Resistance spot weldability of lightweight steel with a high Al content
Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was...
Saved in:
Published in | Metals and materials international Vol. 23; no. 2; pp. 341 - 349 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.03.2017
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-9623 2005-4149 |
DOI | 10.1007/s12540-017-6349-x |
Cover
Abstract | Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kg
f
and 400 kg
f
, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds. |
---|---|
AbstractList | Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kg
f
and 400 kg
f
, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds. Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kg sub(f) and 400 kg sub(f), the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds. Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweightsteel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditionswere specified; however, these had very narrow ranges and there was little difference between theconditions determined for the AC- and DC-type welding. In both types of welding with electrode forces ofof 300 kgf and 400 kgf, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nuggetsize increased with the welding current. Under the acceptable welding conditions, there were no significantchanges in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3mm, respectively. Themicrostructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction ofmartensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness,and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracturewere investigated because of the existence of martensite and ferrite in the welds. KCI Citation Count: 0 Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kgf and 400 kgf, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds. |
Author | Hwang, Insung Kim, Dongcheol Kang, Munjin Kwak, Jae-Hyun Kim, Young-Min |
Author_xml | – sequence: 1 givenname: Insung surname: Hwang fullname: Hwang, Insung organization: Joining R&D Group, Korea Institute of Industrial Technology – sequence: 2 givenname: Dongcheol surname: Kim fullname: Kim, Dongcheol organization: Joining R&D Group, Korea Institute of Industrial Technology – sequence: 3 givenname: Munjin surname: Kang fullname: Kang, Munjin organization: Joining R&D Group, Korea Institute of Industrial Technology – sequence: 4 givenname: Jae-Hyun surname: Kwak fullname: Kwak, Jae-Hyun organization: Sheet Products & Process Research Group, Technical Research Laboratories, POSCO – sequence: 5 givenname: Young-Min surname: Kim fullname: Kim, Young-Min email: ymkim77@kitech.re.kr organization: Joining R&D Group, Korea Institute of Industrial Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002204619$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1rGzEQhkVJoY7TH9CboJf2sIlGs186mpC4AUMhpGehaLW2HEVyJRnH_75yN4cSSC8aEM8jzcx7Ts588IaQL8AugbHuKgFvalYx6KoWa1G9fCAzzlhT1VCLMzKDRvSVaDl-IucpbRlrAYHPyPLeJJuy8trQtAuZHowb1KN1Nh9pGKmz600-mNNJUzbG0YPNG6roplzRhaM6-Gx8viAfR-WS-fxa5-TX7c3D9Y9q9XN5d71YVRp7zJXAkY2ca62Gx6Zpes5x4N0oNLZalUF0a8AMDFrBEbWqx4Jy3WIPINgwIM7J9-ldH0f5pK0Myv6t6yCfolzcP9xJwJohNoX9NrG7GH7vTcry2SZtnFPehH2S0AvsBdTACvr1DboN--jLJIXqGlY67aBQMFE6hpSiGeUu2mcVjxKYPMUgpxhkiUGeYpAvxeneONpmlW1ZW1TW_dfkk5nKL35t4j89vSv9AWCknPQ |
CitedBy_id | crossref_primary_10_1007_s00170_019_04366_x crossref_primary_10_1016_j_jmrt_2020_03_096 crossref_primary_10_1007_s11665_023_08803_7 crossref_primary_10_1007_s12540_019_00314_2 crossref_primary_10_1007_s12540_021_00986_9 crossref_primary_10_1016_j_jmrt_2021_09_116 crossref_primary_10_3365_KJMM_2019_57_11_708 crossref_primary_10_1007_s12540_019_00486_x crossref_primary_10_1007_s12541_018_0195_8 crossref_primary_10_1016_j_matchar_2018_11_008 |
Cites_doi | 10.1007/s12540-012-4012-0 10.1179/136217110X12813393169778 10.1016/j.actamat.2005.10.059 10.3365/KJMM.2014.52.1.021 10.1007/s12540-010-0027-6 10.1179/174329307X159801 10.1007/s11661-009-0124-7 10.1002/srin.201100324 10.1007/s12540-014-1008-y 10.1016/j.cossms.2011.04.002 10.1007/s11661-006-0213-9 10.1007/s11661-010-0456-3 10.3365/KJMM.2010.48.05.377 10.1179/174329307X213855 10.1007/s11661-005-0302-1 10.2320/matertrans.M2012167 10.1016/j.jallcom.2010.06.032 10.1007/s12540-015-1006-8 10.2320/matertrans.MRA2008031 10.2320/matertrans.M2010013 10.1002/srin.200606440 10.1016/j.actamat.2004.02.044 10.1179/174329308X271733 10.1016/j.cossms.2004.09.006 10.1179/1362171811Y.0000000081 10.1007/s11668-010-9374-3 10.1007/s12540-009-0373-4 10.1016/S1359-6454(97)00201-2 10.1016/0956-716X(94)90610-6 10.1016/j.actamat.2003.12.040 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017 Metals and Materials International is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017 – notice: Metals and Materials International is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7QF ACYCR |
DOI | 10.1007/s12540-017-6349-x |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Aluminium Industry Abstracts Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) Aluminium Industry Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 349 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1340335 4319583151 10_1007_s12540_017_6349_x |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ DWQXO JG9 L6V M7S PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO 7QF ACYCR |
ID | FETCH-LOGICAL-c383t-93f0f22ccadb5558223d27f9c36ca100c6e1ed0169233ca4f2cc2c6381190dd33 |
IEDL.DBID | 8FG |
ISSN | 1598-9623 |
IngestDate | Sun Mar 09 07:53:22 EDT 2025 Sun Sep 28 01:38:48 EDT 2025 Thu Sep 25 00:40:36 EDT 2025 Tue Jul 01 01:15:20 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Fri Feb 21 02:33:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | welding microstructure scanning electron microscopy (SEM) lightweight steel high aluminum content |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-93f0f22ccadb5558223d27f9c36ca100c6e1ed0169233ca4f2cc2c6381190dd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G704-000797.2017.23.2.008 |
PQID | 1875058271 |
PQPubID | 326276 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1340335 proquest_miscellaneous_1893891410 proquest_journals_1875058271 crossref_primary_10_1007_s12540_017_6349_x crossref_citationtrail_10_1007_s12540_017_6349_x springer_journals_10_1007_s12540_017_6349_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170300 2017-3-00 20170301 2017-03 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 3 year: 2017 text: 20170300 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2017 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | SuhD.-W.ParkS. J.LeeT. H.OhC. S.KimS. J.Metall. Mater. Trans. A20104139710.1007/s11661-009-0124-7 KhanM. I.KuntzM. L.ZhouY.Sci. Technol. Weld. Joi.20081329410.1179/174329308X271733 YuJ.ShimJ.RheeS.Mater. Trans.201253201110.2320/matertrans.M2012167 HanS. Y.ShinS. Y.LeeS.KimN. J.KwakJ. H.ChinK.Korean J. Met. Mater.20104837710.3365/KJMM.2010.48.05.377 LimN.ParkH.KimS.ParkC.Met. Mater. Int.20121864710.1007/s12540-012-4012-0 KimJ.-S.JeonJ. B.JungJ. E.UmK.-K.ChangY. W.Met. Mater. Int.2014202710.1007/s12540-014-1008-y RadakovicD. J.TumuluruM.Weld. J.20088796 BouquerelJ.VerbekenK.De CoomanB. C.Acta Mater.200654144310.1016/j.actamat.2005.10.059 LinC. L.ChaoC. G.BorH. Y.LiuT. F.Mater. Trans.201051108410.2320/matertrans.M2010013 KhanM. I.KuntzM. L.SuP.GerlichA.NorthT.ZhouY.Sci. Technol. Weld. Joi.20071217510.1179/174329307X159801 JacquesP. J.Curr. Opin. Solid St. M.2004825910.1016/j.cossms.2004.09.006 ChooW. K.KimJ. H.YoonJ. C.Acta Mater.199745487710.1016/S1359-6454(97)00201-2 ChinK.-G.LeeH.-J.KwakJ.-H.KangJ.-Y.LeeB.-J.J. Alloy. Compd.201050521710.1016/j.jallcom.2010.06.032 SahaD. C.HanS.ChinK. G.ChoiI.ParkY.-D.Steel Res. Int.20128335210.1002/srin.201100324 JungG. S.LeeK. Y.LeeJ. B.BhadeshiaH. K. D. H.SuhD.-W.Sci. Technol. Weld. Joi.2012179210.1179/1362171811Y.0000000081 SohnS. S.LeeB.-J.LeeS.KwakJ.-H.Met. Mater. Int.2015214310.1007/s12540-015-1006-8 DaneshpourS.RiekehrS.KocakM.VentzkeV.KorkukA. I.Sci. Technol. Weld. Joi.20071250810.1179/174329307X213855 TimokhinaI. B.HodgsonP. D.PerelomaE. V.Metall. Mater. Trans. A200435233110.1007/s11661-006-0213-9 BoazizO.AllainS.ScottC. P.CugyP.BarbierD.Curr. Opin. Solid St. M.20111514110.1016/j.cossms.2011.04.002 ChoiI.ParkY.SonD.KimS.-J.MoonM.Met. Mater. Int.2010162710.1007/s12540-010-0027-6 D’ErricoF.J. Fail. Anal. Preven.20101035110.1007/s11668-010-9374-3 FrommeyerG.BrüxU.Steel Res. Int.20067762710.1002/srin.200606440 HwangB.LeeT.-H.ShinJ.-H.LeeJ.-W.Korean J. Met. Mater.2014522110.3365/KJMM.2014.52.1.021 HanS. Y.ShinS. Y.LeeS.KimN. J.KwakJ.-H.ChinK.-G.Metall. Mater. Trans. A20114213810.1007/s11661-010-0456-3 JungJ. E.ParkJ.KimJ.-S.JeonJ. B.KimS. K.ChangY. W.Met. Mater. Int.2014202710.1007/s12540-014-1008-y ChoiB.-W.SeoD.-H.JangJ.-I.Met. Mater. Int.20091537310.1007/s12540-009-0373-4 YiH. L.LeeK. Y.LimJ. H.BhadeshiaH. K. D. H.Sci. Technol. Weld. Joi.20101561910.1179/136217110X12813393169778 VercammenS.BlanpainB.De CoomanB. C.WollantsP.Acta Mater.200452200510.1016/j.actamat.2003.12.040 FrommeyerG.JiménezJ. A.Metall. Mater. Trans. A20053629510.1007/s11661-005-0302-1 KimH.SuhD.-W.KimN. J.Sci. Technol. Adv. Mater.201314110.1088/1468-6996/14/1/014205 ZaeffererS.OhlertJ.BleckW.Acta Mater.200452276510.1016/j.actamat.2004.02.044 KhanM. I.KuntzM. L.BiroE.ZhouY.Mater. Trans.200849162910.2320/matertrans.MRA2008031 HuangH.GanD.KaoP. W.Scr. Metall. Mater.19943049910.1016/0956-716X(94)90610-6 S. Y. Han (6349_CR5) 2010; 48 F. D’Errico (6349_CR23) 2010; 10 M. I. Khan (6349_CR33) 2008; 49 K.-G. Chin (6349_CR14) 2010; 505 G. S. Jung (6349_CR28) 2012; 17 I. B. Timokhina (6349_CR3) 2004; 35 H. Huang (6349_CR19) 1994; 30 D. J. Radakovic (6349_CR25) 2008; 87 C. L. Lin (6349_CR21) 2010; 51 I. Choi (6349_CR7) 2010; 16 G. Frommeyer (6349_CR15) 2005; 36 S. Y. Han (6349_CR22) 2011; 42 W. K. Choo (6349_CR20) 1997; 45 S. Daneshpour (6349_CR29) 2007; 12 B.-W. Choi (6349_CR6) 2009; 15 J. E. Jung (6349_CR12) 2014; 20 J. Bouquerel (6349_CR8) 2006; 54 G. Frommeyer (6349_CR4) 2006; 77 H. L. Yi (6349_CR30) 2010; 15 H. Kim (6349_CR17) 2013; 14 S. S. Sohn (6349_CR24) 2015; 21 M. I. Khan (6349_CR27) 2008; 13 J. Yu (6349_CR32) 2012; 53 M. I. Khan (6349_CR26) 2007; 12 O. Boaziz (6349_CR11) 2011; 15 D.-W. Suh (6349_CR18) 2010; 41 P. J. Jacques (6349_CR1) 2004; 8 S. Zaefferer (6349_CR2) 2004; 52 D. C. Saha (6349_CR31) 2012; 83 N. Lim (6349_CR10) 2012; 18 S. Vercammen (6349_CR9) 2004; 52 B. Hwang (6349_CR16) 2014; 52 J.-S. Kim (6349_CR13) 2014; 20 |
References_xml | – reference: YuJ.ShimJ.RheeS.Mater. Trans.201253201110.2320/matertrans.M2012167 – reference: ChoiI.ParkY.SonD.KimS.-J.MoonM.Met. Mater. Int.2010162710.1007/s12540-010-0027-6 – reference: VercammenS.BlanpainB.De CoomanB. C.WollantsP.Acta Mater.200452200510.1016/j.actamat.2003.12.040 – reference: JungG. S.LeeK. Y.LeeJ. B.BhadeshiaH. K. D. H.SuhD.-W.Sci. Technol. Weld. Joi.2012179210.1179/1362171811Y.0000000081 – reference: BoazizO.AllainS.ScottC. P.CugyP.BarbierD.Curr. Opin. Solid St. M.20111514110.1016/j.cossms.2011.04.002 – reference: ChooW. K.KimJ. H.YoonJ. C.Acta Mater.199745487710.1016/S1359-6454(97)00201-2 – reference: D’ErricoF.J. Fail. Anal. Preven.20101035110.1007/s11668-010-9374-3 – reference: SuhD.-W.ParkS. J.LeeT. H.OhC. S.KimS. J.Metall. Mater. Trans. A20104139710.1007/s11661-009-0124-7 – reference: SahaD. C.HanS.ChinK. G.ChoiI.ParkY.-D.Steel Res. Int.20128335210.1002/srin.201100324 – reference: ZaeffererS.OhlertJ.BleckW.Acta Mater.200452276510.1016/j.actamat.2004.02.044 – reference: HwangB.LeeT.-H.ShinJ.-H.LeeJ.-W.Korean J. Met. Mater.2014522110.3365/KJMM.2014.52.1.021 – reference: YiH. L.LeeK. Y.LimJ. H.BhadeshiaH. K. D. H.Sci. Technol. Weld. Joi.20101561910.1179/136217110X12813393169778 – reference: LimN.ParkH.KimS.ParkC.Met. Mater. Int.20121864710.1007/s12540-012-4012-0 – reference: ChinK.-G.LeeH.-J.KwakJ.-H.KangJ.-Y.LeeB.-J.J. Alloy. Compd.201050521710.1016/j.jallcom.2010.06.032 – reference: TimokhinaI. B.HodgsonP. D.PerelomaE. V.Metall. Mater. Trans. A200435233110.1007/s11661-006-0213-9 – reference: SohnS. S.LeeB.-J.LeeS.KwakJ.-H.Met. Mater. Int.2015214310.1007/s12540-015-1006-8 – reference: KhanM. I.KuntzM. L.ZhouY.Sci. Technol. Weld. Joi.20081329410.1179/174329308X271733 – reference: KimH.SuhD.-W.KimN. J.Sci. Technol. Adv. Mater.201314110.1088/1468-6996/14/1/014205 – reference: DaneshpourS.RiekehrS.KocakM.VentzkeV.KorkukA. I.Sci. Technol. Weld. Joi.20071250810.1179/174329307X213855 – reference: FrommeyerG.JiménezJ. A.Metall. Mater. Trans. A20053629510.1007/s11661-005-0302-1 – reference: KhanM. I.KuntzM. L.BiroE.ZhouY.Mater. Trans.200849162910.2320/matertrans.MRA2008031 – reference: JungJ. E.ParkJ.KimJ.-S.JeonJ. B.KimS. K.ChangY. W.Met. Mater. Int.2014202710.1007/s12540-014-1008-y – reference: HanS. Y.ShinS. Y.LeeS.KimN. J.KwakJ.-H.ChinK.-G.Metall. Mater. Trans. A20114213810.1007/s11661-010-0456-3 – reference: HuangH.GanD.KaoP. W.Scr. Metall. Mater.19943049910.1016/0956-716X(94)90610-6 – reference: LinC. L.ChaoC. G.BorH. Y.LiuT. F.Mater. Trans.201051108410.2320/matertrans.M2010013 – reference: JacquesP. J.Curr. Opin. Solid St. M.2004825910.1016/j.cossms.2004.09.006 – reference: HanS. Y.ShinS. Y.LeeS.KimN. J.KwakJ. H.ChinK.Korean J. Met. Mater.20104837710.3365/KJMM.2010.48.05.377 – reference: ChoiB.-W.SeoD.-H.JangJ.-I.Met. Mater. Int.20091537310.1007/s12540-009-0373-4 – reference: FrommeyerG.BrüxU.Steel Res. Int.20067762710.1002/srin.200606440 – reference: BouquerelJ.VerbekenK.De CoomanB. C.Acta Mater.200654144310.1016/j.actamat.2005.10.059 – reference: KimJ.-S.JeonJ. B.JungJ. E.UmK.-K.ChangY. W.Met. Mater. Int.2014202710.1007/s12540-014-1008-y – reference: RadakovicD. J.TumuluruM.Weld. J.20088796 – reference: KhanM. I.KuntzM. L.SuP.GerlichA.NorthT.ZhouY.Sci. Technol. Weld. Joi.20071217510.1179/174329307X159801 – volume: 18 start-page: 647 year: 2012 ident: 6349_CR10 publication-title: Met. Mater. Int. doi: 10.1007/s12540-012-4012-0 – volume: 15 start-page: 619 year: 2010 ident: 6349_CR30 publication-title: Sci. Technol. Weld. Joi. doi: 10.1179/136217110X12813393169778 – volume: 87 start-page: 96 year: 2008 ident: 6349_CR25 publication-title: Weld. J. – volume: 54 start-page: 1443 year: 2006 ident: 6349_CR8 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.10.059 – volume: 52 start-page: 21 year: 2014 ident: 6349_CR16 publication-title: Korean J. Met. Mater. doi: 10.3365/KJMM.2014.52.1.021 – volume: 16 start-page: 27 year: 2010 ident: 6349_CR7 publication-title: Met. Mater. Int. doi: 10.1007/s12540-010-0027-6 – volume: 12 start-page: 175 year: 2007 ident: 6349_CR26 publication-title: Sci. Technol. Weld. Joi. doi: 10.1179/174329307X159801 – volume: 41 start-page: 397 year: 2010 ident: 6349_CR18 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-009-0124-7 – volume: 83 start-page: 352 year: 2012 ident: 6349_CR31 publication-title: Steel Res. Int. doi: 10.1002/srin.201100324 – volume: 20 start-page: 27 year: 2014 ident: 6349_CR13 publication-title: Met. Mater. Int. doi: 10.1007/s12540-014-1008-y – volume: 15 start-page: 141 year: 2011 ident: 6349_CR11 publication-title: Curr. Opin. Solid St. M. doi: 10.1016/j.cossms.2011.04.002 – volume: 35 start-page: 2331 year: 2004 ident: 6349_CR3 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-006-0213-9 – volume: 42 start-page: 138 year: 2011 ident: 6349_CR22 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-010-0456-3 – volume: 48 start-page: 377 year: 2010 ident: 6349_CR5 publication-title: Korean J. Met. Mater. doi: 10.3365/KJMM.2010.48.05.377 – volume: 12 start-page: 508 year: 2007 ident: 6349_CR29 publication-title: Sci. Technol. Weld. Joi. doi: 10.1179/174329307X213855 – volume: 36 start-page: 295 year: 2005 ident: 6349_CR15 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-005-0302-1 – volume: 53 start-page: 2011 year: 2012 ident: 6349_CR32 publication-title: Mater. Trans. doi: 10.2320/matertrans.M2012167 – volume: 505 start-page: 217 year: 2010 ident: 6349_CR14 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2010.06.032 – volume: 21 start-page: 43 year: 2015 ident: 6349_CR24 publication-title: Met. Mater. Int. doi: 10.1007/s12540-015-1006-8 – volume: 49 start-page: 1629 year: 2008 ident: 6349_CR33 publication-title: Mater. Trans. doi: 10.2320/matertrans.MRA2008031 – volume: 14 start-page: 1 year: 2013 ident: 6349_CR17 publication-title: Sci. Technol. Adv. Mater. – volume: 51 start-page: 1084 year: 2010 ident: 6349_CR21 publication-title: Mater. Trans. doi: 10.2320/matertrans.M2010013 – volume: 77 start-page: 627 year: 2006 ident: 6349_CR4 publication-title: Steel Res. Int. doi: 10.1002/srin.200606440 – volume: 52 start-page: 2765 year: 2004 ident: 6349_CR2 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.02.044 – volume: 13 start-page: 294 year: 2008 ident: 6349_CR27 publication-title: Sci. Technol. Weld. Joi. doi: 10.1179/174329308X271733 – volume: 20 start-page: 27 year: 2014 ident: 6349_CR12 publication-title: Met. Mater. Int. doi: 10.1007/s12540-014-1008-y – volume: 8 start-page: 259 year: 2004 ident: 6349_CR1 publication-title: Curr. Opin. Solid St. M. doi: 10.1016/j.cossms.2004.09.006 – volume: 17 start-page: 92 year: 2012 ident: 6349_CR28 publication-title: Sci. Technol. Weld. Joi. doi: 10.1179/1362171811Y.0000000081 – volume: 10 start-page: 351 year: 2010 ident: 6349_CR23 publication-title: J. Fail. Anal. Preven. doi: 10.1007/s11668-010-9374-3 – volume: 15 start-page: 373 year: 2009 ident: 6349_CR6 publication-title: Met. Mater. Int. doi: 10.1007/s12540-009-0373-4 – volume: 45 start-page: 4877 year: 1997 ident: 6349_CR20 publication-title: Acta Mater. doi: 10.1016/S1359-6454(97)00201-2 – volume: 30 start-page: 499 year: 1994 ident: 6349_CR19 publication-title: Scr. Metall. Mater. doi: 10.1016/0956-716X(94)90610-6 – volume: 52 start-page: 2005 year: 2004 ident: 6349_CR9 publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.12.040 |
SSID | ssj0061312 |
Score | 2.1472218 |
Snippet | Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various... Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweightsteel was evaluated under various electrode... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Acceptability Alternating current Characterization and Evaluation of Materials Chemistry and Materials Science Direct current Ductile fracture Ductility Electrodes Engineering Thermodynamics Ferrite Fracture surfaces Heat affected zone Heat and Mass Transfer Lightweight Machines Magnetic Materials Magnetism Manufacturing Martensite Materials Science Mechanical properties Metallic Materials Microstructure Processes Research methodology Scanning electron microscopy Shear strength Shear tests Solid Mechanics Steel Weight reduction Weld metal Weldability Welding Welding current Welding machines 재료공학 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI6AXeDAGzEYKCBOoE5tknX0OKHBAMEBMWmcojYPhFZ1aOs04Ndj97ExBEiceqgbJX7Edu18IeRECO2DFzGO8TR3RHTOnZBB4gq5hu8GylrF8DTy3b3f6YqbXqNXnOMeld3uZUky26lnh90YFvFxV_W5CBwIHCsNyE_AGiutq6fbdrkBg4PKi5yNAGwZ3HtZzPxpkDl3tJgM7Vyk-a04mvmcyzXyWM42bzXp18dpVFcf34Ac_7mcdbJaxKC0lSvNBlkwySZZ-YJMuEWuHswII0tQCQqJb0onJtY5pPc7HVgaY04_yX6rUtATE1P8oUtDivDHtBVTbIEHf7ZNupftx4uOU9y54CjIVVMn4Na1jIFcdYRQYBA9aNa0geK-CmHiyjee0QjhwjhXobBAyhQYsQeRhdac75ClZJCYXUKNyW678m0UKsHsedTUIjBRE7wyc2GMKnFL1ktVAJLjvRixnEEpI48k8Egij-RblZxOP3nN0Tj-Ij4Gecq-epGIoY3P54HsDyVkCtfS48LlvFEltVLcsrDekfQgiXNh7U2vSo6mr8HusJgSJmYwRpoAS7zCg3WclRL-MsRvs9r7F_U-WWaoIlnTW40spcOxOYAoKI0OC63_BDZq_Ro priority: 102 providerName: Springer Nature |
Title | Resistance spot weldability of lightweight steel with a high Al content |
URI | https://link.springer.com/article/10.1007/s12540-017-6349-x https://www.proquest.com/docview/1875058271 https://www.proquest.com/docview/1893891410 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002204619 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2017, 23(2), , pp.341-349 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_8eNEH8ROnc0TxSSm2SdatTzJlmx8oIg70KbT5ELG0uk3U_967rvUL9KnQpmlzl-R3l0t-B7ArpQkRRaxnAyM8mbSFF3N0XNHXCP1IO6c5nUa-uAxPBvLstnlbLriNym2V1ZxYTNQm17RGfhCgYe0327wVHD49e5Q1iqKrZQqNaZgNOGItnRTv9auZGJFqEu1sRjioEeerqGZxdI7TlgCao0MhI-_tBy5NZ0P3w-T8FSUtwKe3CAul1cg6EzUvwZTNlmH-G5fgCvSv7YhsQVQiQ1d1zF5taiYk3O8sdywlL_y1WAhlqFmbMlqCZTEjwmLWSRltWkcEWoVBr3tzfOKVWRI8jd7l2IuE8x3nqAmTEHkX4r3hLRdpEeoY26pDG1hDpCtcCB1Lh0W5xmEXoC1gjBBrMJPlmV0HZm2Rnyp0Sawld-2kZWRkkxbiKPexjhr4lYyULinEKZNFqr7Ij0msCsWqSKzqrQZ7n688Tfgz_iu8g4JXj_pBEes1Xe9z9ThUaNufqkBIX4hmDeqVXlQ53kbqq3fUYPvzMY4UCn_Emc1fqExEQVkZYDv2K31-q-Kvv9r4_4ObMMepGxX70uowMx6-2C00VMZJo-iNDZjt9O_Ou3g96l5eXePdAe98AOCB5xQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4BewAOaJeHKLCsQXABRSS2mzYHhNDulpbXAYHEzSR-INQogbao8Kf4jcwkDS8JbpxyqJvHeDzfjGf8DcCGlCZEFLGeDYzwZNIUXswxcMVYI_Qj7ZzmdBr55DRsX8jDy_rlGDxVZ2GorLKyiYWhNrmmPfKdAB1rv97kjWDv9s6jrlGUXa1aaJRqcWQfhxiy9Xc7_3B-Nzlv_T__2_ZGXQU8jdHYwIuE8x3n-OYmIbIrxEfDGy7SItRx4Ps6tIE1RFLChdCxdDiUa1TTALHTGNoARZP_QwohqISw2TqoLD8iY5ldrUdoRNCvqLKoxVE9TiUIhAmhkJH38A4Hx7Oee-fifsjKFmDX-gkzIy-V7Zdq9QvGbDYL02-4C-fg4Mz2yfdEpWEYGg_Y0KamJP1-ZLljKUX9w2LjlaEm2ZTRli-LGREks_2UUZE8It48XHyL_BZgIsszuwjM2qIfVuiSWEvumknDyMgmDcRt7uM9auBXMlJ6RFlOnTNS9Uq2TGJVKFZFYlUPNdh6-cttydfx1eB1FLzq6htFLNt0vc5Vt6cwluioQEgf57gGK9W8qNH67qtXbazB2svPuDIp3RJnNr-nMRElgWWA37FdzeebW3z2VktfP_APTLbPT47Vcef0aBmmOKlUURO3AhOD3r39jU7SIFktNJPB1XcvhWd3wx94 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9tADLe2VkLjgTE2RFlhB9rTptDk7pqSx2q0fHRDaBoSezqS-0CoUVq1qWD762c3CZRqmzTtKQ9xTr6zHdvnu58B3ktpQvQi1rOBEZ5MDoUXc0xcMdcI_Ug7pzndRv5yHp5cyrOr9lXZ53RanXavSpLFnQZCacry1ti41uPFN04FffrDhkJGHgaRdUktJGpQ7x5_H_SqnzE6q6Lg2Y7QrtHVV4XN3w3yxDU9zybuSdS5VCid-5_-S7iuOC-OnQwPZnlyoH8ugTr-x9TWYa2MTVm3UKZX8MxmG7C6gFj4Go6_2ilFnKgqDBPinN3Z1BRQ3z_YyLGUcv27-XYrQ_2xKaONXhYzgkVm3ZSVzLyBy37v26cTr-zF4GnMYXMvEs53nKO8TUIQYRhVGN5xkRahjpFxHdrAGoJ24ULoWDok5RqNO8CIwxghNqGWjTK7BczaeRes0CWxltwdJh0jI5t00FtzH8dogF-JQekSqJz6ZaTqEWKZ1kjhGilaI3XfgA8Pn4wLlI6_Ee-jbNVQ3yrC1qbnzUgNJwoziFMVCOkL0W5AsxK9Kq16qgJM7nyceydowN7Da7RHKrLEmR3NiCai0q8McB4fK2kvDPEnrrb_ifodrFwc9dXn0_PBW3jBSVvm5-KaUMsnM7uDgVKe7JbG8Au8yAj1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resistance+spot+weldability+of+lightweight+steel+with+a+high+Al+content&rft.jtitle=Metals+and+materials+international&rft.au=Hwang%2C+Insung&rft.au=Kim%2C+Dongcheol&rft.au=Kang%2C+Munjin&rft.au=Kwak%2C+Jae-Hyun&rft.date=2017-03-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=23&rft.issue=2&rft.spage=341&rft.epage=349&rft_id=info:doi/10.1007%2Fs12540-017-6349-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_017_6349_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |