Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy
Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing pr...
Saved in:
Published in | Free radical biology & medicine Vol. 138; pp. 53 - 62 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2019
|
Online Access | Get full text |
ISSN | 0891-5849 1873-4596 1873-4596 |
DOI | 10.1016/j.freeradbiomed.2019.04.031 |
Cover
Abstract | Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.
[Display omitted]
•The tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to non-HBOT.•HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples.•HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis.•The increased levels of neutrophil attractant CXCL-8 promotes the release chemokine CCL2, a well-known mediator of neovascularization during HBO therapy. |
---|---|
AbstractList | Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.
[Display omitted]
•The tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to non-HBOT.•HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples.•HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis.•The increased levels of neutrophil attractant CXCL-8 promotes the release chemokine CCL2, a well-known mediator of neovascularization during HBO therapy. Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds. Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds. |
Author | Vaishnavi, Alladi Somasundar, Arumugam Karan, Amin Rajesh, Kesavan Ramkumar, Kunka Mohanram Dhamodharan, Umapathy Sireesh, Dornadula |
Author_xml | – sequence: 1 givenname: Umapathy surname: Dhamodharan fullname: Dhamodharan, Umapathy organization: SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India – sequence: 2 givenname: Amin surname: Karan fullname: Karan, Amin organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India – sequence: 3 givenname: Dornadula surname: Sireesh fullname: Sireesh, Dornadula organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India – sequence: 4 givenname: Alladi surname: Vaishnavi fullname: Vaishnavi, Alladi organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India – sequence: 5 givenname: Arumugam surname: Somasundar fullname: Somasundar, Arumugam organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India – sequence: 6 givenname: Kesavan surname: Rajesh fullname: Rajesh, Kesavan email: hycareforwound@gmail.com organization: Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai, 600 106, Tamilnadu, India – sequence: 7 givenname: Kunka Mohanram surname: Ramkumar fullname: Ramkumar, Kunka Mohanram email: ramkumar.km@res.srmuniv.ac.in organization: SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31035003$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAURS1URKctv4AssWGTYMdxYotVVbWAVMGmXVuO_dx6lInDs4OYvyfTKUiw6uot3rl3cc8ZOZnSBIS856zmjHcft3VAALR-iGkHvm4Y1zVrayb4K7LhqhdVK3V3QjZMaV5J1epTcpbzljHWSqHekFPBmZCMiQ0JdzHnBao8g4shOoppBJoC_YahoXGi5RFoQbBlB1M5PHy0A5SVDCkVuowOMFO_YJwe6ON-Bhwsrt_0a_8AT3G08_6CvA52zPD2-Z6T-5vru6sv1e33z1-vLm8rJ5QoVa-8ULwHHwLT0vtO6kFBJwbtOBuUVsL1vB8siBaY7DuwAKEB1yiQSiomzsmHY--M6ccCuZhdzA7G0U6QlmyahvetFlzKFX33jC7DOqOZMe4s7s2fbVbg0xFwmHJGCH8RzszBhNmaf0yYgwnDWrOaWNOX_6VdLLbENBW0cXxhx_WxA9bJfkZAk12EyYGPCK4Yn-KLen4DUbiwaQ |
CitedBy_id | crossref_primary_10_1016_j_intimp_2023_110861 crossref_primary_10_1080_00914037_2020_1838518 crossref_primary_10_1038_s41420_023_01524_9 crossref_primary_10_3389_fragi_2021_678543 crossref_primary_10_3390_jcdd11120408 crossref_primary_10_4081_ejtm_2025_12783 crossref_primary_10_3390_ijms222111754 crossref_primary_10_3390_jcm12134551 crossref_primary_10_1111_iwj_14196 crossref_primary_10_1016_j_jmmm_2020_167153 crossref_primary_10_3389_fendo_2021_744868 crossref_primary_10_1002_dmrr_3786 crossref_primary_10_1155_2020_9825028 crossref_primary_10_1007_s12192_020_01190_1 crossref_primary_10_3389_fimmu_2025_1529176 crossref_primary_10_3389_fneur_2024_1356662 crossref_primary_10_1016_j_intimp_2024_112713 crossref_primary_10_1016_j_exger_2021_111479 crossref_primary_10_1111_exd_14156 crossref_primary_10_3390_ijms25115916 crossref_primary_10_1177_17562848211023394 crossref_primary_10_1002_biof_1867 crossref_primary_10_3389_fphar_2023_1062664 crossref_primary_10_1097_MD_0000000000033962 crossref_primary_10_3390_ijms242216357 crossref_primary_10_1002_dmrr_3644 crossref_primary_10_1016_j_freeradbiomed_2020_05_018 crossref_primary_10_1111_jcmm_70310 crossref_primary_10_1111_dme_14968 crossref_primary_10_3390_ijms26031067 crossref_primary_10_3390_biom11081210 crossref_primary_10_1186_s40659_023_00444_3 crossref_primary_10_3390_biom11121827 crossref_primary_10_1007_s00011_020_01328_y crossref_primary_10_1155_2021_1470829 crossref_primary_10_1016_j_ejphar_2020_173395 crossref_primary_10_1016_j_abb_2024_110133 crossref_primary_10_55665_troiamedj_1326387 crossref_primary_10_1016_j_mehy_2023_111212 crossref_primary_10_4103_2045_9912_311497 crossref_primary_10_1097_j_pbj_0000000000000187 crossref_primary_10_3390_antiox11102073 crossref_primary_10_31083_j_fbl2710285 crossref_primary_10_3390_biom10101466 crossref_primary_10_3390_ijms252111367 crossref_primary_10_1111_exd_15189 crossref_primary_10_1155_2022_9687925 crossref_primary_10_1111_jcmm_16597 crossref_primary_10_1111_jocd_15631 crossref_primary_10_1155_2020_8249729 crossref_primary_10_3390_biomedicines10123145 crossref_primary_10_1016_j_jcyt_2024_01_003 crossref_primary_10_1080_10715762_2021_1892090 crossref_primary_10_3390_medicina57090864 |
Cites_doi | 10.1093/qjmed/hch074 10.1128/MCB.26.1.221-229.2006 10.1111/j.1464-5491.2010.03185.x 10.1016/j.jacc.2011.08.023 10.1080/10715760601080371 10.1007/s12192-009-0159-0 10.4238/gmr.15016933 10.1016/j.neuint.2012.02.013 10.1046/j.1523-1755.2002.00237.x 10.3390/ijms151120290 10.2337/diacare.27.suppl_2.B39 10.1016/j.freeradbiomed.2013.04.008 10.2337/diacare.17.6.557 10.1371/journal.pone.0163371 10.2337/diaclin.24.2.91 10.1016/j.bmc.2016.05.011 10.21037/atm.2017.09.03 10.1016/j.phrs.2014.10.004 10.1172/JCI119868 10.1152/ajpheart.00237.2004 10.1016/j.jnutbio.2017.02.015 10.1097/01.ASW.0000280198.81130.d5 10.1002/dmrr.833 10.1111/j.1749-6632.2009.05393.x 10.1016/j.jccw.2014.03.001 10.1111/bph.12577 10.1001/jama.293.2.217 10.1038/nm0695-515 10.2337/dc15-2001 10.1016/j.freeradbiomed.2009.07.035 10.2337/db15-0564 10.1002/1520-7560(200009/10)16:1+<::AID-DMRR132>3.0.CO;2-T 10.1089/wound.2013.0517 10.1165/ajrcmb.26.2.4501 10.33549/physiolres.931711 10.1089/ars.2017.7342 10.1074/jbc.275.4.2951 10.1038/s41598-018-22913-6 10.1155/2018/6425857 10.1074/jbc.M111.286880 10.1186/1745-6215-12-69 10.1016/j.ejvs.2014.03.005 10.1053/j.gastro.2007.12.011 10.1101/gad.238246.114 10.1016/j.exer.2009.12.012 10.1016/S1056-8727(01)00182-9 10.1002/bjs.4863 10.1097/WON.0000000000000374 10.1196/annals.1427.036 10.1097/PRS.0b013e3181fbe2bf 10.1002/dmrr.2246 10.1111/j.1524-475X.2008.00436.x 10.1586/eri.09.76 10.1089/wound.2011.0319 10.3390/ijms160716483 10.1016/j.jss.2008.04.023 10.2337/dc12-2160 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2019.04.031 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 62 |
ExternalDocumentID | 31035003 10_1016_j_freeradbiomed_2019_04_031 S0891584919302114 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 ACLOT EFKBS ~HD |
ID | FETCH-LOGICAL-c383t-78d3817edff095dd659b8e63b9c10b8983c717bae34e0576eaeef2ec28e585803 |
IEDL.DBID | AIKHN |
ISSN | 0891-5849 1873-4596 |
IngestDate | Sun Sep 28 11:41:15 EDT 2025 Wed Feb 19 02:30:18 EST 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 01:11:19 EDT 2025 Fri Feb 23 02:49:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2019. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-78d3817edff095dd659b8e63b9c10b8983c717bae34e0576eaeef2ec28e585803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31035003 |
PQID | 2217493155 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2217493155 pubmed_primary_31035003 crossref_primary_10_1016_j_freeradbiomed_2019_04_031 crossref_citationtrail_10_1016_j_freeradbiomed_2019_04_031 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2019_04_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Londahl, Landin-Olsson, Katzman (bib44) 2011; 28 Anderson, Hamm (bib48) 2012; 4 Aprioku (bib50) 2013; 14 Sureda, Batle, Martorell, Capo, Tejada, Tur, Pons (bib13) 2016; 11 Cimsit, Uzun, Yildiz (bib11) 2009; 7 Chartoumpekis, Kensler (bib31) 2013; 9 Kolluru, Bir, Kevil (bib60) 2012; 2012 Karadurmus, Sahin, Tasci, Naharci, Ozturk, Ilbasmis, Dulkadir, Sen, Saglam (bib67) 2010; 61 Bakker (bib14) 2000; 16 Li, Kim, Bertics (bib63) 2000; 275 Sheffield (bib45) 1998; 25 Roeckl-Wiedmann, Bennett, Kranke (bib10) 2005; 92 O'Reilly, Linden, Fedorko, Tarride, Jones, Bowen, Goeree (bib41) 2011; 12 Frank, Kampfer, Wetzler, Pfeilschifter (bib64) 2002; 61 Long, Rojo de la Vega, Wen, Bharara, Jiang, Zhang, Zhou, Wong, Wondrak, Zheng, Zhang (bib26) 2016; 65 Turpaev (bib24) 2013; 78 Bao, Kodra, Tomic-Canic, Golinko, Ehrlich, Brem (bib61) 2009; 153 Londahl (bib4) 2013; 97 Godman, Chheda, Hightower, Perdrizet, Shin, Giardina (bib19) 2010; 15 Boykin, Baylis (bib53) 2007; 20 Gill, Bell (bib7) 2004; 97 Kaspar, Niture, Jaiswal (bib23) 2009; 47 Jindam, Yerra, Kumar (bib27) 2017; 5 Margolis, Gupta, Hoffstad, Papdopoulos, Glick, Thom, Mitra (bib43) 2013; 36 Kalani, Jorneskog, Naderi, Lind, Brismar (bib17) 2002; 16 Cho, Jedlicka, Reddy, Kensler, Yamamoto, Zhang, Kleeberger (bib52) 2002; 26 Kruse, Edelman (bib3) 2006; 24 Gremmels, de Jong, Hazenbrink, Fledderus, Verhaar (bib57) 2017; 2017 Stoekenbroek, Santema, Legemate, Ubbink, van den Brink, Koelemay (bib16) 2014; 47 Green (bib39) 1995; 1 Castilla, Liu, Velazquez (bib46) 2012; 1 Fedorko, Bowen, Jones, Oreopoulos, Goeree, Hopkins, O'Reilly (bib42) 2016; 39 Johnson, Wilgus (bib66) 2014; 3 Warriner, Hopf (bib6) 2012; 39 Rowley, Madsen, Schousboe, Steve White (bib51) 2012; 61 Singh, Armstrong, Lipsky (bib1) 2005; 293 Bhakkiyalakshmi, Sireesh, Rajaguru, Paulmurugan, Ramkumar (bib34) 2015; 91 Bhakkiyalakshmi, Dineshkumar, Karthik, Sireesh, Hopper, Paulmurugan, Ramkumar (bib32) 2016; 24 Sireesh, Ganesh, Dhamodharan, Sakthivadivel, Sivasubramanian, Gunasekaran, Ramkumar (bib35) 2017; 44 Thom (bib5) 2011; 127 Boulton (bib9) 2008; 24 Game, Hinchliffe, Apelqvist, Armstrong, Bakker, Hartemann, Londahl, Price, Jeffcoate (bib15) 2012; 28 Johnson, Johnson, Kraft, Calkins, Jakel, Vargas, Chen (bib29) 2008; 1147 Wu, Zhao, Gao, Tan, Yagishita, Nakajima, Wong, Chapman, Fang, Zhang (bib30) 2014; 28 Schruefer, Lutze, Schymeinsky, Walzog (bib62) 2005; 288 Sen (bib47) 2009; vol. 17 Chen, Wu, Hsu, Hsieh, Chou (bib40) 2017; 44 Irawan, Semadi, Widiana (bib49) 2018; 2018 Matsunami, Sato, Sato, Yukawa (bib8) 2010; 59 Wang, Chen, Liu, Ouyang, Wang, Bao, Liu (bib59) 2015; 16 Kobayashi, Kang, Watai, Tong, Shibata, Uchida, Yamamoto (bib21) 2006; 26 Mayfield, Reiber, Maynard, Czerniecki, Sangeorzan (bib2) 2004; 27 Hayashi, Himori, Taguchi, Ishikawa, Uesugi, Ito, Duncan, Tsujikawa, Nakazawa, Yamamoto, Nishida (bib28) 2013; 61 Young, Breddy, Veves, Boulton (bib36) 1994; 17 Godman, Joshi, Giardina, Perdrizet, Hightower (bib20) 2010; 1197 Tonelli, Chio, Tuveson (bib22) 2018; 29 Meng, Zhang, Li, Fan, Yang, Li, Guo, Pan (bib18) 2016; 15 Bhakkiyalakshmi, Shalini, Sekar, Rajaguru, Paulmurugan, Ramkumar (bib33) 2014; 171 Kweider, Fragoulis, Rosen, Pecks, Rath, Pufe, Wruck (bib56) 2011; 286 Sireesh, Dhamodharan, Ezhilarasi, Vijay, Ramkumar (bib25) 2018; 8 Papapetropoulos, Garcia-Cardena, Madri, Sessa (bib65) 1997; 100 Sunkari, Lind, Botusan, Kashif, Liu, Yla-Herttuala, Brismar, Velazquez, Catrina (bib12) 2015; vol. 23 Pham, King, Macparland, McGrath, Reddy, Bursey, Michalak (bib38) 2008; 134 Jimenez-Osorio, Picazo, Gonzalez-Reyes, Barrera-Oviedo, Rodriguez-Arellano, Pedraza-Chaverri (bib58) 2014; 15 Uno, Prow, Bhutto, Yerrapureddy, McLeod, Yamamoto, Reddy, Lutty (bib55) 2010; 90 Ferrer, Sureda, Batle, Tauler, Tur, Pons (bib54) 2007; 41 Rooke, Hirsch, Misra, Sidawy, Beckman, Findeiss, Golzarian, Gornik, Halperin, Jaff, Moneta, Olin, Stanley, White, White, Zierler (bib37) 2011; 58 Stoekenbroek (10.1016/j.freeradbiomed.2019.04.031_bib16) 2014; 47 Jindam (10.1016/j.freeradbiomed.2019.04.031_bib27) 2017; 5 O'Reilly (10.1016/j.freeradbiomed.2019.04.031_bib41) 2011; 12 Anderson (10.1016/j.freeradbiomed.2019.04.031_bib48) 2012; 4 Cho (10.1016/j.freeradbiomed.2019.04.031_bib52) 2002; 26 Sireesh (10.1016/j.freeradbiomed.2019.04.031_bib35) 2017; 44 Fedorko (10.1016/j.freeradbiomed.2019.04.031_bib42) 2016; 39 Boulton (10.1016/j.freeradbiomed.2019.04.031_bib9) 2008; 24 Wu (10.1016/j.freeradbiomed.2019.04.031_bib30) 2014; 28 Roeckl-Wiedmann (10.1016/j.freeradbiomed.2019.04.031_bib10) 2005; 92 Margolis (10.1016/j.freeradbiomed.2019.04.031_bib43) 2013; 36 Sen (10.1016/j.freeradbiomed.2019.04.031_bib47) 2009; vol. 17 Irawan (10.1016/j.freeradbiomed.2019.04.031_bib49) 2018; 2018 Sheffield (10.1016/j.freeradbiomed.2019.04.031_bib45) 1998; 25 Johnson (10.1016/j.freeradbiomed.2019.04.031_bib29) 2008; 1147 Wang (10.1016/j.freeradbiomed.2019.04.031_bib59) 2015; 16 Rooke (10.1016/j.freeradbiomed.2019.04.031_bib37) 2011; 58 Chartoumpekis (10.1016/j.freeradbiomed.2019.04.031_bib31) 2013; 9 Boykin (10.1016/j.freeradbiomed.2019.04.031_bib53) 2007; 20 Kalani (10.1016/j.freeradbiomed.2019.04.031_bib17) 2002; 16 Li (10.1016/j.freeradbiomed.2019.04.031_bib63) 2000; 275 Jimenez-Osorio (10.1016/j.freeradbiomed.2019.04.031_bib58) 2014; 15 Papapetropoulos (10.1016/j.freeradbiomed.2019.04.031_bib65) 1997; 100 Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib34) 2015; 91 Meng (10.1016/j.freeradbiomed.2019.04.031_bib18) 2016; 15 Aprioku (10.1016/j.freeradbiomed.2019.04.031_bib50) 2013; 14 Gremmels (10.1016/j.freeradbiomed.2019.04.031_bib57) 2017; 2017 Kruse (10.1016/j.freeradbiomed.2019.04.031_bib3) 2006; 24 Cimsit (10.1016/j.freeradbiomed.2019.04.031_bib11) 2009; 7 Godman (10.1016/j.freeradbiomed.2019.04.031_bib20) 2010; 1197 Kobayashi (10.1016/j.freeradbiomed.2019.04.031_bib21) 2006; 26 Ferrer (10.1016/j.freeradbiomed.2019.04.031_bib54) 2007; 41 Matsunami (10.1016/j.freeradbiomed.2019.04.031_bib8) 2010; 59 Tonelli (10.1016/j.freeradbiomed.2019.04.031_bib22) 2018; 29 Kaspar (10.1016/j.freeradbiomed.2019.04.031_bib23) 2009; 47 Mayfield (10.1016/j.freeradbiomed.2019.04.031_bib2) 2004; 27 Schruefer (10.1016/j.freeradbiomed.2019.04.031_bib62) 2005; 288 Sunkari (10.1016/j.freeradbiomed.2019.04.031_bib12) 2015; vol. 23 Game (10.1016/j.freeradbiomed.2019.04.031_bib15) 2012; 28 Hayashi (10.1016/j.freeradbiomed.2019.04.031_bib28) 2013; 61 Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib32) 2016; 24 Young (10.1016/j.freeradbiomed.2019.04.031_bib36) 1994; 17 Rowley (10.1016/j.freeradbiomed.2019.04.031_bib51) 2012; 61 Kweider (10.1016/j.freeradbiomed.2019.04.031_bib56) 2011; 286 Pham (10.1016/j.freeradbiomed.2019.04.031_bib38) 2008; 134 Castilla (10.1016/j.freeradbiomed.2019.04.031_bib46) 2012; 1 Thom (10.1016/j.freeradbiomed.2019.04.031_bib5) 2011; 127 Bao (10.1016/j.freeradbiomed.2019.04.031_bib61) 2009; 153 Kolluru (10.1016/j.freeradbiomed.2019.04.031_bib60) 2012; 2012 Godman (10.1016/j.freeradbiomed.2019.04.031_bib19) 2010; 15 Uno (10.1016/j.freeradbiomed.2019.04.031_bib55) 2010; 90 Gill (10.1016/j.freeradbiomed.2019.04.031_bib7) 2004; 97 Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib33) 2014; 171 Turpaev (10.1016/j.freeradbiomed.2019.04.031_bib24) 2013; 78 Warriner (10.1016/j.freeradbiomed.2019.04.031_bib6) 2012; 39 Green (10.1016/j.freeradbiomed.2019.04.031_bib39) 1995; 1 Johnson (10.1016/j.freeradbiomed.2019.04.031_bib66) 2014; 3 Londahl (10.1016/j.freeradbiomed.2019.04.031_bib4) 2013; 97 Karadurmus (10.1016/j.freeradbiomed.2019.04.031_bib67) 2010; 61 Sureda (10.1016/j.freeradbiomed.2019.04.031_bib13) 2016; 11 Long (10.1016/j.freeradbiomed.2019.04.031_bib26) 2016; 65 Bakker (10.1016/j.freeradbiomed.2019.04.031_bib14) 2000; 16 Chen (10.1016/j.freeradbiomed.2019.04.031_bib40) 2017; 44 Sireesh (10.1016/j.freeradbiomed.2019.04.031_bib25) 2018; 8 Londahl (10.1016/j.freeradbiomed.2019.04.031_bib44) 2011; 28 Singh (10.1016/j.freeradbiomed.2019.04.031_bib1) 2005; 293 Frank (10.1016/j.freeradbiomed.2019.04.031_bib64) 2002; 61 |
References_xml | – volume: 8 start-page: 5126 year: 2018 ident: bib25 article-title: Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus publication-title: Sci. Rep. – volume: 44 start-page: 11 year: 2017 end-page: 21 ident: bib35 article-title: Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade publication-title: J. Nutr. Biochem. – volume: 41 start-page: 274 year: 2007 end-page: 281 ident: bib54 article-title: Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils publication-title: Free Radic. Res. – volume: 14 start-page: 158 year: 2013 end-page: 172 ident: bib50 article-title: Pharmacology of free radicals and the impact of reactive oxygen species on the testis publication-title: J. Reproduction Infertil. – volume: 28 start-page: 708 year: 2014 end-page: 722 ident: bib30 article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis publication-title: Genes Dev. – volume: 1 start-page: 225 year: 2012 end-page: 230 ident: bib46 article-title: Oxygen: implications for wound healing publication-title: Adv. Wound Care – volume: 286 start-page: 42863 year: 2011 end-page: 42872 ident: bib56 article-title: Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia publication-title: J. Biol. Chem. – volume: 25 start-page: 179 year: 1998 end-page: 188 ident: bib45 article-title: Measuring tissue oxygen tension: a review, Undersea & hyperbaric medicine publication-title: J. Undersea Hyper. Med. Soc. Inc – volume: 20 start-page: 382 year: 2007 end-page: 388 ident: bib53 article-title: Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study publication-title: Adv. Skin Wound Care – volume: 4 start-page: 84 year: 2012 end-page: 91 ident: bib48 article-title: Factors that impair wound healing publication-title: J. Am. Coll. Clin. Wound Spec. – volume: 3 start-page: 647 year: 2014 end-page: 661 ident: bib66 article-title: Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair publication-title: Adv. Wound Care – volume: 12 start-page: 69 year: 2011 ident: bib41 article-title: A prospective, double-blind, randomized, controlled clinical trial comparing standard wound care with adjunctive hyperbaric oxygen therapy (HBOT) to standard wound care only for the treatment of chronic, non-healing ulcers of the lower limb in patients with diabetes mellitus: a study protocol publication-title: Trials – volume: 1197 start-page: 178 year: 2010 end-page: 183 ident: bib20 article-title: Hyperbaric oxygen treatment induces antioxidant gene expression publication-title: Ann. N. Y. Acad. Sci. – volume: 39 start-page: 392 year: 2016 end-page: 399 ident: bib42 article-title: Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial publication-title: Diabetes Care – volume: 39 start-page: 923 year: 2012 end-page: 935 ident: bib6 article-title: The effect of hyperbaric oxygen in the enhancement of healing in selected problem wounds, Undersea & hyperbaric medicine publication-title: J. Undersea Hyper. Med. Soc. Inc – volume: 15 start-page: 431 year: 2010 end-page: 442 ident: bib19 article-title: Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells publication-title: Cell Stress Chaperones – volume: 61 start-page: 546 year: 2012 end-page: 558 ident: bib51 article-title: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control publication-title: Neurochem. Int. – volume: 28 start-page: 186 year: 2011 end-page: 190 ident: bib44 article-title: Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer publication-title: Diabet. Med. J. Br.Dis. Assoc. – volume: 92 start-page: 24 year: 2005 end-page: 32 ident: bib10 article-title: Systematic review of hyperbaric oxygen in the management of chronic wounds publication-title: Br. J. Surg. – volume: 2018 year: 2018 ident: bib49 article-title: A pilot study of short-duration hyperbaric oxygen therapy to improve HbA1c, leukocyte, and serum creatinine in patients with diabetic foot ulcer wagner 3-4 publication-title: TheScientificWorldJOURNAL – volume: 16 start-page: 153 year: 2002 end-page: 158 ident: bib17 article-title: Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. Long-term follow-up publication-title: J. Diabetes Complicat. – volume: 27 start-page: B39 year: 2004 end-page: B44 ident: bib2 article-title: The epidemiology of lower-extremity disease in veterans with diabetes publication-title: Diabetes Care – volume: 59 start-page: 97 year: 2010 end-page: 104 ident: bib8 article-title: Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure publication-title: Physiol. Res. – volume: 9 start-page: 137 year: 2013 end-page: 145 ident: bib31 article-title: New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome publication-title: Curr. Diabetes Rev. – volume: 58 start-page: 2020 year: 2011 end-page: 2045 ident: bib37 article-title: A. Society for cardiovascular, interventions, R. Society of interventional, M. Society for vascular, S. Society for vascular, 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology foundation/American Heart association Task Force on practice Guidelines publication-title: J. Am. Coll. Cardiol. – volume: 61 start-page: 882 year: 2002 end-page: 888 ident: bib64 article-title: Nitric oxide drives skin repair: novel functions of an established mediator publication-title: Kidney Int. – volume: 28 start-page: 119 year: 2012 end-page: 141 ident: bib15 article-title: A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes publication-title: Diabetes Metabol. Res. Rev. – volume: 29 start-page: 1727 year: 2018 end-page: 1745 ident: bib22 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxidants Redox Signal. – volume: 1 start-page: 515 year: 1995 end-page: 517 ident: bib39 article-title: Nitric oxide in mucosal immunity publication-title: Nat. Med. – volume: 90 start-page: 493 year: 2010 end-page: 500 ident: bib55 article-title: Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy publication-title: Exp. Eye Res. – volume: 61 start-page: 275 year: 2010 end-page: 279 ident: bib67 article-title: Potential benefits of hyperbaric oxygen therapy on atherosclerosis and glycaemic control in patients with diabetic foot publication-title: Endokrynol. Pol. – volume: 26 start-page: 175 year: 2002 end-page: 182 ident: bib52 article-title: Role of NRF2 in protection against hyperoxic lung injury in mice publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 36 start-page: 1961 year: 2013 end-page: 1966 ident: bib43 article-title: Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study publication-title: Diabetes Care – volume: 127 start-page: 131S year: 2011 end-page: 141S ident: bib5 article-title: Hyperbaric oxygen: its mechanisms and efficacy publication-title: Plast. Reconstr. Surg. – volume: 7 start-page: 1015 year: 2009 end-page: 1026 ident: bib11 article-title: Hyperbaric oxygen therapy as an anti-infective agent publication-title: Expert Rev. Anti-infect. Ther. – volume: 24 start-page: 91 year: 2006 end-page: 93 ident: bib3 article-title: Evaluation and treatment of diabetic foot ulcers publication-title: Clin. Diabetes – volume: 26 start-page: 221 year: 2006 end-page: 229 ident: bib21 article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1 publication-title: Mol. Cell Biol. – volume: 78 start-page: 111 year: 2013 end-page: 126 ident: bib24 article-title: Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles publication-title: Biochemistry – volume: 44 start-page: 536 year: 2017 end-page: 545 ident: bib40 article-title: Adjunctive hyperbaric oxygen therapy for healing of chronic diabetic foot ulcers: a randomized controlled trial publication-title: J. Wound, Ostomy Cont. Nurs. : Off. Publ. Wound, Ostomy Cont. Nurs. – volume: 288 start-page: H1186 year: 2005 end-page: H1192 ident: bib62 article-title: Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8, American journal of physiology publication-title: Heart Circ. Physiol. – volume: 15 year: 2016 ident: bib18 article-title: Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury publication-title: Genet. Mol. Res. : GMR – volume: 91 start-page: 104 year: 2015 end-page: 114 ident: bib34 article-title: The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes publication-title: Pharmacol. Res. – volume: 47 start-page: 647 year: 2014 end-page: 655 ident: bib16 article-title: Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review publication-title: Eur. J. Vasc. Endovasc. Surg. : J. Eur. Soc. Vasc. Surg. – volume: 11 year: 2016 ident: bib13 article-title: Antioxidant response of chronic wounds to hyperbaric oxygen therapy publication-title: PLoS One – volume: 2012 start-page: 918267 year: 2012 ident: bib60 article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing publication-title: Int. J. Vasc. Med. – volume: 5 start-page: 469 year: 2017 ident: bib27 article-title: Nrf2: a promising trove for diabetic wound healing publication-title: Ann. Transl. Med. – volume: 16 start-page: 16483 year: 2015 end-page: 16496 ident: bib59 article-title: Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population publication-title: Int. J. Mol. Sci. – volume: 100 start-page: 3131 year: 1997 end-page: 3139 ident: bib65 article-title: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells publication-title: J. Clin. Investig. – volume: 97 start-page: 385 year: 2004 end-page: 395 ident: bib7 article-title: Hyperbaric oxygen: its uses, mechanisms of action and outcomes publication-title: QJM : Mon. J. Assoc. Phys. – volume: 2017 start-page: 4680612 year: 2017 ident: bib57 article-title: The transcription factor Nrf2 protects angiogenic capacity of endothelial colony-forming cells in high-oxygen radical stress conditions publication-title: Stem Cell. Int. – volume: 1147 start-page: 61 year: 2008 end-page: 69 ident: bib29 article-title: The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration publication-title: Ann. N. Y. Acad. Sci. – volume: 153 start-page: 347 year: 2009 end-page: 358 ident: bib61 article-title: The role of vascular endothelial growth factor in wound healing publication-title: J. Surg. Res. – volume: 171 start-page: 1747 year: 2014 end-page: 1757 ident: bib33 article-title: Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2 publication-title: Br. J. Pharmacol. – volume: 134 start-page: 812 year: 2008 end-page: 822 ident: bib38 article-title: Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection publication-title: Gastroenterology – volume: 65 start-page: 780 year: 2016 end-page: 793 ident: bib26 article-title: An essential role of NRF2 in diabetic wound healing publication-title: Diabetes – volume: 15 start-page: 20290 year: 2014 end-page: 20305 ident: bib58 article-title: Nrf2 and redox status in prediabetic and diabetic patients publication-title: Int. J. Mol. Sci. – volume: 275 start-page: 2951 year: 2000 end-page: 2958 ident: bib63 article-title: Platelet-derived growth factor-stimulated migration of murine fibroblasts is associated with epidermal growth factor receptor expression and tyrosine phosphorylation publication-title: J. Biol. Chem. – volume: 24 start-page: 3378 year: 2016 end-page: 3386 ident: bib32 article-title: Pterostilbene-mediated Nrf2 activation: mechanistic insights on keap1:nrf2 interface publication-title: Bioorg. Med. Chem. – volume: 97 start-page: 957 year: 2013 end-page: 980 ident: bib4 article-title: Hyperbaric oxygen therapy as adjunctive treatment of diabetic foot ulcers publication-title: Med. Clin. – volume: 17 start-page: 557 year: 1994 end-page: 560 ident: bib36 article-title: The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study publication-title: Diabetes Care – volume: vol. 17 start-page: 1 year: 2009 end-page: 18 ident: bib47 article-title: Wound Healing Essentials: Let There Be Oxygen publication-title: Wound Repair Regen. – volume: 293 start-page: 217 year: 2005 end-page: 228 ident: bib1 article-title: Preventing foot ulcers in patients with diabetes publication-title: Jama – volume: 47 start-page: 1304 year: 2009 end-page: 1309 ident: bib23 article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress publication-title: Free Radical Biol. Med. – volume: 24 start-page: S3 year: 2008 end-page: S6 ident: bib9 article-title: The diabetic foot: grand overview, epidemiology and pathogenesis publication-title: Diabetes Metabol. Res. Rev. – volume: 61 start-page: 333 year: 2013 end-page: 342 ident: bib28 article-title: The role of the Nrf2-mediated defense system in corneal epithelial wound healing publication-title: Free Radical Biol. Med. – volume: 16 start-page: S55 year: 2000 end-page: S58 ident: bib14 article-title: Hyperbaric oxygen therapy and the diabetic foot publication-title: Diabetes Metabol. Res. Rev. – volume: vol. 23 start-page: 98 year: 2015 end-page: 103 ident: bib12 publication-title: Hyperbaric Oxygen Therapy Activates Hypoxia-Inducible Factor 1 (HIF-1), Which Contributes to Improved Wound Healing in Diabetic Mice, Wound Repair and Regeneration – volume: 97 start-page: 385 issue: 7 year: 2004 ident: 10.1016/j.freeradbiomed.2019.04.031_bib7 article-title: Hyperbaric oxygen: its uses, mechanisms of action and outcomes publication-title: QJM : Mon. J. Assoc. Phys. doi: 10.1093/qjmed/hch074 – volume: 25 start-page: 179 issue: 3 year: 1998 ident: 10.1016/j.freeradbiomed.2019.04.031_bib45 article-title: Measuring tissue oxygen tension: a review, Undersea & hyperbaric medicine publication-title: J. Undersea Hyper. Med. Soc. Inc – volume: vol. 23 start-page: 98 year: 2015 ident: 10.1016/j.freeradbiomed.2019.04.031_bib12 – volume: 26 start-page: 221 issue: 1 year: 2006 ident: 10.1016/j.freeradbiomed.2019.04.031_bib21 article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.26.1.221-229.2006 – volume: 28 start-page: 186 issue: 2 year: 2011 ident: 10.1016/j.freeradbiomed.2019.04.031_bib44 article-title: Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer publication-title: Diabet. Med. J. Br.Dis. Assoc. doi: 10.1111/j.1464-5491.2010.03185.x – volume: 58 start-page: 2020 issue: 19 year: 2011 ident: 10.1016/j.freeradbiomed.2019.04.031_bib37 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2011.08.023 – volume: 41 start-page: 274 issue: 3 year: 2007 ident: 10.1016/j.freeradbiomed.2019.04.031_bib54 article-title: Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils publication-title: Free Radic. Res. doi: 10.1080/10715760601080371 – volume: 15 start-page: 431 issue: 4 year: 2010 ident: 10.1016/j.freeradbiomed.2019.04.031_bib19 article-title: Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells publication-title: Cell Stress Chaperones doi: 10.1007/s12192-009-0159-0 – volume: 15 issue: 1 year: 2016 ident: 10.1016/j.freeradbiomed.2019.04.031_bib18 article-title: Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury publication-title: Genet. Mol. Res. : GMR doi: 10.4238/gmr.15016933 – volume: 2017 start-page: 4680612 year: 2017 ident: 10.1016/j.freeradbiomed.2019.04.031_bib57 article-title: The transcription factor Nrf2 protects angiogenic capacity of endothelial colony-forming cells in high-oxygen radical stress conditions publication-title: Stem Cell. Int. – volume: 61 start-page: 546 issue: 4 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib51 article-title: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2012.02.013 – volume: 61 start-page: 882 issue: 3 year: 2002 ident: 10.1016/j.freeradbiomed.2019.04.031_bib64 article-title: Nitric oxide drives skin repair: novel functions of an established mediator publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2002.00237.x – volume: 15 start-page: 20290 issue: 11 year: 2014 ident: 10.1016/j.freeradbiomed.2019.04.031_bib58 article-title: Nrf2 and redox status in prediabetic and diabetic patients publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151120290 – volume: 27 start-page: B39 issue: Suppl 2 year: 2004 ident: 10.1016/j.freeradbiomed.2019.04.031_bib2 article-title: The epidemiology of lower-extremity disease in veterans with diabetes publication-title: Diabetes Care doi: 10.2337/diacare.27.suppl_2.B39 – volume: 97 start-page: 957 issue: 5 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib4 article-title: Hyperbaric oxygen therapy as adjunctive treatment of diabetic foot ulcers publication-title: Med. Clin. – volume: 61 start-page: 333 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib28 article-title: The role of the Nrf2-mediated defense system in corneal epithelial wound healing publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2013.04.008 – volume: 17 start-page: 557 issue: 6 year: 1994 ident: 10.1016/j.freeradbiomed.2019.04.031_bib36 article-title: The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study publication-title: Diabetes Care doi: 10.2337/diacare.17.6.557 – volume: 11 issue: 9 year: 2016 ident: 10.1016/j.freeradbiomed.2019.04.031_bib13 article-title: Antioxidant response of chronic wounds to hyperbaric oxygen therapy publication-title: PLoS One doi: 10.1371/journal.pone.0163371 – volume: 24 start-page: 91 issue: 2 year: 2006 ident: 10.1016/j.freeradbiomed.2019.04.031_bib3 article-title: Evaluation and treatment of diabetic foot ulcers publication-title: Clin. Diabetes doi: 10.2337/diaclin.24.2.91 – volume: 24 start-page: 3378 issue: 16 year: 2016 ident: 10.1016/j.freeradbiomed.2019.04.031_bib32 article-title: Pterostilbene-mediated Nrf2 activation: mechanistic insights on keap1:nrf2 interface publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2016.05.011 – volume: 61 start-page: 275 issue: 3 year: 2010 ident: 10.1016/j.freeradbiomed.2019.04.031_bib67 article-title: Potential benefits of hyperbaric oxygen therapy on atherosclerosis and glycaemic control in patients with diabetic foot publication-title: Endokrynol. Pol. – volume: 5 start-page: 469 issue: 23 year: 2017 ident: 10.1016/j.freeradbiomed.2019.04.031_bib27 article-title: Nrf2: a promising trove for diabetic wound healing publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.09.03 – volume: 91 start-page: 104 year: 2015 ident: 10.1016/j.freeradbiomed.2019.04.031_bib34 article-title: The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2014.10.004 – volume: 100 start-page: 3131 issue: 12 year: 1997 ident: 10.1016/j.freeradbiomed.2019.04.031_bib65 article-title: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells publication-title: J. Clin. Investig. doi: 10.1172/JCI119868 – volume: 288 start-page: H1186 issue: 3 year: 2005 ident: 10.1016/j.freeradbiomed.2019.04.031_bib62 article-title: Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8, American journal of physiology publication-title: Heart Circ. Physiol. doi: 10.1152/ajpheart.00237.2004 – volume: 44 start-page: 11 year: 2017 ident: 10.1016/j.freeradbiomed.2019.04.031_bib35 article-title: Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2017.02.015 – volume: 2012 start-page: 918267 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib60 article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing publication-title: Int. J. Vasc. Med. – volume: 20 start-page: 382 issue: 7 year: 2007 ident: 10.1016/j.freeradbiomed.2019.04.031_bib53 article-title: Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study publication-title: Adv. Skin Wound Care doi: 10.1097/01.ASW.0000280198.81130.d5 – volume: 24 start-page: S3 issue: Suppl 1 year: 2008 ident: 10.1016/j.freeradbiomed.2019.04.031_bib9 article-title: The diabetic foot: grand overview, epidemiology and pathogenesis publication-title: Diabetes Metabol. Res. Rev. doi: 10.1002/dmrr.833 – volume: 1197 start-page: 178 year: 2010 ident: 10.1016/j.freeradbiomed.2019.04.031_bib20 article-title: Hyperbaric oxygen treatment induces antioxidant gene expression publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.05393.x – volume: 4 start-page: 84 issue: 4 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib48 article-title: Factors that impair wound healing publication-title: J. Am. Coll. Clin. Wound Spec. doi: 10.1016/j.jccw.2014.03.001 – volume: 171 start-page: 1747 issue: 7 year: 2014 ident: 10.1016/j.freeradbiomed.2019.04.031_bib33 article-title: Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2 publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12577 – volume: 293 start-page: 217 issue: 2 year: 2005 ident: 10.1016/j.freeradbiomed.2019.04.031_bib1 article-title: Preventing foot ulcers in patients with diabetes publication-title: Jama doi: 10.1001/jama.293.2.217 – volume: 1 start-page: 515 issue: 6 year: 1995 ident: 10.1016/j.freeradbiomed.2019.04.031_bib39 article-title: Nitric oxide in mucosal immunity publication-title: Nat. Med. doi: 10.1038/nm0695-515 – volume: 39 start-page: 392 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2019.04.031_bib42 article-title: Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial publication-title: Diabetes Care doi: 10.2337/dc15-2001 – volume: 47 start-page: 1304 issue: 9 year: 2009 ident: 10.1016/j.freeradbiomed.2019.04.031_bib23 article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2009.07.035 – volume: 65 start-page: 780 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2019.04.031_bib26 article-title: An essential role of NRF2 in diabetic wound healing publication-title: Diabetes doi: 10.2337/db15-0564 – volume: 16 start-page: S55 issue: Suppl 1 year: 2000 ident: 10.1016/j.freeradbiomed.2019.04.031_bib14 article-title: Hyperbaric oxygen therapy and the diabetic foot publication-title: Diabetes Metabol. Res. Rev. doi: 10.1002/1520-7560(200009/10)16:1+<::AID-DMRR132>3.0.CO;2-T – volume: 14 start-page: 158 issue: 4 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib50 article-title: Pharmacology of free radicals and the impact of reactive oxygen species on the testis publication-title: J. Reproduction Infertil. – volume: 3 start-page: 647 issue: 10 year: 2014 ident: 10.1016/j.freeradbiomed.2019.04.031_bib66 article-title: Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0517 – volume: 26 start-page: 175 issue: 2 year: 2002 ident: 10.1016/j.freeradbiomed.2019.04.031_bib52 article-title: Role of NRF2 in protection against hyperoxic lung injury in mice publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.26.2.4501 – volume: 59 start-page: 97 issue: 1 year: 2010 ident: 10.1016/j.freeradbiomed.2019.04.031_bib8 article-title: Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure publication-title: Physiol. Res. doi: 10.33549/physiolres.931711 – volume: 29 start-page: 1727 issue: 17 year: 2018 ident: 10.1016/j.freeradbiomed.2019.04.031_bib22 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2017.7342 – volume: 9 start-page: 137 issue: 2 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib31 article-title: New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome publication-title: Curr. Diabetes Rev. – volume: 275 start-page: 2951 issue: 4 year: 2000 ident: 10.1016/j.freeradbiomed.2019.04.031_bib63 article-title: Platelet-derived growth factor-stimulated migration of murine fibroblasts is associated with epidermal growth factor receptor expression and tyrosine phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.4.2951 – volume: 8 start-page: 5126 issue: 1 year: 2018 ident: 10.1016/j.freeradbiomed.2019.04.031_bib25 article-title: Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus publication-title: Sci. Rep. doi: 10.1038/s41598-018-22913-6 – volume: 2018 year: 2018 ident: 10.1016/j.freeradbiomed.2019.04.031_bib49 article-title: A pilot study of short-duration hyperbaric oxygen therapy to improve HbA1c, leukocyte, and serum creatinine in patients with diabetic foot ulcer wagner 3-4 publication-title: TheScientificWorldJOURNAL doi: 10.1155/2018/6425857 – volume: 286 start-page: 42863 issue: 50 year: 2011 ident: 10.1016/j.freeradbiomed.2019.04.031_bib56 article-title: Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.286880 – volume: 12 start-page: 69 year: 2011 ident: 10.1016/j.freeradbiomed.2019.04.031_bib41 publication-title: Trials doi: 10.1186/1745-6215-12-69 – volume: 47 start-page: 647 issue: 6 year: 2014 ident: 10.1016/j.freeradbiomed.2019.04.031_bib16 article-title: Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review publication-title: Eur. J. Vasc. Endovasc. Surg. : J. Eur. Soc. Vasc. Surg. doi: 10.1016/j.ejvs.2014.03.005 – volume: 134 start-page: 812 issue: 3 year: 2008 ident: 10.1016/j.freeradbiomed.2019.04.031_bib38 article-title: Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.12.011 – volume: 28 start-page: 708 issue: 7 year: 2014 ident: 10.1016/j.freeradbiomed.2019.04.031_bib30 article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis publication-title: Genes Dev. doi: 10.1101/gad.238246.114 – volume: 90 start-page: 493 issue: 4 year: 2010 ident: 10.1016/j.freeradbiomed.2019.04.031_bib55 article-title: Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2009.12.012 – volume: 16 start-page: 153 issue: 2 year: 2002 ident: 10.1016/j.freeradbiomed.2019.04.031_bib17 article-title: Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. Long-term follow-up publication-title: J. Diabetes Complicat. doi: 10.1016/S1056-8727(01)00182-9 – volume: 92 start-page: 24 issue: 1 year: 2005 ident: 10.1016/j.freeradbiomed.2019.04.031_bib10 article-title: Systematic review of hyperbaric oxygen in the management of chronic wounds publication-title: Br. J. Surg. doi: 10.1002/bjs.4863 – volume: 44 start-page: 536 issue: 6 year: 2017 ident: 10.1016/j.freeradbiomed.2019.04.031_bib40 article-title: Adjunctive hyperbaric oxygen therapy for healing of chronic diabetic foot ulcers: a randomized controlled trial publication-title: J. Wound, Ostomy Cont. Nurs. : Off. Publ. Wound, Ostomy Cont. Nurs. doi: 10.1097/WON.0000000000000374 – volume: 1147 start-page: 61 year: 2008 ident: 10.1016/j.freeradbiomed.2019.04.031_bib29 article-title: The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1427.036 – volume: 127 start-page: 131S issue: Suppl 1 year: 2011 ident: 10.1016/j.freeradbiomed.2019.04.031_bib5 article-title: Hyperbaric oxygen: its mechanisms and efficacy publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0b013e3181fbe2bf – volume: 28 start-page: 119 issue: Suppl 1 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib15 article-title: A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes publication-title: Diabetes Metabol. Res. Rev. doi: 10.1002/dmrr.2246 – volume: vol. 17 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.freeradbiomed.2019.04.031_bib47 article-title: Wound Healing Essentials: Let There Be Oxygen publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2008.00436.x – volume: 7 start-page: 1015 issue: 8 year: 2009 ident: 10.1016/j.freeradbiomed.2019.04.031_bib11 article-title: Hyperbaric oxygen therapy as an anti-infective agent publication-title: Expert Rev. Anti-infect. Ther. doi: 10.1586/eri.09.76 – volume: 78 start-page: 111 issue: 2 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib24 article-title: Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles publication-title: Biochemistry – volume: 1 start-page: 225 issue: 6 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib46 article-title: Oxygen: implications for wound healing publication-title: Adv. Wound Care doi: 10.1089/wound.2011.0319 – volume: 16 start-page: 16483 issue: 7 year: 2015 ident: 10.1016/j.freeradbiomed.2019.04.031_bib59 article-title: Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160716483 – volume: 153 start-page: 347 issue: 2 year: 2009 ident: 10.1016/j.freeradbiomed.2019.04.031_bib61 article-title: The role of vascular endothelial growth factor in wound healing publication-title: J. Surg. Res. doi: 10.1016/j.jss.2008.04.023 – volume: 39 start-page: 923 issue: 5 year: 2012 ident: 10.1016/j.freeradbiomed.2019.04.031_bib6 article-title: The effect of hyperbaric oxygen in the enhancement of healing in selected problem wounds, Undersea & hyperbaric medicine publication-title: J. Undersea Hyper. Med. Soc. Inc – volume: 36 start-page: 1961 issue: 7 year: 2013 ident: 10.1016/j.freeradbiomed.2019.04.031_bib43 article-title: Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study publication-title: Diabetes Care doi: 10.2337/dc12-2160 |
SSID | ssj0004538 |
Score | 2.5292792 |
Snippet | Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 53 |
Title | Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2019.04.031 https://www.ncbi.nlm.nih.gov/pubmed/31035003 https://www.proquest.com/docview/2217493155 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xIiZeJkbZ6AbICMRb1iZxU2cPkyo01G1SX2ilvln5OItOkFSllegLf_vu7KTQB6RKe0z8Ecvn-H5n_-4O4FLGASsS4yGZF55UfuIpqQwJJElS2UOVGcvyHUaDsfw96U524Lr2hWFaZbX3uz3d7tbVm3Y1m-3ZdNq-7ajYJ_UZEwQhRcXJrHcD0vaqAbv9X38Gw1dBw21Ca67vcYP3cPFC8zJzRL61ts7uTPWKbejT0H9LUb0FRK1CujmADxWSFH032I-wg8UhNPsFWdEPK3ElLLfTHpofwp5LOblqghnZmfbYw5JZQoLphaI0Yjg3gZgWggChWLPPucCdzlJNU5YLsbzPCDAK590o7siK5fsKKi2fVrQWhfPnWh3B-Obn6HrgVbkWvIxs1IXXUznH6sPcGAJdeR5141RhFKZx5ndSFaswI8MvTTCUSBAvwgTRBJgFCsngUJ3wEzSKssBjEMowCEpDFUkSex4lBCJ8Pm2lvrPcT1vwvZ5YnVWByDkfxr2uGWd_9YZUNEtFd6QmqbRArhvPXDyO7Zr9qCWoN5aXJs2xXQfntdw1_YB8q5IUWC4fdcBGXRwSLmvBZ7cg1iPjJG5d2je__O_nv8I-Pzme8Ak0FvMlnhIaWqRn8O7bs39Wrfl_MkoLlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIh4XxPJYCuxiBOIWtUnc4HBAqhCoLNALReJm5THWFpUElVai_54ZO-kuByQkrvEjkWfi-cb-ZgbgWMYBGxLjIbkXnlR-4impDAkkSVJ5iiozluXbj3oP8s9j53EBLupYGKZVVnu_29Ptbl09aVWr2XoZDlv3bRX7ZD5jgiBkqLiY9aLkotYNWOxe3_T6_yUNtwWtub_HA5bh6B_Ny4wR-dbaBrsz1Su2qU9D_zND9RkQtQbpah3WKiQpuu5jf8ACFhuw2S3Ii36eiRNhuZ320HwDllzJydkmmIFdaY8jLJklJJheKEoj-mMTiGEhCBCKOfucG9zpLPU0ZTkR01FGgFG46Ebxl7xYvq-g1vJtRrooXDzXbAseri4HFz2vqrXgZeSjTrxTlXOuPsyNIdCV51EnThVGYRpnfjtVsQozcvzSBEOJBPEiTBBNgFmgkBwO1Q63oVGUBe6AUIZBUBqqSJLY8yghEOHzaSvNneV-2oSzemF1ViUi53oYI10zzp70B6lolopuS01SaYKcD35x-Ti-Nuy8lqD-oF6aLMfXJjis5a7pB-RblaTAcvqqA3bq4pBwWRN-OoWYfxkXcevQvrn73dcfwEpvcHerb6_7N3uwyi2OM7wPjcl4ir8IGU3S35XmvwN-Vg16 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-specific+role+of+Nrf2+in+the+treatment+of+diabetic+foot+ulcers+during+hyperbaric+oxygen+therapy&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Dhamodharan%2C+Umapathy&rft.au=Karan%2C+Amin&rft.au=Sireesh%2C+Dornadula&rft.au=Vaishnavi%2C+Alladi&rft.date=2019-07-01&rft.eissn=1873-4596&rft.volume=138&rft.spage=53&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2019.04.031&rft_id=info%3Apmid%2F31035003&rft.externalDocID=31035003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |