profatilova, Ia, Shipman, N., Wuensch, W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 11.11.2018
Subjects
Online AccessGet full text
ISSN0168-9002
1872-9576
1872-9576
DOI10.1016/j.nima.2018.08.061

Cover

Abstract The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler–Nordheim equation makes it possible to take into account the influence of a magnetic field parallel to the cathode surface on the field emission current. The reduction in the breakdown voltage due to the increment in electron-impact ionization was theoretical predicted. Experimentally shown that the presence of a magnetic field about a tenth as a large as the cutoff magnetic field (Hull, 1921) reduces the breakdown voltage by 10% to 20% for practically all cathodes no matter what their surface treatment.
AbstractList The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility of breakdown. The generalization of the Fowler–Nordheim equation makes it possible to take into account the influence of a magnetic field parallel to the cathode surface on the field emission current. The reduction in the breakdown voltage due to the increment in electron-impact ionization was theoretical predicted. Experimentally shown that the presence of a magnetic field about a tenth as a large as the cutoff magnetic field (Hull, 1921) reduces the breakdown voltage by 10% to 20% for practically all cathodes no matter what their surface treatment.
Author Profatilova, Ia
Shipman, N.
Karpenko, O.
Baturin, V.
Wuensch, W.
Lebedynskyi, S.
Kholodov, R.
Author_xml – sequence: 1
  givenname: S.
  surname: Lebedynskyi
  fullname: Lebedynskyi, S.
  email: lebos@nas.gov.ua
  organization: Institute of Applied Physics, National Academy of Sciences of Ukraine, 58, Petropavlivska St., 40000 Sumy, Ukraine
– sequence: 2
  givenname: O.
  surname: Karpenko
  fullname: Karpenko, O.
  organization: Institute of Applied Physics, National Academy of Sciences of Ukraine, 58, Petropavlivska St., 40000 Sumy, Ukraine
– sequence: 3
  givenname: R.
  surname: Kholodov
  fullname: Kholodov, R.
  organization: Institute of Applied Physics, National Academy of Sciences of Ukraine, 58, Petropavlivska St., 40000 Sumy, Ukraine
– sequence: 4
  givenname: V.
  surname: Baturin
  fullname: Baturin, V.
  organization: Institute of Applied Physics, National Academy of Sciences of Ukraine, 58, Petropavlivska St., 40000 Sumy, Ukraine
– sequence: 5
  givenname: Ia
  surname: Profatilova
  fullname: Profatilova, Ia
  organization: Institute of Applied Physics, National Academy of Sciences of Ukraine, 58, Petropavlivska St., 40000 Sumy, Ukraine
– sequence: 6
  givenname: N.
  surname: Shipman
  fullname: Shipman, N.
  organization: CERN, European Organization for Nuclear Research, 1211 Geneva, Switzerland
– sequence: 7
  givenname: W.
  surname: Wuensch
  fullname: Wuensch, W.
  organization: CERN, European Organization for Nuclear Research, 1211 Geneva, Switzerland
BookMark eNqNkMFOwzAMQCM0JLbBD3DKD7QkTZcmEhc0YCBN4gLnyE1clNGlU9pt7O_JNE4cJixL9sHP1vOEjEIXkJBbznLOuLxb5cGvIS8YVzlLKfkFGXNVFZmeVXJExmlIZZqx4opM-n7FUuhKjQl_nNMd2O12TeuI8OW6faA-UAgUvweMAVq6hs-Ag7e08di6a3LZQNvjzW-dko_np_f5S7Z8W7zOH5aZFUoMWV3XKMDaUgsOTSNLZSW4gkOhK8eVaByXMjXKlhUIy7gTSs10ibKxSiktpkSc9m7DBg57aFuziUkyHgxn5mhtVuZobY7WhqWUPFHqRNnY9X3Exlg_wOC7METw7Xm0-IP-6979CcL0ip3HaHrrMVh0PqIdjOv8OfwHzdWFOw
CitedBy_id crossref_primary_10_46813_2024_153_111
crossref_primary_10_1140_epjd_e2019_100287_6
crossref_primary_10_1140_epjd_s10053_022_00394_7
crossref_primary_10_1140_epjd_s10053_023_00775_6
Cites_doi 10.1088/1361-6528/aa9a1b
10.1016/j.commatsci.2017.12.054
10.1063/1.4967528
10.1088/0957-4484/27/26/265708
10.1103/PhysRev.131.166
10.1063/1.1702243
10.1016/j.nima.2004.04.230
10.1016/j.nima.2010.03.167
10.1016/j.commatsci.2016.11.010
10.1103/PhysRevAccelBeams.20.073501
10.1103/PhysRev.18.31
10.1016/j.nima.2011.03.066
10.1088/0954-3899/37/10/105011
10.1103/PhysRevSTAB.12.032001
10.1063/1.1697654
10.1063/1.3399327
10.1088/1361-6463/aac03b
10.1063/1.860563
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.nima.2018.08.061
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9576
EndPage 324
ExternalDocumentID 10.1016/j.nima.2018.08.061
10_1016_j_nima_2018_08_061
S0168900218310192
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HME
IHE
J1W
KOM
LZ4
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SPD
SSQ
T5K
TN5
~02
~G-
29N
3O-
53G
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
R2-
SEW
SSZ
VOH
WUQ
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c383t-bbbe3acc4931aff648c6ad21a297d183fd166d188c47a3c01d388594e6fc88893
IEDL.DBID UNPAY
ISSN 0168-9002
1872-9576
IngestDate Sun Oct 26 03:17:19 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Thu Oct 02 04:28:03 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Breakdown rate
Field emission
Magnetic field
Vacuum breakdown
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-bbbe3acc4931aff648c6ad21a297d183fd166d188c47a3c01d388594e6fc88893
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.nima.2018.08.061
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_nima_2018_08_061
crossref_citationtrail_10_1016_j_nima_2018_08_061
crossref_primary_10_1016_j_nima_2018_08_061
elsevier_sciencedirect_doi_10_1016_j_nima_2018_08_061
PublicationCentury 2000
PublicationDate 2018-11-11
PublicationDateYYYYMMDD 2018-11-11
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-11
  day: 11
PublicationDecade 2010
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hull (b18) 1921; 18
Trump, Van de Graaf (b33) 1947; 18
Fowler, Nordheim (b35) 1928; 119
Kidemo (b1) 2004; 530
Blatt (b13) 1963; 131
blanks
Baturin, Karpenko, Profatilova (b44) 2015; 98
Latham (b6) 1981
D. Stratakis, J.S. Berg, J.C. Gallardo, R.B. Palmer, Effect of external magnetic fields on the operation of rf cavities, in: Proceedings of PAC09, Vancouver, BC, Canada, 2009, pp. 809–811.
Miroshnichenko, Lebedynskyi (b15) 2014; 11
von Engel (b39) 1955
Kyritsakis, Djurabekova (b8) 2017; 128
Stratakis, Gallardo, Palmer (b25) 2010; 37
N. Shipman, S. Calatroni, et al. Measurement of the dynamic response of the CERN dc spark system and preliminary estimates of the breakdown turn-on time, in: Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012.
Slivkov (b4) 1972
D. Bowring, A. Kochemirovskiy, M. Leonova, et al. A modular cavity for muon ionization cooling R & D, in: Proceedings of IPAC2013, Shanghai, China, 2013, pp. 2860–2862.
Stratakis, Gallardo, Palmer (b24) 2010; 620
A. Kochemirovskiy, D. Bowring, K. Yonehara, et al. RF breakdown of 805 MHz cavities in strong magnetic fields, in: Proceedings of IPAC15, Richmond, USA, 2015.
Lau, Christenson, Chernin (b17) 1993; 5
Landau, Lifshits (b36) 1969
(Accessed 8 July 2015).
N. Shipman, Ia. Profatilova, A.T. Perez Fontenla, W. Wuensch, S. Calatroni, Effect of an Externally Applied Magnetic Field on the Breakdown Rate in Ultra-High Vacuum Measured in the Large Electrode System at CERN, CLIC-Note-1078 (2017) pp. 1–12.
Slivkov (b5) 1986
Jansson, Baibuz, Djurabekova (b20) 2016; 27
D. Stratakis, J.C. Gallardo, R.B. Palmer, RF breakdown in magnetic fields: Previous work, recent theory, and future plans, in: AIP Conference Proceedings, 2010, p. 1222.
Stratakis, Gallardo, Palmer (b27) 2011; 643
Cranberg (b34) 1952; 23
Descoeudres, Ramsvik, Calatroni, Taborelli, Wuensch (b12) 2009; 12
Palmer, Fernow, Gallardo, Stratakis (b11) 2009; 12
Cherepnin (b19) 1973
Shipman (b43) 2014
Seznec, Dessante, Jager, Caillault, Teste, Minea (b32) 2017; 12
W. Wuensch, Progress in Accelerating Structure Development for CLIC, available at
Ilic, Mostic, Dolicanin, Stankovic, Osmokroviñ (b7) 2011; 3
Descoeudres, Levinsen, Calatroni (b37) 2009; 12
V.F. Mazanko, A.V. Pokoev, V.M. Mironov, et al. Diffusion processes in metals under the influence of magnetic fields and impulse deformations. In two volumes, Mashinostroenie, Moscow, 2005.
(accessed on October 12th, 2009).
Vigonski (b22) 2018; 29
Baibuz, Vigonski, Lahtinen, Zhao, Jansson, Zadin, Djurabekova (b21) 2018; 146
A. Kochemirovskiy, D. Bowring, K. Yonehara, et al. Study of RF breakdown in 805 MHz pillbox modular cavity in strong magnetic field, in: Proceedings of IPAC2016, Busan, Korea, 2016, pp. 466–469.
Tian, Wang, Jiang (b9) 2016; 120
Lebedynskyi, Miroshnichenko, Kholodov, Baturin (b16) 2015; 98
Gogadze, Itskovich, Kulik (b14) 1964; 46
S. Sgobba, F. Leaux, Cu-OFE bars
ingots Tech. Rep. Technical Specification No 2001, EDMS No 790779, available at
Tarasova (b3) 1956; 2
J.W. Wang, J. Lewandowski, J. Van Pelt, C. Yoneda, G. Riddone, D. Gudkov, T. Higo, T. Takatomi, et al. in IPAC10, THPEA064, Kyoto, Japan, 2010.
Kyritsakis, Veske, Eimre, Zadin, Djurabekova (b10) 2018; 51
10.1016/j.nima.2018.08.061_b29
Descoeudres (10.1016/j.nima.2018.08.061_b37) 2009; 12
10.1016/j.nima.2018.08.061_b28
Baturin (10.1016/j.nima.2018.08.061_b44) 2015; 98
Kidemo (10.1016/j.nima.2018.08.061_b1) 2004; 530
10.1016/j.nima.2018.08.061_b26
Trump (10.1016/j.nima.2018.08.061_b33) 1947; 18
10.1016/j.nima.2018.08.061_b42
Latham (10.1016/j.nima.2018.08.061_b6) 1981
10.1016/j.nima.2018.08.061_b23
Kyritsakis (10.1016/j.nima.2018.08.061_b10) 2018; 51
Lau (10.1016/j.nima.2018.08.061_b17) 1993; 5
10.1016/j.nima.2018.08.061_b41
Tarasova (10.1016/j.nima.2018.08.061_b3) 1956; 2
10.1016/j.nima.2018.08.061_b40
Blatt (10.1016/j.nima.2018.08.061_b13) 1963; 131
Palmer (10.1016/j.nima.2018.08.061_b11) 2009; 12
Baibuz (10.1016/j.nima.2018.08.061_b21) 2018; 146
Kyritsakis (10.1016/j.nima.2018.08.061_b8) 2017; 128
Lebedynskyi (10.1016/j.nima.2018.08.061_b16) 2015; 98
Ilic (10.1016/j.nima.2018.08.061_b7) 2011; 3
Descoeudres (10.1016/j.nima.2018.08.061_b12) 2009; 12
Shipman (10.1016/j.nima.2018.08.061_b43) 2014
Vigonski (10.1016/j.nima.2018.08.061_b22) 2018; 29
Miroshnichenko (10.1016/j.nima.2018.08.061_b15) 2014; 11
Stratakis (10.1016/j.nima.2018.08.061_b25) 2010; 37
10.1016/j.nima.2018.08.061_b38
10.1016/j.nima.2018.08.061_b2
10.1016/j.nima.2018.08.061_b31
Landau (10.1016/j.nima.2018.08.061_b36) 1969
Fowler (10.1016/j.nima.2018.08.061_b35) 1928; 119
10.1016/j.nima.2018.08.061_b30
Gogadze (10.1016/j.nima.2018.08.061_b14) 1964; 46
Stratakis (10.1016/j.nima.2018.08.061_b24) 2010; 620
Hull (10.1016/j.nima.2018.08.061_b18) 1921; 18
Slivkov (10.1016/j.nima.2018.08.061_b4) 1972
Cherepnin (10.1016/j.nima.2018.08.061_b19) 1973
von Engel (10.1016/j.nima.2018.08.061_b39) 1955
Seznec (10.1016/j.nima.2018.08.061_b32) 2017; 12
Slivkov (10.1016/j.nima.2018.08.061_b5) 1986
Cranberg (10.1016/j.nima.2018.08.061_b34) 1952; 23
Tian (10.1016/j.nima.2018.08.061_b9) 2016; 120
Stratakis (10.1016/j.nima.2018.08.061_b27) 2011; 643
Jansson (10.1016/j.nima.2018.08.061_b20) 2016; 27
References_xml – year: 1973
  ident: b19
  article-title: Sorption Phenomena in Vacuum Technology
– reference: A. Kochemirovskiy, D. Bowring, K. Yonehara, et al. RF breakdown of 805 MHz cavities in strong magnetic fields, in: Proceedings of IPAC15, Richmond, USA, 2015.
– volume: 620
  start-page: 147
  year: 2010
  end-page: 154
  ident: b24
  article-title: Effects of external magnetic fields on the operation of high-gradient accelerating structures
  publication-title: Nucl. Instrum. Methods Phys. Res. A.
– volume: 18
  start-page: 327
  year: 1947
  ident: b33
  article-title: The insulation of high voltages in vacuum
  publication-title: J. Appl. Phys.
– year: 1986
  ident: b5
  article-title: Processes at High Voltage in Vacuum
– reference: N. Shipman, S. Calatroni, et al. Measurement of the dynamic response of the CERN dc spark system and preliminary estimates of the breakdown turn-on time, in: Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012.
– volume: 119
  start-page: 173
  year: 1928
  end-page: 181
  ident: b35
  article-title: Electron emission in intense electric fields
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– reference: (accessed on October 12th, 2009).
– reference: D. Stratakis, J.S. Berg, J.C. Gallardo, R.B. Palmer, Effect of external magnetic fields on the operation of rf cavities, in: Proceedings of PAC09, Vancouver, BC, Canada, 2009, pp. 809–811.
– volume: 530
  start-page: 596
  year: 2004
  end-page: 606
  ident: b1
  article-title: New spark-test device for material characterization
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 12
  year: 2009
  ident: b12
  article-title: DC breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum
  publication-title: Phys. Rev. Spec. Top. - Accel. Beams
– reference: blanks
– volume: 11
  start-page: 72
  year: 2014
  end-page: 76
  ident: b15
  article-title: The quantum-mechanical movement of an electron in crossed uniform electric and magnetic fields
  publication-title: Rep. Natl. Acad. Sci. Ukraine
– reference: W. Wuensch, Progress in Accelerating Structure Development for CLIC, available at
– reference: N. Shipman, Ia. Profatilova, A.T. Perez Fontenla, W. Wuensch, S. Calatroni, Effect of an Externally Applied Magnetic Field on the Breakdown Rate in Ultra-High Vacuum Measured in the Large Electrode System at CERN, CLIC-Note-1078 (2017) pp. 1–12.
– volume: 120
  start-page: 1
  year: 2016
  end-page: 10
  ident: b9
  article-title: Modelling of crater formation on anode surface by high-current vacuum arcs
  publication-title: J. Appl. Phys.
– volume: 12
  year: 2009
  ident: b37
  article-title: Investigation of DC vacuum breakdown mechanism
  publication-title: Phys. Rev. Spec. Top.: Accel. Beams
– year: 1955
  ident: b39
  article-title: Ionized Gases
– volume: 128
  start-page: 15
  year: 2017
  end-page: 21
  ident: b8
  article-title: A general computational method for electron emission and thermal effects in field emitting nanotips
  publication-title: Comput. Mater. Sci.
– volume: 46
  start-page: 913
  year: 1964
  end-page: 919
  ident: b14
  article-title: Quantum oscillations of the cold emission current from metals in a magnetic field
  publication-title: JETP Lett.
– reference: S. Sgobba, F. Leaux, Cu-OFE bars
– volume: 98
  start-page: 294
  year: 2015
  end-page: 297
  ident: b44
  article-title: The experimental setup for high voltage breakdown studies in the high vacuum
  publication-title: Probl. At. Sci. Technol.
– volume: 643
  start-page: 1
  year: 2011
  end-page: 5
  ident: b27
  article-title: Enhancement of accelerating field of microwave cavities by magnetic insulation
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 29
  year: 2018
  ident: b22
  article-title: Au nanowire junction breakup through surface atom diffusion
  publication-title: Nanotechnology
– reference: D. Bowring, A. Kochemirovskiy, M. Leonova, et al. A modular cavity for muon ionization cooling R & D, in: Proceedings of IPAC2013, Shanghai, China, 2013, pp. 2860–2862.
– volume: 131
  start-page: 166
  year: 1963
  end-page: 169
  ident: b13
  article-title: Field emission in a magnetic feld
  publication-title: Phys. Rev.
– volume: 27
  year: 2016
  ident: b20
  article-title: Long-term stability of cu surface nanotips
  publication-title: Nanotechnology
– volume: 37
  start-page: 1
  year: 2010
  end-page: 16
  ident: b25
  article-title: Magnetically insulated high-gradient accelerating structures for muon accelerators
  publication-title: J. Phys. G: Nucl. Part. Phys.
– year: 1972
  ident: b4
  article-title: Electrical Insulation and Discharge in a Vacuum
– volume: 12
  start-page: 073501
  year: 2017
  end-page: 1–073501–15
  ident: b32
  article-title: Dynamics of microparticles in vacuum breakdown: Cranberg’s scenario updated by numerical modeling
  publication-title: Phys. Rev. Accel. Beams
– volume: 5
  start-page: 4486
  year: 1993
  end-page: 4489
  ident: b17
  article-title: Limiting current in a crossedfield gap
  publication-title: Phys. Fluids B
– reference: ingots Tech. Rep. Technical Specification No 2001, EDMS No 790779, available at
– reference: . (Accessed 8 July 2015).
– volume: 3
  start-page: 85
  year: 2011
  end-page: 99
  ident: b7
  article-title: Mechanisms of electrical berakdown in low vacuums
  publication-title: Sci. Publ. State Univ. Novi Pazar Ser. A: Appl. Math. Inform. and Mech.
– volume: 146
  start-page: 287
  year: 2018
  end-page: 302
  ident: b21
  article-title: Migration barriers for surface diffusion on a rigid lattice: challenges and solutions
  publication-title: Comput. Mater. Sci.
– reference: A. Kochemirovskiy, D. Bowring, K. Yonehara, et al. Study of RF breakdown in 805 MHz pillbox modular cavity in strong magnetic field, in: Proceedings of IPAC2016, Busan, Korea, 2016, pp. 466–469.
– year: 2014
  ident: b43
  article-title: Experimental Study of DC Vacuum Breakdown and Application to High-Gradient Accelerating Structures for CLIC
– volume: 23
  start-page: 518
  year: 1952
  ident: b34
  article-title: The initiation of electrical breakdown in vacuum
  publication-title: J. Appl. Phys.
– reference: V.F. Mazanko, A.V. Pokoev, V.M. Mironov, et al. Diffusion processes in metals under the influence of magnetic fields and impulse deformations. In two volumes, Mashinostroenie, Moscow, 2005.
– volume: 51
  year: 2018
  ident: b10
  article-title: Thermal runaway and evaporation of metal nano-tips during intense electron emission
  publication-title: J. Phys. D: Appl. Phys.
– volume: 18
  start-page: 31
  year: 1921
  end-page: 62
  ident: b18
  article-title: The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders
  publication-title: Phys. Rev.
– reference: J.W. Wang, J. Lewandowski, J. Van Pelt, C. Yoneda, G. Riddone, D. Gudkov, T. Higo, T. Takatomi, et al. in IPAC10, THPEA064, Kyoto, Japan, 2010.
– year: 1981
  ident: b6
  article-title: High Voltage Vacuum Insulation. The Physical Basis
– volume: 2
  start-page: 321
  year: 1956
  end-page: 346
  ident: b3
  article-title: Sovremennyye predstavleniya o mekhanizme elektricheskogo proboya v vysokom vakuume
  publication-title: Adv. Phys. Sci.
– volume: 12
  start-page: 1
  year: 2009
  end-page: 13
  ident: b11
  article-title: RF breakdown with external magnetic fields in 201 and 805 mhz cavities
  publication-title: Phys. Rev. STAB
– volume: 98
  start-page: 62
  year: 2015
  end-page: 66
  ident: b16
  article-title: The effect of a magnetic field on the motion of electrons for the field emission process description
  publication-title: Probl. At. Sci. Technol.
– reference: D. Stratakis, J.C. Gallardo, R.B. Palmer, RF breakdown in magnetic fields: Previous work, recent theory, and future plans, in: AIP Conference Proceedings, 2010, p. 1222.
– year: 1969
  ident: b36
  article-title: Theoretical Physics in 10 volumes, Vol. 3
– volume: 46
  start-page: 913
  year: 1964
  ident: 10.1016/j.nima.2018.08.061_b14
  article-title: Quantum oscillations of the cold emission current from metals in a magnetic field
  publication-title: JETP Lett.
– volume: 29
  year: 2018
  ident: 10.1016/j.nima.2018.08.061_b22
  article-title: Au nanowire junction breakup through surface atom diffusion
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa9a1b
– volume: 11
  start-page: 72
  year: 2014
  ident: 10.1016/j.nima.2018.08.061_b15
  article-title: The quantum-mechanical movement of an electron in crossed uniform electric and magnetic fields
  publication-title: Rep. Natl. Acad. Sci. Ukraine
– volume: 146
  start-page: 287
  year: 2018
  ident: 10.1016/j.nima.2018.08.061_b21
  article-title: Migration barriers for surface diffusion on a rigid lattice: challenges and solutions
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.12.054
– ident: 10.1016/j.nima.2018.08.061_b31
– volume: 120
  start-page: 1
  year: 2016
  ident: 10.1016/j.nima.2018.08.061_b9
  article-title: Modelling of crater formation on anode surface by high-current vacuum arcs
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4967528
– volume: 27
  year: 2016
  ident: 10.1016/j.nima.2018.08.061_b20
  article-title: Long-term stability of cu surface nanotips
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/26/265708
– volume: 131
  start-page: 166
  year: 1963
  ident: 10.1016/j.nima.2018.08.061_b13
  article-title: Field emission in a magnetic feld
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.131.166
– volume: 98
  start-page: 62
  year: 2015
  ident: 10.1016/j.nima.2018.08.061_b16
  article-title: The effect of a magnetic field on the motion of electrons for the field emission process description
  publication-title: Probl. At. Sci. Technol.
– volume: 2
  start-page: 321
  year: 1956
  ident: 10.1016/j.nima.2018.08.061_b3
  article-title: Sovremennyye predstavleniya o mekhanizme elektricheskogo proboya v vysokom vakuume
  publication-title: Adv. Phys. Sci.
– volume: 23
  start-page: 518
  year: 1952
  ident: 10.1016/j.nima.2018.08.061_b34
  article-title: The initiation of electrical breakdown in vacuum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702243
– volume: 530
  start-page: 596
  year: 2004
  ident: 10.1016/j.nima.2018.08.061_b1
  article-title: New spark-test device for material characterization
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2004.04.230
– ident: 10.1016/j.nima.2018.08.061_b23
– volume: 620
  start-page: 147
  year: 2010
  ident: 10.1016/j.nima.2018.08.061_b24
  article-title: Effects of external magnetic fields on the operation of high-gradient accelerating structures
  publication-title: Nucl. Instrum. Methods Phys. Res. A.
  doi: 10.1016/j.nima.2010.03.167
– volume: 12
  year: 2009
  ident: 10.1016/j.nima.2018.08.061_b37
  article-title: Investigation of DC vacuum breakdown mechanism
  publication-title: Phys. Rev. Spec. Top.: Accel. Beams
– volume: 119
  start-page: 173
  year: 1928
  ident: 10.1016/j.nima.2018.08.061_b35
  article-title: Electron emission in intense electric fields
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– ident: 10.1016/j.nima.2018.08.061_b2
– volume: 128
  start-page: 15
  year: 2017
  ident: 10.1016/j.nima.2018.08.061_b8
  article-title: A general computational method for electron emission and thermal effects in field emitting nanotips
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.11.010
– year: 2014
  ident: 10.1016/j.nima.2018.08.061_b43
– volume: 12
  start-page: 073501
  year: 2017
  ident: 10.1016/j.nima.2018.08.061_b32
  article-title: Dynamics of microparticles in vacuum breakdown: Cranberg’s scenario updated by numerical modeling
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.20.073501
– ident: 10.1016/j.nima.2018.08.061_b42
– ident: 10.1016/j.nima.2018.08.061_b40
– year: 1981
  ident: 10.1016/j.nima.2018.08.061_b6
– volume: 18
  start-page: 31
  year: 1921
  ident: 10.1016/j.nima.2018.08.061_b18
  article-title: The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.18.31
– ident: 10.1016/j.nima.2018.08.061_b29
– volume: 98
  start-page: 294
  year: 2015
  ident: 10.1016/j.nima.2018.08.061_b44
  article-title: The experimental setup for high voltage breakdown studies in the high vacuum
  publication-title: Probl. At. Sci. Technol.
– volume: 643
  start-page: 1
  year: 2011
  ident: 10.1016/j.nima.2018.08.061_b27
  article-title: Enhancement of accelerating field of microwave cavities by magnetic insulation
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2011.03.066
– year: 1973
  ident: 10.1016/j.nima.2018.08.061_b19
– volume: 37
  start-page: 1
  year: 2010
  ident: 10.1016/j.nima.2018.08.061_b25
  article-title: Magnetically insulated high-gradient accelerating structures for muon accelerators
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/37/10/105011
– year: 1972
  ident: 10.1016/j.nima.2018.08.061_b4
– volume: 12
  year: 2009
  ident: 10.1016/j.nima.2018.08.061_b12
  article-title: DC breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum
  publication-title: Phys. Rev. Spec. Top. - Accel. Beams
  doi: 10.1103/PhysRevSTAB.12.032001
– ident: 10.1016/j.nima.2018.08.061_b30
– volume: 18
  start-page: 327
  year: 1947
  ident: 10.1016/j.nima.2018.08.061_b33
  article-title: The insulation of high voltages in vacuum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1697654
– ident: 10.1016/j.nima.2018.08.061_b38
– ident: 10.1016/j.nima.2018.08.061_b26
  doi: 10.1063/1.3399327
– volume: 3
  start-page: 85
  year: 2011
  ident: 10.1016/j.nima.2018.08.061_b7
  article-title: Mechanisms of electrical berakdown in low vacuums
  publication-title: Sci. Publ. State Univ. Novi Pazar Ser. A: Appl. Math. Inform. and Mech.
– volume: 12
  start-page: 1
  year: 2009
  ident: 10.1016/j.nima.2018.08.061_b11
  article-title: RF breakdown with external magnetic fields in 201 and 805 mhz cavities
  publication-title: Phys. Rev. STAB
– volume: 51
  year: 2018
  ident: 10.1016/j.nima.2018.08.061_b10
  article-title: Thermal runaway and evaporation of metal nano-tips during intense electron emission
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aac03b
– volume: 5
  start-page: 4486
  year: 1993
  ident: 10.1016/j.nima.2018.08.061_b17
  article-title: Limiting current in a crossedfield gap
  publication-title: Phys. Fluids B
  doi: 10.1063/1.860563
– year: 1986
  ident: 10.1016/j.nima.2018.08.061_b5
– year: 1969
  ident: 10.1016/j.nima.2018.08.061_b36
– ident: 10.1016/j.nima.2018.08.061_b41
– ident: 10.1016/j.nima.2018.08.061_b28
– year: 1955
  ident: 10.1016/j.nima.2018.08.061_b39
SSID ssj0000978
Score 2.3141384
Snippet The subject of the present theoretical and experimental investigations is the effect of the external magnetic field induction on dark current and a possibility...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 318
SubjectTerms Breakdown rate
Field emission
Magnetic field
Vacuum breakdown
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jIHoRP3Hzgxy8ad3SZmlylOkYHrzoYLeQJq1Utzh0Vbz4233TppseHOItLQ0JT9r3gz7v8yJ0SmJujNDwITFjAmoYDVSSRQGnUZwxLkLPtrhlwxG9GffGDdSva2EcrdLb_sqml9ba3-l4NDuzPO_cQbDCReXjiQtUXAU7jV0Xg4vPJc3D1SlU-t6wn65j87SXHC-bl9pDhFcynuQ357Re2Jn6eFeTyTfnM9hCmz5qxJfVxrZRI7U7aK1kb-rXXUSu-vhN6aKYYshw1ZOB1BrnFiuLa5VnPFUP1hUs4pKztodGg-v7_jDwvRACDTnkPEiSJI2U1lRERGUZo1wzZUKiQhEbQCAzhDEYcE1jFekuMRHnPUFTlmlIckW0j5r22aYHCAMiLAuJhtAF8BJMGPezjcMgYRriqRYiNQhSe6Fw169iImtG2KN0wEkHnHRNLBlpobPFnFklk7Hy6V6Nrfxx2BLs-Mp554uD-MMy7X8uc4g23JWrOCTkCDXnL0V6DKHHPDkp360vNfHS-g
  priority: 102
  providerName: Elsevier
Title DC vacuum breakdown in an external magnetic field
URI https://dx.doi.org/10.1016/j.nima.2018.08.061
https://doi.org/10.1016/j.nima.2018.08.061
UnpaywallVersion publishedVersion
Volume 908
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 20181111
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: AIKHN
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 20181111
  omitProxy: true
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: ACRLP
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfriXZyXkQfftGNp0zR5HNMxL4whDuZTSZNW5rY63Krog7_dk7YbKjrmU1NIGnqScL5DvvMdhE6Ix7UWCg4S09qimlFLBpFjcep4EePCztkWLdbs0Kuu281lckwuzLf7-5SHFfdSfSDCM6lNiHSKzAXcXUDFTqtdu8_Eu2GyakYw5J5tCUDReYbM7x_5ywutJvFIvr3KweCLl2lsZOWKxqk4oSGX9CvJJKio9x_SjYv9wCZaz8EmrmW7YwsthfE2WklJn2q8g8h5Hb9IlSRDDIGx7GuIyHEvxjLGU3FoPJQPsclzxCnVbRd1Ghd39aaVl1CwFISeEysIgtCRSlHhEBlFjHLFpLaJtIWn4TRHmjAGDa6oJx1VJdrh3BU0ZJGC2Fg4e6gQP8XhPsJVAC6RTRQgHko9wYQ2d3QcGgFTAMNKiExN6qtcX9yUuRj4UyLZo29M4RtT-Kb2JSMldDobM8rUNeb2dqcr5ef4IPP7Phh97riz2bIuMM3B_7ofojXzZvITCTlChclzEh4DUJkEZbRc-SBlVKzVb2_a5nl53WyV8337CefD4gs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QY_Bi_IzgVw_edEK3rmuPBiWoyEVIuDVdu5kpVKJM48XfbrsP0YPEeGu2NW2ebu9H9rzPC8AxCqhSTJoPiSjlYEWwI8LYcyj2gphQ5hZsiz7pDvH1yB9VQLushbG0ysL25zY9s9bFlWaBZnOaJM07E6xQlvt4ZAOVJbCMfTewGdjZx5znYQsVcoFvs6GWpfM05iQvnWTiQ4jmOp7oN-9US_VUvL-J8fib9-msg7UibITn-c42QCXSm2Alo2_Kly2ALtrwVcg0nUCT4opHZXJrmGgoNCxlnuFE3GtbsQgz0to2GHYuB-2uUzRDcKRJImdOGIaRJ6TEzEMijgmmkgjlIuGyQBkIYoUIMQMqcSA82ULKo9RnOCKxNFku83ZAVT_paBdAgwiJXSRN7IJxwAhT9m8bNYOQSBNQ1QEqQeCyUAq3DSvGvKSEPXALHLfAcdvFkqA6OPmaM811MhY-7ZfY8h-nzY0hXzjv9Osg_rBM45_LHIFad3Db472r_s0eWLV3bPkhQvugOntOowMTh8zCw-w9-wTpgdYd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXrxW5xf5OBNO5Y2TZPjmI7hYXhwME8lTVqZ2-pwraJ_vS9tOlR0zFsK-aAvCe_3yO_9HkIXJOBaCwUXiWntUM2oI6PEczj1goRx4Vq2RZ_1BvR26A-tTI7Jhfn2fl_wsNJRoQ9EeCm1CZFOnfmAu2uoPujftR9K8W5YrFUSDHngOgJQtM2Q-X2Sv7zQRp7O5PubnEy-eJnudlmuaF6IExpyybiZZ1FTffyQblztB3bQlgWbuF2ejl20Fqd7aL0gfar5PiLXHfwqVZ5PMQTGcqwhIsejFMsUV-LQeCofU5PniAuq2wEadG_uOz3HllBwFISemRNFUexJpajwiEwSRrliUrtEuiLQcJsTTRiDBlc0kJ5qEe1x7gsas0RBbCy8Q1RLn9P4COEWAJfEJQoQD6WBYEKbNzoOjYgpgGENRCqThsrqi5syF5OwIpI9hcYUoTFFaGpfMtJAl4sxs1JdY2lvv9qp0OKD0u-HYPSl464W27rCMsf_636CNs2XyU8k5BTVspc8PgOgkkXn9oR-Aq8w3eo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC+vacuum+breakdown+in+an+external+magnetic+field&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Lebedynskyi%2C+S.&rft.au=Karpenko%2C+O.&rft.au=Kholodov%2C+R.&rft.au=Baturin%2C+V.&rft.date=2018-11-11&rft.pub=Elsevier+B.V&rft.issn=0168-9002&rft.eissn=1872-9576&rft.volume=908&rft.spage=318&rft.epage=324&rft_id=info:doi/10.1016%2Fj.nima.2018.08.061&rft.externalDocID=S0168900218310192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon