Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy

Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing pr...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 138; pp. 53 - 62
Main Authors Dhamodharan, Umapathy, Karan, Amin, Sireesh, Dornadula, Vaishnavi, Alladi, Somasundar, Arumugam, Rajesh, Kesavan, Ramkumar, Kunka Mohanram
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2019
Online AccessGet full text
ISSN0891-5849
1873-4596
1873-4596
DOI10.1016/j.freeradbiomed.2019.04.031

Cover

Abstract Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds. [Display omitted] •The tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to non-HBOT.•HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples.•HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis.•The increased levels of neutrophil attractant CXCL-8 promotes the release chemokine CCL2, a well-known mediator of neovascularization during HBO therapy.
AbstractList Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds. [Display omitted] •The tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to non-HBOT.•HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples.•HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis.•The increased levels of neutrophil attractant CXCL-8 promotes the release chemokine CCL2, a well-known mediator of neovascularization during HBO therapy.
Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.
Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis and enhanced collagen synthesis. The molecular mechanism underlying HBO therapy particularly the involvement of Nrf2 in the wound healing process was investigated in the present study. In addition, we have studied the levels of angiogenic markers in ulcer tissues and their correlation with Nrf2 during HBO therapy compared with standard therapy (Non-HBO) for DFU. A total of 32 Patients were recruited and randomized to standard wound care procedure alone (n = 17) or HBO therapy in combination with standard wound care procedure (n = 15) for 20 days. Our results showed that the tissue levels of Nrf2 along with its downstream targets were significantly increased in patients who underwent HBO therapy when compared to Non-HBO therapy. Further, HBO therapy induced angiogenesis as assessed by increased levels of angiogenesis markers such as EGF, VEGF, PDGF, FGF-2 and CXCL10 in the tissue samples. The expressions of eNOS and nitrite concentrations were also significantly increased in HBO therapy when compared to Non-HBO therapy subjects. Moreover, HBO therapy sensitises the macrophages to release FGF-2 and EGF thereby promotes angiogenesis. Further, it increased the levels of neutrophil attractant CXCL-8 thereby promotes the release of chemokine CCL2, a well-known mediator of neovascularization. The Pearson correlation showed that Nrf2 has a positive correlation with EGF, VEGF and PDGF. In conclusion, the findings of the present study suggest that HBO therapy promotes wound healing by increasing oxygen supply and distribution to damaged tissues, stimulating angiogenesis, decreasing inflammation, and increasing the nitrite levels. Increased levels of Nrf2 transiently regulate the expression of angiogenic genes in wound biopsies, which may result in accelerated healing of chronic wounds.
Author Vaishnavi, Alladi
Somasundar, Arumugam
Karan, Amin
Rajesh, Kesavan
Ramkumar, Kunka Mohanram
Dhamodharan, Umapathy
Sireesh, Dornadula
Author_xml – sequence: 1
  givenname: Umapathy
  surname: Dhamodharan
  fullname: Dhamodharan, Umapathy
  organization: SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
– sequence: 2
  givenname: Amin
  surname: Karan
  fullname: Karan, Amin
  organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
– sequence: 3
  givenname: Dornadula
  surname: Sireesh
  fullname: Sireesh, Dornadula
  organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
– sequence: 4
  givenname: Alladi
  surname: Vaishnavi
  fullname: Vaishnavi, Alladi
  organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
– sequence: 5
  givenname: Arumugam
  surname: Somasundar
  fullname: Somasundar, Arumugam
  organization: Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
– sequence: 6
  givenname: Kesavan
  surname: Rajesh
  fullname: Rajesh, Kesavan
  email: hycareforwound@gmail.com
  organization: Department of Podiatry, Hycare Super Speciality Hospital, MMDA Colony, Arumbakkam, Chennai, 600 106, Tamilnadu, India
– sequence: 7
  givenname: Kunka Mohanram
  surname: Ramkumar
  fullname: Ramkumar, Kunka Mohanram
  email: ramkumar.km@res.srmuniv.ac.in
  organization: SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31035003$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKctv4AssWGTYMdxYotVVbWAVMGmXVuO_dx6lInDs4OYvyfTKUiw6uot3rl3cc8ZOZnSBIS856zmjHcft3VAALR-iGkHvm4Y1zVrayb4K7LhqhdVK3V3QjZMaV5J1epTcpbzljHWSqHekFPBmZCMiQ0JdzHnBao8g4shOoppBJoC_YahoXGi5RFoQbBlB1M5PHy0A5SVDCkVuowOMFO_YJwe6ON-Bhwsrt_0a_8AT3G08_6CvA52zPD2-Z6T-5vru6sv1e33z1-vLm8rJ5QoVa-8ULwHHwLT0vtO6kFBJwbtOBuUVsL1vB8siBaY7DuwAKEB1yiQSiomzsmHY--M6ccCuZhdzA7G0U6QlmyahvetFlzKFX33jC7DOqOZMe4s7s2fbVbg0xFwmHJGCH8RzszBhNmaf0yYgwnDWrOaWNOX_6VdLLbENBW0cXxhx_WxA9bJfkZAk12EyYGPCK4Yn-KLen4DUbiwaQ
CitedBy_id crossref_primary_10_1016_j_intimp_2023_110861
crossref_primary_10_1080_00914037_2020_1838518
crossref_primary_10_1038_s41420_023_01524_9
crossref_primary_10_3389_fragi_2021_678543
crossref_primary_10_3390_jcdd11120408
crossref_primary_10_4081_ejtm_2025_12783
crossref_primary_10_3390_ijms222111754
crossref_primary_10_3390_jcm12134551
crossref_primary_10_1111_iwj_14196
crossref_primary_10_1016_j_jmmm_2020_167153
crossref_primary_10_3389_fendo_2021_744868
crossref_primary_10_1002_dmrr_3786
crossref_primary_10_1155_2020_9825028
crossref_primary_10_1007_s12192_020_01190_1
crossref_primary_10_3389_fimmu_2025_1529176
crossref_primary_10_3389_fneur_2024_1356662
crossref_primary_10_1016_j_intimp_2024_112713
crossref_primary_10_1016_j_exger_2021_111479
crossref_primary_10_1111_exd_14156
crossref_primary_10_3390_ijms25115916
crossref_primary_10_1177_17562848211023394
crossref_primary_10_1002_biof_1867
crossref_primary_10_3389_fphar_2023_1062664
crossref_primary_10_1097_MD_0000000000033962
crossref_primary_10_3390_ijms242216357
crossref_primary_10_1002_dmrr_3644
crossref_primary_10_1016_j_freeradbiomed_2020_05_018
crossref_primary_10_1111_jcmm_70310
crossref_primary_10_1111_dme_14968
crossref_primary_10_3390_ijms26031067
crossref_primary_10_3390_biom11081210
crossref_primary_10_1186_s40659_023_00444_3
crossref_primary_10_3390_biom11121827
crossref_primary_10_1007_s00011_020_01328_y
crossref_primary_10_1155_2021_1470829
crossref_primary_10_1016_j_ejphar_2020_173395
crossref_primary_10_1016_j_abb_2024_110133
crossref_primary_10_55665_troiamedj_1326387
crossref_primary_10_1016_j_mehy_2023_111212
crossref_primary_10_4103_2045_9912_311497
crossref_primary_10_1097_j_pbj_0000000000000187
crossref_primary_10_3390_antiox11102073
crossref_primary_10_31083_j_fbl2710285
crossref_primary_10_3390_biom10101466
crossref_primary_10_3390_ijms252111367
crossref_primary_10_1111_exd_15189
crossref_primary_10_1155_2022_9687925
crossref_primary_10_1111_jcmm_16597
crossref_primary_10_1111_jocd_15631
crossref_primary_10_1155_2020_8249729
crossref_primary_10_3390_biomedicines10123145
crossref_primary_10_1016_j_jcyt_2024_01_003
crossref_primary_10_1080_10715762_2021_1892090
crossref_primary_10_3390_medicina57090864
Cites_doi 10.1093/qjmed/hch074
10.1128/MCB.26.1.221-229.2006
10.1111/j.1464-5491.2010.03185.x
10.1016/j.jacc.2011.08.023
10.1080/10715760601080371
10.1007/s12192-009-0159-0
10.4238/gmr.15016933
10.1016/j.neuint.2012.02.013
10.1046/j.1523-1755.2002.00237.x
10.3390/ijms151120290
10.2337/diacare.27.suppl_2.B39
10.1016/j.freeradbiomed.2013.04.008
10.2337/diacare.17.6.557
10.1371/journal.pone.0163371
10.2337/diaclin.24.2.91
10.1016/j.bmc.2016.05.011
10.21037/atm.2017.09.03
10.1016/j.phrs.2014.10.004
10.1172/JCI119868
10.1152/ajpheart.00237.2004
10.1016/j.jnutbio.2017.02.015
10.1097/01.ASW.0000280198.81130.d5
10.1002/dmrr.833
10.1111/j.1749-6632.2009.05393.x
10.1016/j.jccw.2014.03.001
10.1111/bph.12577
10.1001/jama.293.2.217
10.1038/nm0695-515
10.2337/dc15-2001
10.1016/j.freeradbiomed.2009.07.035
10.2337/db15-0564
10.1002/1520-7560(200009/10)16:1+<::AID-DMRR132>3.0.CO;2-T
10.1089/wound.2013.0517
10.1165/ajrcmb.26.2.4501
10.33549/physiolres.931711
10.1089/ars.2017.7342
10.1074/jbc.275.4.2951
10.1038/s41598-018-22913-6
10.1155/2018/6425857
10.1074/jbc.M111.286880
10.1186/1745-6215-12-69
10.1016/j.ejvs.2014.03.005
10.1053/j.gastro.2007.12.011
10.1101/gad.238246.114
10.1016/j.exer.2009.12.012
10.1016/S1056-8727(01)00182-9
10.1002/bjs.4863
10.1097/WON.0000000000000374
10.1196/annals.1427.036
10.1097/PRS.0b013e3181fbe2bf
10.1002/dmrr.2246
10.1111/j.1524-475X.2008.00436.x
10.1586/eri.09.76
10.1089/wound.2011.0319
10.3390/ijms160716483
10.1016/j.jss.2008.04.023
10.2337/dc12-2160
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.freeradbiomed.2019.04.031
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 62
ExternalDocumentID 31035003
10_1016_j_freeradbiomed_2019_04_031
S0891584919302114
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
ACLOT
EFKBS
~HD
ID FETCH-LOGICAL-c383t-78d3817edff095dd659b8e63b9c10b8983c717bae34e0576eaeef2ec28e585803
IEDL.DBID AIKHN
ISSN 0891-5849
1873-4596
IngestDate Sun Sep 28 11:41:15 EDT 2025
Wed Feb 19 02:30:18 EST 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 01:11:19 EDT 2025
Fri Feb 23 02:49:39 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2019. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-78d3817edff095dd659b8e63b9c10b8983c717bae34e0576eaeef2ec28e585803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31035003
PQID 2217493155
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2217493155
pubmed_primary_31035003
crossref_primary_10_1016_j_freeradbiomed_2019_04_031
crossref_citationtrail_10_1016_j_freeradbiomed_2019_04_031
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2019_04_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Londahl, Landin-Olsson, Katzman (bib44) 2011; 28
Anderson, Hamm (bib48) 2012; 4
Aprioku (bib50) 2013; 14
Sureda, Batle, Martorell, Capo, Tejada, Tur, Pons (bib13) 2016; 11
Cimsit, Uzun, Yildiz (bib11) 2009; 7
Chartoumpekis, Kensler (bib31) 2013; 9
Kolluru, Bir, Kevil (bib60) 2012; 2012
Karadurmus, Sahin, Tasci, Naharci, Ozturk, Ilbasmis, Dulkadir, Sen, Saglam (bib67) 2010; 61
Bakker (bib14) 2000; 16
Li, Kim, Bertics (bib63) 2000; 275
Sheffield (bib45) 1998; 25
Roeckl-Wiedmann, Bennett, Kranke (bib10) 2005; 92
O'Reilly, Linden, Fedorko, Tarride, Jones, Bowen, Goeree (bib41) 2011; 12
Frank, Kampfer, Wetzler, Pfeilschifter (bib64) 2002; 61
Long, Rojo de la Vega, Wen, Bharara, Jiang, Zhang, Zhou, Wong, Wondrak, Zheng, Zhang (bib26) 2016; 65
Turpaev (bib24) 2013; 78
Bao, Kodra, Tomic-Canic, Golinko, Ehrlich, Brem (bib61) 2009; 153
Londahl (bib4) 2013; 97
Godman, Chheda, Hightower, Perdrizet, Shin, Giardina (bib19) 2010; 15
Boykin, Baylis (bib53) 2007; 20
Gill, Bell (bib7) 2004; 97
Kaspar, Niture, Jaiswal (bib23) 2009; 47
Jindam, Yerra, Kumar (bib27) 2017; 5
Margolis, Gupta, Hoffstad, Papdopoulos, Glick, Thom, Mitra (bib43) 2013; 36
Kalani, Jorneskog, Naderi, Lind, Brismar (bib17) 2002; 16
Cho, Jedlicka, Reddy, Kensler, Yamamoto, Zhang, Kleeberger (bib52) 2002; 26
Kruse, Edelman (bib3) 2006; 24
Gremmels, de Jong, Hazenbrink, Fledderus, Verhaar (bib57) 2017; 2017
Stoekenbroek, Santema, Legemate, Ubbink, van den Brink, Koelemay (bib16) 2014; 47
Green (bib39) 1995; 1
Castilla, Liu, Velazquez (bib46) 2012; 1
Fedorko, Bowen, Jones, Oreopoulos, Goeree, Hopkins, O'Reilly (bib42) 2016; 39
Johnson, Wilgus (bib66) 2014; 3
Warriner, Hopf (bib6) 2012; 39
Rowley, Madsen, Schousboe, Steve White (bib51) 2012; 61
Singh, Armstrong, Lipsky (bib1) 2005; 293
Bhakkiyalakshmi, Sireesh, Rajaguru, Paulmurugan, Ramkumar (bib34) 2015; 91
Bhakkiyalakshmi, Dineshkumar, Karthik, Sireesh, Hopper, Paulmurugan, Ramkumar (bib32) 2016; 24
Sireesh, Ganesh, Dhamodharan, Sakthivadivel, Sivasubramanian, Gunasekaran, Ramkumar (bib35) 2017; 44
Thom (bib5) 2011; 127
Boulton (bib9) 2008; 24
Game, Hinchliffe, Apelqvist, Armstrong, Bakker, Hartemann, Londahl, Price, Jeffcoate (bib15) 2012; 28
Johnson, Johnson, Kraft, Calkins, Jakel, Vargas, Chen (bib29) 2008; 1147
Wu, Zhao, Gao, Tan, Yagishita, Nakajima, Wong, Chapman, Fang, Zhang (bib30) 2014; 28
Schruefer, Lutze, Schymeinsky, Walzog (bib62) 2005; 288
Sen (bib47) 2009; vol. 17
Chen, Wu, Hsu, Hsieh, Chou (bib40) 2017; 44
Irawan, Semadi, Widiana (bib49) 2018; 2018
Matsunami, Sato, Sato, Yukawa (bib8) 2010; 59
Wang, Chen, Liu, Ouyang, Wang, Bao, Liu (bib59) 2015; 16
Kobayashi, Kang, Watai, Tong, Shibata, Uchida, Yamamoto (bib21) 2006; 26
Mayfield, Reiber, Maynard, Czerniecki, Sangeorzan (bib2) 2004; 27
Hayashi, Himori, Taguchi, Ishikawa, Uesugi, Ito, Duncan, Tsujikawa, Nakazawa, Yamamoto, Nishida (bib28) 2013; 61
Young, Breddy, Veves, Boulton (bib36) 1994; 17
Godman, Joshi, Giardina, Perdrizet, Hightower (bib20) 2010; 1197
Tonelli, Chio, Tuveson (bib22) 2018; 29
Meng, Zhang, Li, Fan, Yang, Li, Guo, Pan (bib18) 2016; 15
Bhakkiyalakshmi, Shalini, Sekar, Rajaguru, Paulmurugan, Ramkumar (bib33) 2014; 171
Kweider, Fragoulis, Rosen, Pecks, Rath, Pufe, Wruck (bib56) 2011; 286
Sireesh, Dhamodharan, Ezhilarasi, Vijay, Ramkumar (bib25) 2018; 8
Papapetropoulos, Garcia-Cardena, Madri, Sessa (bib65) 1997; 100
Sunkari, Lind, Botusan, Kashif, Liu, Yla-Herttuala, Brismar, Velazquez, Catrina (bib12) 2015; vol. 23
Pham, King, Macparland, McGrath, Reddy, Bursey, Michalak (bib38) 2008; 134
Jimenez-Osorio, Picazo, Gonzalez-Reyes, Barrera-Oviedo, Rodriguez-Arellano, Pedraza-Chaverri (bib58) 2014; 15
Uno, Prow, Bhutto, Yerrapureddy, McLeod, Yamamoto, Reddy, Lutty (bib55) 2010; 90
Ferrer, Sureda, Batle, Tauler, Tur, Pons (bib54) 2007; 41
Rooke, Hirsch, Misra, Sidawy, Beckman, Findeiss, Golzarian, Gornik, Halperin, Jaff, Moneta, Olin, Stanley, White, White, Zierler (bib37) 2011; 58
Stoekenbroek (10.1016/j.freeradbiomed.2019.04.031_bib16) 2014; 47
Jindam (10.1016/j.freeradbiomed.2019.04.031_bib27) 2017; 5
O'Reilly (10.1016/j.freeradbiomed.2019.04.031_bib41) 2011; 12
Anderson (10.1016/j.freeradbiomed.2019.04.031_bib48) 2012; 4
Cho (10.1016/j.freeradbiomed.2019.04.031_bib52) 2002; 26
Sireesh (10.1016/j.freeradbiomed.2019.04.031_bib35) 2017; 44
Fedorko (10.1016/j.freeradbiomed.2019.04.031_bib42) 2016; 39
Boulton (10.1016/j.freeradbiomed.2019.04.031_bib9) 2008; 24
Wu (10.1016/j.freeradbiomed.2019.04.031_bib30) 2014; 28
Roeckl-Wiedmann (10.1016/j.freeradbiomed.2019.04.031_bib10) 2005; 92
Margolis (10.1016/j.freeradbiomed.2019.04.031_bib43) 2013; 36
Sen (10.1016/j.freeradbiomed.2019.04.031_bib47) 2009; vol. 17
Irawan (10.1016/j.freeradbiomed.2019.04.031_bib49) 2018; 2018
Sheffield (10.1016/j.freeradbiomed.2019.04.031_bib45) 1998; 25
Johnson (10.1016/j.freeradbiomed.2019.04.031_bib29) 2008; 1147
Wang (10.1016/j.freeradbiomed.2019.04.031_bib59) 2015; 16
Rooke (10.1016/j.freeradbiomed.2019.04.031_bib37) 2011; 58
Chartoumpekis (10.1016/j.freeradbiomed.2019.04.031_bib31) 2013; 9
Boykin (10.1016/j.freeradbiomed.2019.04.031_bib53) 2007; 20
Kalani (10.1016/j.freeradbiomed.2019.04.031_bib17) 2002; 16
Li (10.1016/j.freeradbiomed.2019.04.031_bib63) 2000; 275
Jimenez-Osorio (10.1016/j.freeradbiomed.2019.04.031_bib58) 2014; 15
Papapetropoulos (10.1016/j.freeradbiomed.2019.04.031_bib65) 1997; 100
Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib34) 2015; 91
Meng (10.1016/j.freeradbiomed.2019.04.031_bib18) 2016; 15
Aprioku (10.1016/j.freeradbiomed.2019.04.031_bib50) 2013; 14
Gremmels (10.1016/j.freeradbiomed.2019.04.031_bib57) 2017; 2017
Kruse (10.1016/j.freeradbiomed.2019.04.031_bib3) 2006; 24
Cimsit (10.1016/j.freeradbiomed.2019.04.031_bib11) 2009; 7
Godman (10.1016/j.freeradbiomed.2019.04.031_bib20) 2010; 1197
Kobayashi (10.1016/j.freeradbiomed.2019.04.031_bib21) 2006; 26
Ferrer (10.1016/j.freeradbiomed.2019.04.031_bib54) 2007; 41
Matsunami (10.1016/j.freeradbiomed.2019.04.031_bib8) 2010; 59
Tonelli (10.1016/j.freeradbiomed.2019.04.031_bib22) 2018; 29
Kaspar (10.1016/j.freeradbiomed.2019.04.031_bib23) 2009; 47
Mayfield (10.1016/j.freeradbiomed.2019.04.031_bib2) 2004; 27
Schruefer (10.1016/j.freeradbiomed.2019.04.031_bib62) 2005; 288
Sunkari (10.1016/j.freeradbiomed.2019.04.031_bib12) 2015; vol. 23
Game (10.1016/j.freeradbiomed.2019.04.031_bib15) 2012; 28
Hayashi (10.1016/j.freeradbiomed.2019.04.031_bib28) 2013; 61
Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib32) 2016; 24
Young (10.1016/j.freeradbiomed.2019.04.031_bib36) 1994; 17
Rowley (10.1016/j.freeradbiomed.2019.04.031_bib51) 2012; 61
Kweider (10.1016/j.freeradbiomed.2019.04.031_bib56) 2011; 286
Pham (10.1016/j.freeradbiomed.2019.04.031_bib38) 2008; 134
Castilla (10.1016/j.freeradbiomed.2019.04.031_bib46) 2012; 1
Thom (10.1016/j.freeradbiomed.2019.04.031_bib5) 2011; 127
Bao (10.1016/j.freeradbiomed.2019.04.031_bib61) 2009; 153
Kolluru (10.1016/j.freeradbiomed.2019.04.031_bib60) 2012; 2012
Godman (10.1016/j.freeradbiomed.2019.04.031_bib19) 2010; 15
Uno (10.1016/j.freeradbiomed.2019.04.031_bib55) 2010; 90
Gill (10.1016/j.freeradbiomed.2019.04.031_bib7) 2004; 97
Bhakkiyalakshmi (10.1016/j.freeradbiomed.2019.04.031_bib33) 2014; 171
Turpaev (10.1016/j.freeradbiomed.2019.04.031_bib24) 2013; 78
Warriner (10.1016/j.freeradbiomed.2019.04.031_bib6) 2012; 39
Green (10.1016/j.freeradbiomed.2019.04.031_bib39) 1995; 1
Johnson (10.1016/j.freeradbiomed.2019.04.031_bib66) 2014; 3
Londahl (10.1016/j.freeradbiomed.2019.04.031_bib4) 2013; 97
Karadurmus (10.1016/j.freeradbiomed.2019.04.031_bib67) 2010; 61
Sureda (10.1016/j.freeradbiomed.2019.04.031_bib13) 2016; 11
Long (10.1016/j.freeradbiomed.2019.04.031_bib26) 2016; 65
Bakker (10.1016/j.freeradbiomed.2019.04.031_bib14) 2000; 16
Chen (10.1016/j.freeradbiomed.2019.04.031_bib40) 2017; 44
Sireesh (10.1016/j.freeradbiomed.2019.04.031_bib25) 2018; 8
Londahl (10.1016/j.freeradbiomed.2019.04.031_bib44) 2011; 28
Singh (10.1016/j.freeradbiomed.2019.04.031_bib1) 2005; 293
Frank (10.1016/j.freeradbiomed.2019.04.031_bib64) 2002; 61
References_xml – volume: 8
  start-page: 5126
  year: 2018
  ident: bib25
  article-title: Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus
  publication-title: Sci. Rep.
– volume: 44
  start-page: 11
  year: 2017
  end-page: 21
  ident: bib35
  article-title: Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade
  publication-title: J. Nutr. Biochem.
– volume: 41
  start-page: 274
  year: 2007
  end-page: 281
  ident: bib54
  article-title: Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils
  publication-title: Free Radic. Res.
– volume: 14
  start-page: 158
  year: 2013
  end-page: 172
  ident: bib50
  article-title: Pharmacology of free radicals and the impact of reactive oxygen species on the testis
  publication-title: J. Reproduction Infertil.
– volume: 28
  start-page: 708
  year: 2014
  end-page: 722
  ident: bib30
  article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
  publication-title: Genes Dev.
– volume: 1
  start-page: 225
  year: 2012
  end-page: 230
  ident: bib46
  article-title: Oxygen: implications for wound healing
  publication-title: Adv. Wound Care
– volume: 286
  start-page: 42863
  year: 2011
  end-page: 42872
  ident: bib56
  article-title: Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 179
  year: 1998
  end-page: 188
  ident: bib45
  article-title: Measuring tissue oxygen tension: a review, Undersea & hyperbaric medicine
  publication-title: J. Undersea Hyper. Med. Soc. Inc
– volume: 20
  start-page: 382
  year: 2007
  end-page: 388
  ident: bib53
  article-title: Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study
  publication-title: Adv. Skin Wound Care
– volume: 4
  start-page: 84
  year: 2012
  end-page: 91
  ident: bib48
  article-title: Factors that impair wound healing
  publication-title: J. Am. Coll. Clin. Wound Spec.
– volume: 3
  start-page: 647
  year: 2014
  end-page: 661
  ident: bib66
  article-title: Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair
  publication-title: Adv. Wound Care
– volume: 12
  start-page: 69
  year: 2011
  ident: bib41
  article-title: A prospective, double-blind, randomized, controlled clinical trial comparing standard wound care with adjunctive hyperbaric oxygen therapy (HBOT) to standard wound care only for the treatment of chronic, non-healing ulcers of the lower limb in patients with diabetes mellitus: a study protocol
  publication-title: Trials
– volume: 1197
  start-page: 178
  year: 2010
  end-page: 183
  ident: bib20
  article-title: Hyperbaric oxygen treatment induces antioxidant gene expression
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 39
  start-page: 392
  year: 2016
  end-page: 399
  ident: bib42
  article-title: Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial
  publication-title: Diabetes Care
– volume: 39
  start-page: 923
  year: 2012
  end-page: 935
  ident: bib6
  article-title: The effect of hyperbaric oxygen in the enhancement of healing in selected problem wounds, Undersea & hyperbaric medicine
  publication-title: J. Undersea Hyper. Med. Soc. Inc
– volume: 15
  start-page: 431
  year: 2010
  end-page: 442
  ident: bib19
  article-title: Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells
  publication-title: Cell Stress Chaperones
– volume: 61
  start-page: 546
  year: 2012
  end-page: 558
  ident: bib51
  article-title: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control
  publication-title: Neurochem. Int.
– volume: 28
  start-page: 186
  year: 2011
  end-page: 190
  ident: bib44
  article-title: Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer
  publication-title: Diabet. Med. J. Br.Dis. Assoc.
– volume: 92
  start-page: 24
  year: 2005
  end-page: 32
  ident: bib10
  article-title: Systematic review of hyperbaric oxygen in the management of chronic wounds
  publication-title: Br. J. Surg.
– volume: 2018
  year: 2018
  ident: bib49
  article-title: A pilot study of short-duration hyperbaric oxygen therapy to improve HbA1c, leukocyte, and serum creatinine in patients with diabetic foot ulcer wagner 3-4
  publication-title: TheScientificWorldJOURNAL
– volume: 16
  start-page: 153
  year: 2002
  end-page: 158
  ident: bib17
  article-title: Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. Long-term follow-up
  publication-title: J. Diabetes Complicat.
– volume: 27
  start-page: B39
  year: 2004
  end-page: B44
  ident: bib2
  article-title: The epidemiology of lower-extremity disease in veterans with diabetes
  publication-title: Diabetes Care
– volume: 59
  start-page: 97
  year: 2010
  end-page: 104
  ident: bib8
  article-title: Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure
  publication-title: Physiol. Res.
– volume: 9
  start-page: 137
  year: 2013
  end-page: 145
  ident: bib31
  article-title: New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome
  publication-title: Curr. Diabetes Rev.
– volume: 58
  start-page: 2020
  year: 2011
  end-page: 2045
  ident: bib37
  article-title: A. Society for cardiovascular, interventions, R. Society of interventional, M. Society for vascular, S. Society for vascular, 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology foundation/American Heart association Task Force on practice Guidelines
  publication-title: J. Am. Coll. Cardiol.
– volume: 61
  start-page: 882
  year: 2002
  end-page: 888
  ident: bib64
  article-title: Nitric oxide drives skin repair: novel functions of an established mediator
  publication-title: Kidney Int.
– volume: 28
  start-page: 119
  year: 2012
  end-page: 141
  ident: bib15
  article-title: A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes
  publication-title: Diabetes Metabol. Res. Rev.
– volume: 29
  start-page: 1727
  year: 2018
  end-page: 1745
  ident: bib22
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxidants Redox Signal.
– volume: 1
  start-page: 515
  year: 1995
  end-page: 517
  ident: bib39
  article-title: Nitric oxide in mucosal immunity
  publication-title: Nat. Med.
– volume: 90
  start-page: 493
  year: 2010
  end-page: 500
  ident: bib55
  article-title: Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy
  publication-title: Exp. Eye Res.
– volume: 61
  start-page: 275
  year: 2010
  end-page: 279
  ident: bib67
  article-title: Potential benefits of hyperbaric oxygen therapy on atherosclerosis and glycaemic control in patients with diabetic foot
  publication-title: Endokrynol. Pol.
– volume: 26
  start-page: 175
  year: 2002
  end-page: 182
  ident: bib52
  article-title: Role of NRF2 in protection against hyperoxic lung injury in mice
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 36
  start-page: 1961
  year: 2013
  end-page: 1966
  ident: bib43
  article-title: Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study
  publication-title: Diabetes Care
– volume: 127
  start-page: 131S
  year: 2011
  end-page: 141S
  ident: bib5
  article-title: Hyperbaric oxygen: its mechanisms and efficacy
  publication-title: Plast. Reconstr. Surg.
– volume: 7
  start-page: 1015
  year: 2009
  end-page: 1026
  ident: bib11
  article-title: Hyperbaric oxygen therapy as an anti-infective agent
  publication-title: Expert Rev. Anti-infect. Ther.
– volume: 24
  start-page: 91
  year: 2006
  end-page: 93
  ident: bib3
  article-title: Evaluation and treatment of diabetic foot ulcers
  publication-title: Clin. Diabetes
– volume: 26
  start-page: 221
  year: 2006
  end-page: 229
  ident: bib21
  article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
  publication-title: Mol. Cell Biol.
– volume: 78
  start-page: 111
  year: 2013
  end-page: 126
  ident: bib24
  article-title: Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles
  publication-title: Biochemistry
– volume: 44
  start-page: 536
  year: 2017
  end-page: 545
  ident: bib40
  article-title: Adjunctive hyperbaric oxygen therapy for healing of chronic diabetic foot ulcers: a randomized controlled trial
  publication-title: J. Wound, Ostomy Cont. Nurs. : Off. Publ. Wound, Ostomy Cont. Nurs.
– volume: 288
  start-page: H1186
  year: 2005
  end-page: H1192
  ident: bib62
  article-title: Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8, American journal of physiology
  publication-title: Heart Circ. Physiol.
– volume: 15
  year: 2016
  ident: bib18
  article-title: Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury
  publication-title: Genet. Mol. Res. : GMR
– volume: 91
  start-page: 104
  year: 2015
  end-page: 114
  ident: bib34
  article-title: The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes
  publication-title: Pharmacol. Res.
– volume: 47
  start-page: 647
  year: 2014
  end-page: 655
  ident: bib16
  article-title: Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review
  publication-title: Eur. J. Vasc. Endovasc. Surg. : J. Eur. Soc. Vasc. Surg.
– volume: 11
  year: 2016
  ident: bib13
  article-title: Antioxidant response of chronic wounds to hyperbaric oxygen therapy
  publication-title: PLoS One
– volume: 2012
  start-page: 918267
  year: 2012
  ident: bib60
  article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing
  publication-title: Int. J. Vasc. Med.
– volume: 5
  start-page: 469
  year: 2017
  ident: bib27
  article-title: Nrf2: a promising trove for diabetic wound healing
  publication-title: Ann. Transl. Med.
– volume: 16
  start-page: 16483
  year: 2015
  end-page: 16496
  ident: bib59
  article-title: Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population
  publication-title: Int. J. Mol. Sci.
– volume: 100
  start-page: 3131
  year: 1997
  end-page: 3139
  ident: bib65
  article-title: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells
  publication-title: J. Clin. Investig.
– volume: 97
  start-page: 385
  year: 2004
  end-page: 395
  ident: bib7
  article-title: Hyperbaric oxygen: its uses, mechanisms of action and outcomes
  publication-title: QJM : Mon. J. Assoc. Phys.
– volume: 2017
  start-page: 4680612
  year: 2017
  ident: bib57
  article-title: The transcription factor Nrf2 protects angiogenic capacity of endothelial colony-forming cells in high-oxygen radical stress conditions
  publication-title: Stem Cell. Int.
– volume: 1147
  start-page: 61
  year: 2008
  end-page: 69
  ident: bib29
  article-title: The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 153
  start-page: 347
  year: 2009
  end-page: 358
  ident: bib61
  article-title: The role of vascular endothelial growth factor in wound healing
  publication-title: J. Surg. Res.
– volume: 171
  start-page: 1747
  year: 2014
  end-page: 1757
  ident: bib33
  article-title: Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2
  publication-title: Br. J. Pharmacol.
– volume: 134
  start-page: 812
  year: 2008
  end-page: 822
  ident: bib38
  article-title: Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection
  publication-title: Gastroenterology
– volume: 65
  start-page: 780
  year: 2016
  end-page: 793
  ident: bib26
  article-title: An essential role of NRF2 in diabetic wound healing
  publication-title: Diabetes
– volume: 15
  start-page: 20290
  year: 2014
  end-page: 20305
  ident: bib58
  article-title: Nrf2 and redox status in prediabetic and diabetic patients
  publication-title: Int. J. Mol. Sci.
– volume: 275
  start-page: 2951
  year: 2000
  end-page: 2958
  ident: bib63
  article-title: Platelet-derived growth factor-stimulated migration of murine fibroblasts is associated with epidermal growth factor receptor expression and tyrosine phosphorylation
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 3378
  year: 2016
  end-page: 3386
  ident: bib32
  article-title: Pterostilbene-mediated Nrf2 activation: mechanistic insights on keap1:nrf2 interface
  publication-title: Bioorg. Med. Chem.
– volume: 97
  start-page: 957
  year: 2013
  end-page: 980
  ident: bib4
  article-title: Hyperbaric oxygen therapy as adjunctive treatment of diabetic foot ulcers
  publication-title: Med. Clin.
– volume: 17
  start-page: 557
  year: 1994
  end-page: 560
  ident: bib36
  article-title: The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study
  publication-title: Diabetes Care
– volume: vol. 17
  start-page: 1
  year: 2009
  end-page: 18
  ident: bib47
  article-title: Wound Healing Essentials: Let There Be Oxygen
  publication-title: Wound Repair Regen.
– volume: 293
  start-page: 217
  year: 2005
  end-page: 228
  ident: bib1
  article-title: Preventing foot ulcers in patients with diabetes
  publication-title: Jama
– volume: 47
  start-page: 1304
  year: 2009
  end-page: 1309
  ident: bib23
  article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress
  publication-title: Free Radical Biol. Med.
– volume: 24
  start-page: S3
  year: 2008
  end-page: S6
  ident: bib9
  article-title: The diabetic foot: grand overview, epidemiology and pathogenesis
  publication-title: Diabetes Metabol. Res. Rev.
– volume: 61
  start-page: 333
  year: 2013
  end-page: 342
  ident: bib28
  article-title: The role of the Nrf2-mediated defense system in corneal epithelial wound healing
  publication-title: Free Radical Biol. Med.
– volume: 16
  start-page: S55
  year: 2000
  end-page: S58
  ident: bib14
  article-title: Hyperbaric oxygen therapy and the diabetic foot
  publication-title: Diabetes Metabol. Res. Rev.
– volume: vol. 23
  start-page: 98
  year: 2015
  end-page: 103
  ident: bib12
  publication-title: Hyperbaric Oxygen Therapy Activates Hypoxia-Inducible Factor 1 (HIF-1), Which Contributes to Improved Wound Healing in Diabetic Mice, Wound Repair and Regeneration
– volume: 97
  start-page: 385
  issue: 7
  year: 2004
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib7
  article-title: Hyperbaric oxygen: its uses, mechanisms of action and outcomes
  publication-title: QJM : Mon. J. Assoc. Phys.
  doi: 10.1093/qjmed/hch074
– volume: 25
  start-page: 179
  issue: 3
  year: 1998
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib45
  article-title: Measuring tissue oxygen tension: a review, Undersea & hyperbaric medicine
  publication-title: J. Undersea Hyper. Med. Soc. Inc
– volume: vol. 23
  start-page: 98
  year: 2015
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib12
– volume: 26
  start-page: 221
  issue: 1
  year: 2006
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib21
  article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.26.1.221-229.2006
– volume: 28
  start-page: 186
  issue: 2
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib44
  article-title: Hyperbaric oxygen therapy improves health-related quality of life in patients with diabetes and chronic foot ulcer
  publication-title: Diabet. Med. J. Br.Dis. Assoc.
  doi: 10.1111/j.1464-5491.2010.03185.x
– volume: 58
  start-page: 2020
  issue: 19
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib37
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.08.023
– volume: 41
  start-page: 274
  issue: 3
  year: 2007
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib54
  article-title: Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760601080371
– volume: 15
  start-page: 431
  issue: 4
  year: 2010
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib19
  article-title: Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-009-0159-0
– volume: 15
  issue: 1
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib18
  article-title: Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury
  publication-title: Genet. Mol. Res. : GMR
  doi: 10.4238/gmr.15016933
– volume: 2017
  start-page: 4680612
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib57
  article-title: The transcription factor Nrf2 protects angiogenic capacity of endothelial colony-forming cells in high-oxygen radical stress conditions
  publication-title: Stem Cell. Int.
– volume: 61
  start-page: 546
  issue: 4
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib51
  article-title: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2012.02.013
– volume: 61
  start-page: 882
  issue: 3
  year: 2002
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib64
  article-title: Nitric oxide drives skin repair: novel functions of an established mediator
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2002.00237.x
– volume: 15
  start-page: 20290
  issue: 11
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib58
  article-title: Nrf2 and redox status in prediabetic and diabetic patients
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151120290
– volume: 27
  start-page: B39
  issue: Suppl 2
  year: 2004
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib2
  article-title: The epidemiology of lower-extremity disease in veterans with diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.27.suppl_2.B39
– volume: 97
  start-page: 957
  issue: 5
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib4
  article-title: Hyperbaric oxygen therapy as adjunctive treatment of diabetic foot ulcers
  publication-title: Med. Clin.
– volume: 61
  start-page: 333
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib28
  article-title: The role of the Nrf2-mediated defense system in corneal epithelial wound healing
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.04.008
– volume: 17
  start-page: 557
  issue: 6
  year: 1994
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib36
  article-title: The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study
  publication-title: Diabetes Care
  doi: 10.2337/diacare.17.6.557
– volume: 11
  issue: 9
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib13
  article-title: Antioxidant response of chronic wounds to hyperbaric oxygen therapy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0163371
– volume: 24
  start-page: 91
  issue: 2
  year: 2006
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib3
  article-title: Evaluation and treatment of diabetic foot ulcers
  publication-title: Clin. Diabetes
  doi: 10.2337/diaclin.24.2.91
– volume: 24
  start-page: 3378
  issue: 16
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib32
  article-title: Pterostilbene-mediated Nrf2 activation: mechanistic insights on keap1:nrf2 interface
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2016.05.011
– volume: 61
  start-page: 275
  issue: 3
  year: 2010
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib67
  article-title: Potential benefits of hyperbaric oxygen therapy on atherosclerosis and glycaemic control in patients with diabetic foot
  publication-title: Endokrynol. Pol.
– volume: 5
  start-page: 469
  issue: 23
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib27
  article-title: Nrf2: a promising trove for diabetic wound healing
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2017.09.03
– volume: 91
  start-page: 104
  year: 2015
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib34
  article-title: The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2014.10.004
– volume: 100
  start-page: 3131
  issue: 12
  year: 1997
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib65
  article-title: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI119868
– volume: 288
  start-page: H1186
  issue: 3
  year: 2005
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib62
  article-title: Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8, American journal of physiology
  publication-title: Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00237.2004
– volume: 44
  start-page: 11
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib35
  article-title: Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2017.02.015
– volume: 2012
  start-page: 918267
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib60
  article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing
  publication-title: Int. J. Vasc. Med.
– volume: 20
  start-page: 382
  issue: 7
  year: 2007
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib53
  article-title: Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: a preliminary study
  publication-title: Adv. Skin Wound Care
  doi: 10.1097/01.ASW.0000280198.81130.d5
– volume: 24
  start-page: S3
  issue: Suppl 1
  year: 2008
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib9
  article-title: The diabetic foot: grand overview, epidemiology and pathogenesis
  publication-title: Diabetes Metabol. Res. Rev.
  doi: 10.1002/dmrr.833
– volume: 1197
  start-page: 178
  year: 2010
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib20
  article-title: Hyperbaric oxygen treatment induces antioxidant gene expression
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.05393.x
– volume: 4
  start-page: 84
  issue: 4
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib48
  article-title: Factors that impair wound healing
  publication-title: J. Am. Coll. Clin. Wound Spec.
  doi: 10.1016/j.jccw.2014.03.001
– volume: 171
  start-page: 1747
  issue: 7
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib33
  article-title: Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12577
– volume: 293
  start-page: 217
  issue: 2
  year: 2005
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib1
  article-title: Preventing foot ulcers in patients with diabetes
  publication-title: Jama
  doi: 10.1001/jama.293.2.217
– volume: 1
  start-page: 515
  issue: 6
  year: 1995
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib39
  article-title: Nitric oxide in mucosal immunity
  publication-title: Nat. Med.
  doi: 10.1038/nm0695-515
– volume: 39
  start-page: 392
  issue: 3
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib42
  article-title: Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2001
– volume: 47
  start-page: 1304
  issue: 9
  year: 2009
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib23
  article-title: Nrf2:INrf2 (Keap1) signaling in oxidative stress
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.07.035
– volume: 65
  start-page: 780
  issue: 3
  year: 2016
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib26
  article-title: An essential role of NRF2 in diabetic wound healing
  publication-title: Diabetes
  doi: 10.2337/db15-0564
– volume: 16
  start-page: S55
  issue: Suppl 1
  year: 2000
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib14
  article-title: Hyperbaric oxygen therapy and the diabetic foot
  publication-title: Diabetes Metabol. Res. Rev.
  doi: 10.1002/1520-7560(200009/10)16:1+<::AID-DMRR132>3.0.CO;2-T
– volume: 14
  start-page: 158
  issue: 4
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib50
  article-title: Pharmacology of free radicals and the impact of reactive oxygen species on the testis
  publication-title: J. Reproduction Infertil.
– volume: 3
  start-page: 647
  issue: 10
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib66
  article-title: Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0517
– volume: 26
  start-page: 175
  issue: 2
  year: 2002
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib52
  article-title: Role of NRF2 in protection against hyperoxic lung injury in mice
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/ajrcmb.26.2.4501
– volume: 59
  start-page: 97
  issue: 1
  year: 2010
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib8
  article-title: Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.931711
– volume: 29
  start-page: 1727
  issue: 17
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib22
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2017.7342
– volume: 9
  start-page: 137
  issue: 2
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib31
  article-title: New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome
  publication-title: Curr. Diabetes Rev.
– volume: 275
  start-page: 2951
  issue: 4
  year: 2000
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib63
  article-title: Platelet-derived growth factor-stimulated migration of murine fibroblasts is associated with epidermal growth factor receptor expression and tyrosine phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.4.2951
– volume: 8
  start-page: 5126
  issue: 1
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib25
  article-title: Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22913-6
– volume: 2018
  year: 2018
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib49
  article-title: A pilot study of short-duration hyperbaric oxygen therapy to improve HbA1c, leukocyte, and serum creatinine in patients with diabetic foot ulcer wagner 3-4
  publication-title: TheScientificWorldJOURNAL
  doi: 10.1155/2018/6425857
– volume: 286
  start-page: 42863
  issue: 50
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib56
  article-title: Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.286880
– volume: 12
  start-page: 69
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib41
  publication-title: Trials
  doi: 10.1186/1745-6215-12-69
– volume: 47
  start-page: 647
  issue: 6
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib16
  article-title: Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review
  publication-title: Eur. J. Vasc. Endovasc. Surg. : J. Eur. Soc. Vasc. Surg.
  doi: 10.1016/j.ejvs.2014.03.005
– volume: 134
  start-page: 812
  issue: 3
  year: 2008
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib38
  article-title: Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.12.011
– volume: 28
  start-page: 708
  issue: 7
  year: 2014
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib30
  article-title: Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.238246.114
– volume: 90
  start-page: 493
  issue: 4
  year: 2010
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib55
  article-title: Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2009.12.012
– volume: 16
  start-page: 153
  issue: 2
  year: 2002
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib17
  article-title: Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers. Long-term follow-up
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/S1056-8727(01)00182-9
– volume: 92
  start-page: 24
  issue: 1
  year: 2005
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib10
  article-title: Systematic review of hyperbaric oxygen in the management of chronic wounds
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.4863
– volume: 44
  start-page: 536
  issue: 6
  year: 2017
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib40
  article-title: Adjunctive hyperbaric oxygen therapy for healing of chronic diabetic foot ulcers: a randomized controlled trial
  publication-title: J. Wound, Ostomy Cont. Nurs. : Off. Publ. Wound, Ostomy Cont. Nurs.
  doi: 10.1097/WON.0000000000000374
– volume: 1147
  start-page: 61
  year: 2008
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib29
  article-title: The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1427.036
– volume: 127
  start-page: 131S
  issue: Suppl 1
  year: 2011
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib5
  article-title: Hyperbaric oxygen: its mechanisms and efficacy
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/PRS.0b013e3181fbe2bf
– volume: 28
  start-page: 119
  issue: Suppl 1
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib15
  article-title: A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes
  publication-title: Diabetes Metabol. Res. Rev.
  doi: 10.1002/dmrr.2246
– volume: vol. 17
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib47
  article-title: Wound Healing Essentials: Let There Be Oxygen
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2008.00436.x
– volume: 7
  start-page: 1015
  issue: 8
  year: 2009
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib11
  article-title: Hyperbaric oxygen therapy as an anti-infective agent
  publication-title: Expert Rev. Anti-infect. Ther.
  doi: 10.1586/eri.09.76
– volume: 78
  start-page: 111
  issue: 2
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib24
  article-title: Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles
  publication-title: Biochemistry
– volume: 1
  start-page: 225
  issue: 6
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib46
  article-title: Oxygen: implications for wound healing
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2011.0319
– volume: 16
  start-page: 16483
  issue: 7
  year: 2015
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib59
  article-title: Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160716483
– volume: 153
  start-page: 347
  issue: 2
  year: 2009
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib61
  article-title: The role of vascular endothelial growth factor in wound healing
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2008.04.023
– volume: 39
  start-page: 923
  issue: 5
  year: 2012
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib6
  article-title: The effect of hyperbaric oxygen in the enhancement of healing in selected problem wounds, Undersea & hyperbaric medicine
  publication-title: J. Undersea Hyper. Med. Soc. Inc
– volume: 36
  start-page: 1961
  issue: 7
  year: 2013
  ident: 10.1016/j.freeradbiomed.2019.04.031_bib43
  article-title: Lack of effectiveness of hyperbaric oxygen therapy for the treatment of diabetic foot ulcer and the prevention of amputation: a cohort study
  publication-title: Diabetes Care
  doi: 10.2337/dc12-2160
SSID ssj0004538
Score 2.5292792
Snippet Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic foot ulcer (DFU) treatment due to its antimicrobial effect, increased angiogenesis...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 53
Title Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy
URI https://dx.doi.org/10.1016/j.freeradbiomed.2019.04.031
https://www.ncbi.nlm.nih.gov/pubmed/31035003
https://www.proquest.com/docview/2217493155
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xIiZeJkbZ6AbICMRb1iZxU2cPkyo01G1SX2ilvln5OItOkFSllegLf_vu7KTQB6RKe0z8Ecvn-H5n_-4O4FLGASsS4yGZF55UfuIpqQwJJElS2UOVGcvyHUaDsfw96U524Lr2hWFaZbX3uz3d7tbVm3Y1m-3ZdNq-7ajYJ_UZEwQhRcXJrHcD0vaqAbv9X38Gw1dBw21Ca67vcYP3cPFC8zJzRL61ts7uTPWKbejT0H9LUb0FRK1CujmADxWSFH032I-wg8UhNPsFWdEPK3ElLLfTHpofwp5LOblqghnZmfbYw5JZQoLphaI0Yjg3gZgWggChWLPPucCdzlJNU5YLsbzPCDAK590o7siK5fsKKi2fVrQWhfPnWh3B-Obn6HrgVbkWvIxs1IXXUznH6sPcGAJdeR5141RhFKZx5ndSFaswI8MvTTCUSBAvwgTRBJgFCsngUJ3wEzSKssBjEMowCEpDFUkSex4lBCJ8Pm2lvrPcT1vwvZ5YnVWByDkfxr2uGWd_9YZUNEtFd6QmqbRArhvPXDyO7Zr9qCWoN5aXJs2xXQfntdw1_YB8q5IUWC4fdcBGXRwSLmvBZ7cg1iPjJG5d2je__O_nv8I-Pzme8Ak0FvMlnhIaWqRn8O7bs39Wrfl_MkoLlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIh4XxPJYCuxiBOIWtUnc4HBAqhCoLNALReJm5THWFpUElVai_54ZO-kuByQkrvEjkWfi-cb-ZgbgWMYBGxLjIbkXnlR-4impDAkkSVJ5iiozluXbj3oP8s9j53EBLupYGKZVVnu_29Ptbl09aVWr2XoZDlv3bRX7ZD5jgiBkqLiY9aLkotYNWOxe3_T6_yUNtwWtub_HA5bh6B_Ny4wR-dbaBrsz1Su2qU9D_zND9RkQtQbpah3WKiQpuu5jf8ACFhuw2S3Ii36eiRNhuZ320HwDllzJydkmmIFdaY8jLJklJJheKEoj-mMTiGEhCBCKOfucG9zpLPU0ZTkR01FGgFG46Ebxl7xYvq-g1vJtRrooXDzXbAseri4HFz2vqrXgZeSjTrxTlXOuPsyNIdCV51EnThVGYRpnfjtVsQozcvzSBEOJBPEiTBBNgFmgkBwO1Q63oVGUBe6AUIZBUBqqSJLY8yghEOHzaSvNneV-2oSzemF1ViUi53oYI10zzp70B6lolopuS01SaYKcD35x-Ti-Nuy8lqD-oF6aLMfXJjis5a7pB-RblaTAcvqqA3bq4pBwWRN-OoWYfxkXcevQvrn73dcfwEpvcHerb6_7N3uwyi2OM7wPjcl4ir8IGU3S35XmvwN-Vg16
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-specific+role+of+Nrf2+in+the+treatment+of+diabetic+foot+ulcers+during+hyperbaric+oxygen+therapy&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Dhamodharan%2C+Umapathy&rft.au=Karan%2C+Amin&rft.au=Sireesh%2C+Dornadula&rft.au=Vaishnavi%2C+Alladi&rft.date=2019-07-01&rft.eissn=1873-4596&rft.volume=138&rft.spage=53&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2019.04.031&rft_id=info%3Apmid%2F31035003&rft.externalDocID=31035003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon