Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm

Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of...

Full description

Saved in:
Bibliographic Details
Published inAnalytical biochemistry Vol. 561-562; pp. 11 - 17
Main Authors Ju, Zhe, Wang, Shi-Yun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2018
Subjects
Online AccessGet full text
ISSN0003-2697
1096-0309
1096-0309
DOI10.1016/j.ab.2018.09.007

Cover

Abstract Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/. [Display omitted] •A novel predictor is develop to predict lipoylation sites.•The bi-profile bayes encoding is used to predict and analyze lipoylation sites.•The fuzzy SVM is adopted as classifier.•A free online service is available for prediction.
AbstractList Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/. [Display omitted] •A novel predictor is develop to predict lipoylation sites.•The bi-profile bayes encoding is used to predict and analyze lipoylation sites.•The fuzzy SVM is adopted as classifier.•A free online service is available for prediction.
Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.
Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.
Author Ju, Zhe
Wang, Shi-Yun
Author_xml – sequence: 1
  givenname: Zhe
  surname: Ju
  fullname: Ju, Zhe
  email: juzhe1120@hotmail.com
– sequence: 2
  givenname: Shi-Yun
  surname: Wang
  fullname: Wang, Shi-Yun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30218638$$D View this record in MEDLINE/PubMed
BookMark eNqNkb9v1TAUhS1URF8LOxPyyJJwb5w4DhuqgFaqBAPMluPctH7KL2ynavrX49fXLkggJkv2d46s75yxk2meiLG3CDkCyg_73LR5AahyaHKA-gXbITQyAwHNCdsBgMgK2dSn7CyEPQBiWclX7FRAgUoKtWP33z11zkY33fBhC24iPrhl3gYT3Tzx4CIFvobDc-uyxc-9G4i3ZkvXPZm4euJ0H72xj7yZOt6vDw8bD-uyzD7yO7Jx9nw09vZQboab2bt4O75mL3szBHrzdJ6zn18-_7i4zK6_fb26-HSdWaFEzGSrytqUBhUgKNmjxK60dddiSwawVLUppJFVL1DVipTosAIr2lI2fUG2FOfs_bE3_f3XSiHq0QVLw2AmmtegC6yExKKp8D9QqKDEuqgT-u4JXduROr14Nxq_6WexCZBHwPo5BE-9ti4-Ok2u3KAR9GFBvdem1YcFNTQ6LZiC8EfwufsfkY_HCCWPd468DtbRZNOwPtnX3ez-Hv4NA-GzRw
CitedBy_id crossref_primary_10_2174_1389202919666191014092843
crossref_primary_10_1016_j_measurement_2022_111032
crossref_primary_10_1155_2021_8881631
crossref_primary_10_32604_cmc_2022_021849
crossref_primary_10_1016_j_ab_2019_113494
crossref_primary_10_1109_ACCESS_2020_2991477
crossref_primary_10_1155_2019_1603867
crossref_primary_10_1016_j_tibs_2024_04_002
crossref_primary_10_2174_0929867328666210910125802
Cites_doi 10.1093/protein/gzt042
10.1093/bioinformatics/btq043
10.1016/j.biochi.2011.01.013
10.1016/j.jtbi.2013.08.013
10.1093/bioinformatics/btw380
10.1016/j.ab.2015.12.009
10.1006/jmbi.1994.1267
10.1016/j.jtbi.2018.05.006
10.1016/j.ab.2015.12.017
10.18632/oncotarget.10027
10.1016/j.jtbi.2010.12.024
10.1016/j.ab.2014.12.009
10.1039/c3mb70326f
10.1038/bjc.2015.226
10.1039/C5MB00155B
10.2174/157016409789973707
10.3390/ijms150711204
10.3390/ijms150610410
10.2174/1568026617666170414145508
10.1006/jmbi.1994.1130
10.3390/ijms15057594
10.1016/j.jtbi.2016.01.020
10.1016/j.ab.2014.06.022
10.1016/j.biopha.2015.04.013
10.1016/j.jtbi.2018.05.035
10.1016/j.ygeno.2017.10.002
10.1371/journal.pone.0055844
10.1371/journal.pone.0004920
10.2174/1568026615666150819110421
10.1093/nar/gks1450
10.18632/oncotarget.9987
10.2174/1573406411666141229162834
10.1093/bioinformatics/btl151
10.1016/j.jtbi.2018.02.008
10.1093/bioinformatics/btl158
10.1016/j.cbpa.2017.11.003
10.1016/j.omtn.2017.03.006
10.1016/j.ygeno.2017.10.008
10.1016/j.ab.2013.01.019
10.1016/j.jtbi.2018.04.037
10.1016/j.jmgm.2017.08.020
10.1016/S0065-2911(05)50003-1
10.1371/journal.ppat.0020132
10.1093/bioinformatics/bth466
10.1016/j.jtbi.2018.03.034
10.1042/BJ20121150
10.1016/j.jtbi.2018.07.032
10.1016/j.ab.2014.04.001
10.1016/j.ygeno.2018.05.017
10.1016/j.omtn.2018.03.012
10.2174/1573406413666170623082245
10.1016/j.ab.2018.04.021
10.1152/ajpheart.00663.2008
10.1093/bioinformatics/btw387
10.18632/oncotarget.17104
10.1039/C7MB00267J
10.1093/nar/26.8.1974
10.1007/978-981-10-4032-0
10.1109/72.991432
10.1080/07391102.2014.968875
10.1155/2013/701317
10.1016/j.ab.2015.08.021
10.1155/2014/947416
10.1093/bioinformatics/btq003
10.2174/1573406413666170419150052
10.1073/pnas.0408677102
10.1093/bioinformatics/btx476
10.1093/bioinformatics/btx711
10.1016/j.ygeno.2017.08.005
10.1186/1471-2105-9-101
10.1016/j.gene.2017.07.036
10.1074/jbc.R100026200
10.1093/nar/gkv458
10.1007/BF03033161
10.7717/peerj.171
10.1093/bioinformatics/btr021
10.1093/bioinformatics/btx579
10.1128/MMBR.00008-10
10.1002/prot.1035
10.1093/bioinformatics/bty628
10.18632/oncotarget.9148
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ab.2018.09.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1096-0309
EndPage 17
ExternalDocumentID 30218638
10_1016_j_ab_2018_09_007
S000326971830914X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
85S
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABGSF
ABMAC
ABOCM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLW
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
WH7
XPP
Y6R
ZA5
ZMT
.55
.GJ
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADRHT
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
J5H
MVM
R2-
SCB
SEW
VH1
WUQ
X7M
XOL
YYP
ZGI
ZKB
ZY4
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c383t-6b847a4a1801086f161d4c7db1bea01487a26a65f31878e83d150c3b469f2ec43
IEDL.DBID .~1
ISSN 0003-2697
1096-0309
IngestDate Sun Sep 28 03:07:06 EDT 2025
Sun Sep 28 04:36:11 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Oct 01 02:02:25 EDT 2025
Fri Feb 23 02:25:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Post-translational modification
ACC
AAC
BE
Lipoylation
AAF
PTM
SVM
MCC
Fuzzy support vector machine
BPB
Feature extraction
CKSAAP
Sn
Sp
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-6b847a4a1801086f161d4c7db1bea01487a26a65f31878e83d150c3b469f2ec43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30218638
PQID 2105041727
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2153612951
proquest_miscellaneous_2105041727
pubmed_primary_30218638
crossref_citationtrail_10_1016_j_ab_2018_09_007
crossref_primary_10_1016_j_ab_2018_09_007
elsevier_sciencedirect_doi_10_1016_j_ab_2018_09_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical biochemistry
PublicationTitleAlternate Anal Biochem
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sugden (bib9) 2008; 295
Cheng, Zhao, Lin, Xiao (bib83) 2017; 33
Posner, Upadhyay, Crennell, Watson, Dorus, Danson, Bagby (bib1) 2013; 449
Chou (bib45) 2015; 11
Jia, Liu, Chang, Zhai (bib63) 2011; 93
Sankari, Manimegalai (bib52) 2018
Qiu, Xiao, Lin (bib31) 2015; 33
Lin, Wang (bib73) 2002; 13
Vacic, Iakoucheva, Radivojac (bib89) 2006; 22
Cronan, Zhao, Jiang (bib4) 2005; 50
Chou (bib42) 2011; 273
Jia, Liu, Wang (bib64) 2013; 9
Sabooh, Iqbal, Khan, Khan, Maqbool (bib41) 2018; 452
Rowland, Snowden, Cristea (bib6) 2018; 42
Chen, Feng, Deng, Lin (bib57) 2014; 462
Jia, Liu, Xiao, Liu (bib23) 2016; 497
Chou (bib54) 2009; 6
Qiu, Jiang, Xu, Xiao (bib39) 2017; 8
Atchley, Zhao, Fernandes, Drüke (bib78) 2005; 102
Qiu, Sun, Xiao, Xu (bib26) 2016; 7
Ju, He (bib28) 2017; 77
Liu, Wu (bib60) 2017; 9
Reed (bib3) 2001; 276
Shen (bib81) 2009; 1
Xu, Shao, Wu, Deng (bib20) 2013; 1
Shao, Xu, Tsai, Wang, Ngai (bib40) 2009; 4
Cheng, Xiao (bib84) 2018; 110
Jia, Zhang, Liu, Xiao (bib29) 2016; 32
Chou (bib47) 2005; 21
Min, Xiao (bib65) 2013; 2013
Xu (bib13) 2016; 16
Mei, Zhao (bib50) 2018; 427
Feng, Ding, Yang, Chen, Lin (bib14) 2017; 7
Liu, Xiao, Qiu (bib70) 2015; 474
Liu, Liu, Wang, Chen, Fang (bib59) 2015; 43
Song, Tan, Shen, Mahmood, Boyd, Webb, Akutsu, Whisstock (bib61) 2010; 26
Cheng, Xiao (bib85) 2018; 110
Cheng, Xiao (bib86) 2018; 34
Jia, Lin, Wang (bib21) 2014; 15
Xiao, Min, Wang (bib66) 2013; 8
Liu, Yang, Huang (bib69) 2018; 34
Qiu, Sun, Xiao, Xu (bib17) 2017; 36
Chen, Lin (bib58) 2015; 11
Pocernich, Butterfield (bib7) 2003; 5
Xiao, Min, Wang (bib67) 2013; 337C
Wallis, Perham (bib2) 1994; 236
Spalding, Prigge (bib5) 2010; 74
Jia, Liu, Xiao, Liu (bib33) 2016; 7
Xu, Li (bib32) 2017; 13
Liu, Xiao, Yu, Jia, Qiu (bib37) 2016; 497
Liang, Zhang (bib49) 2018; 454
Qiu, Jiang, Sun, Xiao, Cheng (bib38) 2017; 13
Cheng, Xiao (bib87) 2017; 13
Khan, Rasool, Hussain, Khan (bib18) 2018; 550
Li, Godzik (bib43) 2006; 22
Chen, Lei, Jin, Lin (bib56) 2014; 456
Xuao, Cheng, Chen, Mao (bib71) 2018
Batuwita, Palade (bib75) 2013
Wang, Zhang, Sun, Guo (bib62) 2011; 27
Xu, Wen, Shao, Deng (bib25) 2014; 15
Qiu, Xiao, Lin (bib34) 2014; 2014
Xu, Ding, Wu (bib19) 2013; 8
Huang, Cui, Yu, Lu, Zhang, Tang, Peng (bib10) 2015; 72
Cheng, Lin, Xiao (bib72) 2018
Chen, Lin (bib88) 2006
Nakashima, Nishikawa (bib77) 1994; 238
Chen, Tang, Ye, Lin (bib36) 2016; 5
Veropoulos, Campbell, Cristianini (bib74) 1999
Xie, Fu, Nie (bib30) 2013; 26
Miyo, Yamamoto, Konno, Colvin, Nishida, Koseki, Kawamoto, Ogawa, Hamabe, Uemura, Nishimura (bib11) 2015; 113
Krishnan (bib48) 2018; 445
Sagara, Shimizu, Kawabata, Nakamura, Ikeguchi, Shimizu (bib79) 1998; 26
Munger, Bajad, Coller, Shenk, Rabinowitz (bib8) 2006; 2
Chen, Feng, Yang, Ding, Lin (bib15) 2018; 11
Cheng, Xiao (bib82) 2017; 628
Jia, Liu, Xiao, Liu (bib24) 2016; 394
Xiao, Wang, Lin, Jia (bib68) 2013; 436
Qiu, Sun, Xiao, Xu, Jia (bib27) 2018; 110
Chou (bib53) 2017; 17
Chen, Tang, Sheng, Zhang (bib80) 2008; 9
Qiu, Xiao, Xu (bib16) 2016; 7
Rahman, Shatabda, Saha, Kaykobad, Sohel Rahman (bib51) 2018; 452
Qiu, Sun, Xiao, Xu (bib12) 2016; 32
Chou (bib55) 2011; 273
Chen, Feng, Ding, Lin (bib35) 2015; 490
Zhang, Zhao, Sun, Ma (bib22) 2014; 15
Huang, Niu, Gao, Fu, Li (bib44) 2010; 26
Chen, Feng, Lin (bib76) 2013; 41
Chou (bib46) 2001; 43
Huang (10.1016/j.ab.2018.09.007_bib44) 2010; 26
Cheng (10.1016/j.ab.2018.09.007_bib84) 2018; 110
Xu (10.1016/j.ab.2018.09.007_bib19) 2013; 8
Sabooh (10.1016/j.ab.2018.09.007_bib41) 2018; 452
Liang (10.1016/j.ab.2018.09.007_bib49) 2018; 454
Liu (10.1016/j.ab.2018.09.007_bib70) 2015; 474
Spalding (10.1016/j.ab.2018.09.007_bib5) 2010; 74
Xiao (10.1016/j.ab.2018.09.007_bib66) 2013; 8
Cheng (10.1016/j.ab.2018.09.007_bib72) 2018
Chen (10.1016/j.ab.2018.09.007_bib36) 2016; 5
Qiu (10.1016/j.ab.2018.09.007_bib39) 2017; 8
Min (10.1016/j.ab.2018.09.007_bib65) 2013; 2013
Nakashima (10.1016/j.ab.2018.09.007_bib77) 1994; 238
Chen (10.1016/j.ab.2018.09.007_bib80) 2008; 9
Cheng (10.1016/j.ab.2018.09.007_bib87) 2017; 13
Wang (10.1016/j.ab.2018.09.007_bib62) 2011; 27
Zhang (10.1016/j.ab.2018.09.007_bib22) 2014; 15
Jia (10.1016/j.ab.2018.09.007_bib63) 2011; 93
Posner (10.1016/j.ab.2018.09.007_bib1) 2013; 449
Qiu (10.1016/j.ab.2018.09.007_bib17) 2017; 36
Batuwita (10.1016/j.ab.2018.09.007_bib75) 2013
Liu (10.1016/j.ab.2018.09.007_bib37) 2016; 497
Sugden (10.1016/j.ab.2018.09.007_bib9) 2008; 295
Veropoulos (10.1016/j.ab.2018.09.007_bib74) 1999
Jia (10.1016/j.ab.2018.09.007_bib33) 2016; 7
Reed (10.1016/j.ab.2018.09.007_bib3) 2001; 276
Qiu (10.1016/j.ab.2018.09.007_bib38) 2017; 13
Xiao (10.1016/j.ab.2018.09.007_bib67) 2013; 337C
Qiu (10.1016/j.ab.2018.09.007_bib31) 2015; 33
Cheng (10.1016/j.ab.2018.09.007_bib85) 2018; 110
Qiu (10.1016/j.ab.2018.09.007_bib34) 2014; 2014
Chou (10.1016/j.ab.2018.09.007_bib45) 2015; 11
Chen (10.1016/j.ab.2018.09.007_bib56) 2014; 456
Huang (10.1016/j.ab.2018.09.007_bib10) 2015; 72
Jia (10.1016/j.ab.2018.09.007_bib23) 2016; 497
Lin (10.1016/j.ab.2018.09.007_bib73) 2002; 13
Atchley (10.1016/j.ab.2018.09.007_bib78) 2005; 102
Qiu (10.1016/j.ab.2018.09.007_bib12) 2016; 32
Jia (10.1016/j.ab.2018.09.007_bib29) 2016; 32
Chou (10.1016/j.ab.2018.09.007_bib46) 2001; 43
Khan (10.1016/j.ab.2018.09.007_bib18) 2018; 550
Sankari (10.1016/j.ab.2018.09.007_bib52) 2018
Chou (10.1016/j.ab.2018.09.007_bib53) 2017; 17
Xu (10.1016/j.ab.2018.09.007_bib25) 2014; 15
Jia (10.1016/j.ab.2018.09.007_bib21) 2014; 15
Chen (10.1016/j.ab.2018.09.007_bib15) 2018; 11
Shen (10.1016/j.ab.2018.09.007_bib81) 2009; 1
Rowland (10.1016/j.ab.2018.09.007_bib6) 2018; 42
Liu (10.1016/j.ab.2018.09.007_bib69) 2018; 34
Cheng (10.1016/j.ab.2018.09.007_bib86) 2018; 34
Munger (10.1016/j.ab.2018.09.007_bib8) 2006; 2
Qiu (10.1016/j.ab.2018.09.007_bib27) 2018; 110
Shao (10.1016/j.ab.2018.09.007_bib40) 2009; 4
Li (10.1016/j.ab.2018.09.007_bib43) 2006; 22
Cheng (10.1016/j.ab.2018.09.007_bib83) 2017; 33
Chou (10.1016/j.ab.2018.09.007_bib42) 2011; 273
Chou (10.1016/j.ab.2018.09.007_bib54) 2009; 6
Chen (10.1016/j.ab.2018.09.007_bib58) 2015; 11
Pocernich (10.1016/j.ab.2018.09.007_bib7) 2003; 5
Miyo (10.1016/j.ab.2018.09.007_bib11) 2015; 113
Qiu (10.1016/j.ab.2018.09.007_bib26) 2016; 7
Chou (10.1016/j.ab.2018.09.007_bib47) 2005; 21
Chen (10.1016/j.ab.2018.09.007_bib76) 2013; 41
Chen (10.1016/j.ab.2018.09.007_bib88) 2006
Jia (10.1016/j.ab.2018.09.007_bib24) 2016; 394
Xie (10.1016/j.ab.2018.09.007_bib30) 2013; 26
Jia (10.1016/j.ab.2018.09.007_bib64) 2013; 9
Liu (10.1016/j.ab.2018.09.007_bib60) 2017; 9
Xiao (10.1016/j.ab.2018.09.007_bib68) 2013; 436
Krishnan (10.1016/j.ab.2018.09.007_bib48) 2018; 445
Cronan (10.1016/j.ab.2018.09.007_bib4) 2005; 50
Chou (10.1016/j.ab.2018.09.007_bib55) 2011; 273
Song (10.1016/j.ab.2018.09.007_bib61) 2010; 26
Cheng (10.1016/j.ab.2018.09.007_bib82) 2017; 628
Sagara (10.1016/j.ab.2018.09.007_bib79) 1998; 26
Qiu (10.1016/j.ab.2018.09.007_bib16) 2016; 7
Mei (10.1016/j.ab.2018.09.007_bib50) 2018; 427
Vacic (10.1016/j.ab.2018.09.007_bib89) 2006; 22
Xuao (10.1016/j.ab.2018.09.007_bib71) 2018
Feng (10.1016/j.ab.2018.09.007_bib14) 2017; 7
Xu (10.1016/j.ab.2018.09.007_bib32) 2017; 13
Rahman (10.1016/j.ab.2018.09.007_bib51) 2018; 452
Chen (10.1016/j.ab.2018.09.007_bib35) 2015; 490
Wallis (10.1016/j.ab.2018.09.007_bib2) 1994; 236
Xu (10.1016/j.ab.2018.09.007_bib20) 2013; 1
Xu (10.1016/j.ab.2018.09.007_bib13) 2016; 16
Ju (10.1016/j.ab.2018.09.007_bib28) 2017; 77
Liu (10.1016/j.ab.2018.09.007_bib59) 2015; 43
Chen (10.1016/j.ab.2018.09.007_bib57) 2014; 462
39191609 - Anal Biochem. 2024 Aug 26:115653. doi: 10.1016/j.ab.2024.115653
References_xml – volume: 2014
  start-page: 947416
  year: 2014
  ident: bib34
  article-title: iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach
  publication-title: BioMed Res. Int.
– volume: 7
  start-page: 44310
  year: 2016
  end-page: 44321
  ident: bib26
  article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC
  publication-title: Oncotarget
– volume: 1
  start-page: 63
  year: 2009
  end-page: 92
  ident: bib81
  article-title: Recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat. Sci.
– volume: 1
  start-page: e171
  year: 2013
  ident: bib20
  article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
  publication-title: PeerJ
– volume: 7
  start-page: 34558
  year: 2016
  end-page: 34570
  ident: bib33
  article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
  publication-title: Oncotarget
– volume: 436
  start-page: 168
  year: 2013
  end-page: 177
  ident: bib68
  article-title: iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
  publication-title: Anal. Biochem.
– volume: 27
  start-page: 777
  year: 2011
  end-page: 784
  ident: bib62
  article-title: High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles
  publication-title: Bioinformatics
– volume: 474
  start-page: 69
  year: 2015
  end-page: 77
  ident: bib70
  article-title: iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
  publication-title: Anal. Biochem.
– volume: 8
  start-page: e55844
  year: 2013
  ident: bib19
  article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
  publication-title: PLoS One
– volume: 449
  start-page: 415
  year: 2013
  end-page: 425
  ident: bib1
  article-title: Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation
  publication-title: Biochem. J.
– volume: 238
  start-page: 54
  year: 1994
  end-page: 61
  ident: bib77
  article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
  publication-title: J. Mol. Biol.
– volume: 50
  start-page: 103
  year: 2005
  end-page: 146
  ident: bib4
  article-title: Function, attachment and synthesis of lipoic acid in Escherichia coli
  publication-title: Adv. Microb. Physiol.
– volume: 32
  start-page: 3133
  year: 2016
  end-page: 3141
  ident: bib29
  article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
  publication-title: Bioinformatics
– volume: 8
  start-page: 41178
  year: 2017
  end-page: 41188
  ident: bib39
  article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition
  publication-title: Oncotarget
– volume: 9
  start-page: 67
  year: 2017
  end-page: 91
  ident: bib60
  article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nat. Sci.
– volume: 2013
  start-page: 701317
  year: 2013
  ident: bib65
  article-title: iEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking
  publication-title: BioMed Res. Int.
– volume: 276
  start-page: 38329
  year: 2001
  end-page: 38336
  ident: bib3
  article-title: A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: e332
  year: 2016
  ident: bib36
  article-title: iRNA-PseU: identifying RNA pseudouridine sites
  publication-title: Mol. Ther. Nucleic Acids
– volume: 295
  start-page: H917
  year: 2008
  end-page: H919
  ident: bib9
  article-title: PDC deletion: the way to a man's heart disease
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 15
  start-page: 10410
  year: 2014
  end-page: 10423
  ident: bib21
  article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou's pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
– volume: 102
  start-page: 6395
  year: 2005
  end-page: 6400
  ident: bib78
  article-title: Solving the protein sequence metric problem
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 456
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib56
  article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
  publication-title: Anal. Biochem.
– volume: 15
  start-page: 11204
  year: 2014
  end-page: 11219
  ident: bib22
  article-title: PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC
  publication-title: Int. J. Mol. Sci.
– volume: 26
  start-page: 1974
  year: 1998
  end-page: 1979
  ident: bib79
  article-title: The use of sequence comparison to detect ‘identities' in tRNA genes
  publication-title: Nucleic Acids Res.
– volume: 26
  start-page: 735
  year: 2013
  end-page: 742
  ident: bib30
  article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC
  publication-title: Protein Eng. Des. Sel.
– volume: 13
  start-page: 464
  year: 2002
  end-page: 471
  ident: bib73
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Network.
– volume: 9
  start-page: 101
  year: 2008
  ident: bib80
  article-title: Prediction of mucin-type Oglycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs
  publication-title: BMC Bioinf.
– volume: 77
  start-page: 200
  year: 2017
  end-page: 204
  ident: bib28
  article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Mol. Graph. Model.
– volume: 22
  start-page: 1658
  year: 2006
  end-page: 1659
  ident: bib43
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
– volume: 15
  start-page: 7594
  year: 2014
  end-page: 7610
  ident: bib25
  article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
– volume: 490
  start-page: 26
  year: 2015
  end-page: 33
  ident: bib35
  article-title: iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition
  publication-title: Anal. Biochem.
– volume: 22
  start-page: 1536
  year: 2006
  end-page: 1537
  ident: bib89
  article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments
  publication-title: Bioinformatics
– volume: 7
  start-page: 51270
  year: 2016
  end-page: 51283
  ident: bib16
  article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
  publication-title: Oncotarget
– volume: 34
  start-page: 33
  year: 2018
  end-page: 40
  ident: bib69
  article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC
  publication-title: Bioinformatics
– volume: 452
  start-page: 22
  year: 2018
  end-page: 34
  ident: bib51
  article-title: DPP-PseAAC: a DNA-binding Protein Prediction model using Chou's general PseAAC
  publication-title: J. Theor. Biol.
– volume: 21
  start-page: 10
  year: 2005
  end-page: 19
  ident: bib47
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
– year: 2018
  ident: bib72
  article-title: pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC
  publication-title: Bioinformatics
– volume: 93
  start-page: 778
  year: 2011
  end-page: 782
  ident: bib63
  article-title: Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction
  publication-title: Biochimie
– volume: 11
  start-page: 2620
  year: 2015
  end-page: 2634
  ident: bib58
  article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
  publication-title: Mol. Biosyst.
– volume: 16
  start-page: 591
  year: 2016
  end-page: 603
  ident: bib13
  article-title: Recent progress in predicting posttranslational modification sites in proteins
  publication-title: Curr. Top. Med. Chem.
– volume: 9
  start-page: 2909
  year: 2013
  end-page: 2913
  ident: bib64
  article-title: O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites
  publication-title: Mol. Biosyst.
– volume: 13
  start-page: 544
  year: 2017
  end-page: 551
  ident: bib32
  article-title: iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC
  publication-title: Med. Chem.
– volume: 6
  start-page: 262
  year: 2009
  end-page: 274
  ident: bib54
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr. Proteomics
– volume: 337C
  start-page: 71
  year: 2013
  end-page: 79
  ident: bib67
  article-title: iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints
  publication-title: J. Theor. Biol.
– volume: 26
  start-page: 680
  year: 2010
  end-page: 682
  ident: bib44
  article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences
  publication-title: Bioinformatics
– volume: 7
  start-page: 155
  year: 2017
  end-page: 163
  ident: bib14
  article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC
  publication-title: Mol. Ther. Nucleic Acids
– volume: 273
  start-page: 236
  year: 2011
  end-page: 247
  ident: bib42
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition
  publication-title: J. Theor. Biol.
– volume: 11
  start-page: 218
  year: 2015
  end-page: 234
  ident: bib45
  article-title: Impacts of bioinformatics to medicinal chemistry
  publication-title: Med. Chem.
– volume: 454
  start-page: 22
  year: 2018
  end-page: 29
  ident: bib49
  article-title: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou's general PseAAC via Kullback-Leibler divergence
  publication-title: J. Theor. Biol.
– start-page: 83
  year: 2013
  end-page: 96
  ident: bib75
  article-title: Class imbalance learning methods for support vector machines
  publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications
– start-page: 315
  year: 2006
  end-page: 324
  ident: bib88
  article-title: Combining SVMs with various feature selection strategies
  publication-title: Feature Extraction
– volume: 452
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib41
  article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC
  publication-title: J. Theor. Biol.
– volume: 26
  start-page: 752
  year: 2010
  end-page: 760
  ident: bib61
  article-title: Cascleave: towards more accurate prediction of caspase substrate cleavage sites
  publication-title: Bioinformatics
– volume: 462
  start-page: 76
  year: 2014
  end-page: 83
  ident: bib57
  article-title: iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
  publication-title: Anal. Biochem.
– volume: 74
  start-page: 200
  year: 2010
  end-page: 228
  ident: bib5
  article-title: Lipoic acid metabolism in microbial pathogens
  publication-title: Microbiol. Mol. Biol. Rev.
– year: 2018
  ident: bib52
  article-title: Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC
  publication-title: J. Theor. Biol.
– volume: 628
  start-page: 315
  year: 2017
  end-page: 321
  ident: bib82
  article-title: pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Gene
– volume: 33
  start-page: 1731
  year: 2015
  end-page: 1742
  ident: bib31
  article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
  publication-title: J. Biomol. Struct. Dyn.
– volume: 34
  start-page: 1448
  year: 2018
  end-page: 1456
  ident: bib86
  article-title: pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information
  publication-title: Bioinformatics
– volume: 110
  start-page: 231
  year: 2018
  end-page: 239
  ident: bib85
  article-title: pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC
  publication-title: Genomics
– volume: 11
  start-page: 468
  year: 2018
  end-page: 474
  ident: bib15
  article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites
  publication-title: Mol. Ther. Nucleic Acids
– volume: 236
  start-page: 209
  year: 1994
  end-page: 216
  ident: bib2
  article-title: Structural dependence of posttranslational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex
  publication-title: J. Mol. Biol.
– volume: 110
  start-page: 239
  year: 2018
  end-page: 246
  ident: bib27
  article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier
  publication-title: Genomics
– volume: 273
  start-page: 236
  year: 2011
  end-page: 247
  ident: bib55
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
  publication-title: J. Theor. Biol.
– volume: 113
  start-page: 492
  year: 2015
  end-page: 499
  ident: bib11
  article-title: Tumour-suppressive function of sirt4 in human colorectal cancer
  publication-title: Br. J. Canc.
– volume: 394
  start-page: 223
  year: 2016
  end-page: 230
  ident: bib24
  article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
  publication-title: J. Theor. Biol.
– volume: 43
  start-page: W65
  year: 2015
  end-page: W71
  ident: bib59
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res.
– year: 2018
  ident: bib71
  article-title: pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC
  publication-title: Genomics
– volume: 32
  start-page: 3116
  year: 2016
  end-page: 3123
  ident: bib12
  article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types
  publication-title: Bioinformatics
– volume: 42
  start-page: 76
  year: 2018
  end-page: 85
  ident: bib6
  article-title: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease
  publication-title: Curr. Opin. Chem. Biol.
– volume: 43
  start-page: 246
  year: 2001
  end-page: 255
  ident: bib46
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Protein Struct. Funct. Genet.
– volume: 41
  start-page: e68
  year: 2013
  ident: bib76
  article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
  publication-title: Nucleic Acids Res.
– start-page: 55
  year: 1999
  end-page: 60
  ident: bib74
  article-title: Controlling the sensitivity of support vector machines
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 497
  start-page: 60
  year: 2016
  end-page: 67
  ident: bib37
  article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
  publication-title: Anal. Biochem.
– volume: 17
  start-page: 2337
  year: 2017
  end-page: 2358
  ident: bib53
  article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science
  publication-title: Curr. Top. Med. Chem.
– volume: 33
  start-page: 3524
  year: 2017
  end-page: 3531
  ident: bib83
  article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites
  publication-title: Bioinformatics
– volume: 36
  year: 2017
  ident: bib17
  article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
  publication-title: Mol. Inform.
– volume: 72
  start-page: 135
  year: 2015
  end-page: 139
  ident: bib10
  article-title: Sirtuin-4 (sirt4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma
  publication-title: Biomed. Pharmacother.
– volume: 445
  start-page: 62
  year: 2018
  end-page: 74
  ident: bib48
  article-title: Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains
  publication-title: J. Theor. Biol.
– volume: 427
  start-page: 147
  year: 2018
  end-page: 153
  ident: bib50
  article-title: Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features
  publication-title: J. Theor. Biol.
– volume: 550
  start-page: 109
  year: 2018
  end-page: 116
  ident: bib18
  article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Anal. Biochem.
– volume: 497
  start-page: 48
  year: 2016
  end-page: 56
  ident: bib23
  article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
  publication-title: Anal. Biochem.
– volume: 2
  start-page: 1165
  year: 2006
  end-page: 1175
  ident: bib8
  article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection
  publication-title: PLoS Pathog.
– volume: 13
  start-page: 734
  year: 2017
  end-page: 743
  ident: bib38
  article-title: iRNA-2methyl: identify RNA 2'-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier
  publication-title: Med. Chem.
– volume: 4
  start-page: e4920
  year: 2009
  ident: bib40
  article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction
  publication-title: PLoS One
– volume: 110
  start-page: 50
  year: 2018
  end-page: 58
  ident: bib84
  article-title: pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC
  publication-title: Genomics
– volume: 8
  year: 2013
  ident: bib66
  article-title: iGPCR-Drug: a web server for predicting interaction between GPCRs and drugs in cellular networking
  publication-title: PLoS One
– volume: 13
  start-page: 1722
  year: 2017
  end-page: 1727
  ident: bib87
  article-title: pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Mol. Biosyst.
– volume: 5
  start-page: 515
  year: 2003
  end-page: 520
  ident: bib7
  article-title: Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease
  publication-title: Neurotox. Res.
– volume: 26
  start-page: 735
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib30
  article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzt042
– volume: 26
  start-page: 752
  year: 2010
  ident: 10.1016/j.ab.2018.09.007_bib61
  article-title: Cascleave: towards more accurate prediction of caspase substrate cleavage sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq043
– volume: 93
  start-page: 778
  year: 2011
  ident: 10.1016/j.ab.2018.09.007_bib63
  article-title: Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2011.01.013
– volume: 337C
  start-page: 71
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib67
  article-title: iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2013.08.013
– volume: 32
  start-page: 3116
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib12
  article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw380
– volume: 497
  start-page: 48
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib23
  article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.12.009
– volume: 238
  start-page: 54
  year: 1994
  ident: 10.1016/j.ab.2018.09.007_bib77
  article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1267
– volume: 452
  start-page: 22
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib51
  article-title: DPP-PseAAC: a DNA-binding Protein Prediction model using Chou's general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.05.006
– volume: 497
  start-page: 60
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib37
  article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.12.017
– volume: 7
  start-page: 44310
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib26
  article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10027
– volume: 273
  start-page: 236
  year: 2011
  ident: 10.1016/j.ab.2018.09.007_bib55
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 474
  start-page: 69
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib70
  article-title: iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.12.009
– volume: 9
  start-page: 2909
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib64
  article-title: O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites
  publication-title: Mol. Biosyst.
  doi: 10.1039/c3mb70326f
– volume: 273
  start-page: 236
  year: 2011
  ident: 10.1016/j.ab.2018.09.007_bib42
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 113
  start-page: 492
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib11
  article-title: Tumour-suppressive function of sirt4 in human colorectal cancer
  publication-title: Br. J. Canc.
  doi: 10.1038/bjc.2015.226
– volume: 11
  start-page: 2620
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib58
  article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
  publication-title: Mol. Biosyst.
  doi: 10.1039/C5MB00155B
– volume: 6
  start-page: 262
  year: 2009
  ident: 10.1016/j.ab.2018.09.007_bib54
  article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology
  publication-title: Curr. Proteomics
  doi: 10.2174/157016409789973707
– volume: 15
  start-page: 11204
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib22
  article-title: PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150711204
– volume: 15
  start-page: 10410
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib21
  article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou's pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150610410
– volume: 17
  start-page: 2337
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib53
  article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026617666170414145508
– volume: 236
  start-page: 209
  year: 1994
  ident: 10.1016/j.ab.2018.09.007_bib2
  article-title: Structural dependence of posttranslational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1130
– volume: 15
  start-page: 7594
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib25
  article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15057594
– volume: 394
  start-page: 223
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib24
  article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.01.020
– volume: 462
  start-page: 76
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib57
  article-title: iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.06.022
– volume: 72
  start-page: 135
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib10
  article-title: Sirtuin-4 (sirt4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.04.013
– volume: 454
  start-page: 22
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib49
  article-title: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou's general PseAAC via Kullback-Leibler divergence
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.05.035
– volume: 110
  start-page: 231
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib85
  article-title: pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.10.002
– volume: 8
  start-page: e55844
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib19
  article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055844
– volume: 4
  start-page: e4920
  year: 2009
  ident: 10.1016/j.ab.2018.09.007_bib40
  article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004920
– volume: 16
  start-page: 591
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib13
  article-title: Recent progress in predicting posttranslational modification sites in proteins
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150819110421
– volume: 41
  start-page: e68
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib76
  article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1450
– volume: 7
  start-page: 51270
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib16
  article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9987
– volume: 11
  start-page: 218
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib45
  article-title: Impacts of bioinformatics to medicinal chemistry
  publication-title: Med. Chem.
  doi: 10.2174/1573406411666141229162834
– volume: 22
  start-page: 1536
  year: 2006
  ident: 10.1016/j.ab.2018.09.007_bib89
  article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl151
– volume: 445
  start-page: 62
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib48
  article-title: Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.02.008
– volume: 8
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib66
  article-title: iGPCR-Drug: a web server for predicting interaction between GPCRs and drugs in cellular networking
  publication-title: PLoS One
– start-page: 55
  year: 1999
  ident: 10.1016/j.ab.2018.09.007_bib74
  article-title: Controlling the sensitivity of support vector machines
– volume: 22
  start-page: 1658
  year: 2006
  ident: 10.1016/j.ab.2018.09.007_bib43
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 42
  start-page: 76
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib6
  article-title: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2017.11.003
– volume: 7
  start-page: 155
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib14
  article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.03.006
– volume: 110
  start-page: 239
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib27
  article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.10.008
– volume: 436
  start-page: 168
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib68
  article-title: iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2013.01.019
– volume: 452
  start-page: 1
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib41
  article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.04.037
– volume: 77
  start-page: 200
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib28
  article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2017.08.020
– volume: 50
  start-page: 103
  year: 2005
  ident: 10.1016/j.ab.2018.09.007_bib4
  article-title: Function, attachment and synthesis of lipoic acid in Escherichia coli
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/S0065-2911(05)50003-1
– start-page: 83
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib75
  article-title: Class imbalance learning methods for support vector machines
– volume: 2
  start-page: 1165
  year: 2006
  ident: 10.1016/j.ab.2018.09.007_bib8
  article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020132
– volume: 21
  start-page: 10
  year: 2005
  ident: 10.1016/j.ab.2018.09.007_bib47
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 427
  start-page: 147
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib50
  article-title: Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.03.034
– volume: 449
  start-page: 415
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib1
  article-title: Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20121150
– year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib52
  article-title: Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.07.032
– volume: 456
  start-page: 53
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib56
  article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.04.001
– year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib71
  article-title: pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.05.017
– volume: 11
  start-page: 468
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib15
  article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.03.012
– volume: 13
  start-page: 734
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib38
  article-title: iRNA-2methyl: identify RNA 2'-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier
  publication-title: Med. Chem.
  doi: 10.2174/1573406413666170623082245
– volume: 550
  start-page: 109
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib18
  article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2018.04.021
– volume: 9
  start-page: 67
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib60
  article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nat. Sci.
– volume: 295
  start-page: H917
  year: 2008
  ident: 10.1016/j.ab.2018.09.007_bib9
  article-title: PDC deletion: the way to a man's heart disease
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00663.2008
– volume: 32
  start-page: 3133
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib29
  article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw387
– volume: 8
  start-page: 41178
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib39
  article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17104
– volume: 13
  start-page: 1722
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib87
  article-title: pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Mol. Biosyst.
  doi: 10.1039/C7MB00267J
– volume: 26
  start-page: 1974
  year: 1998
  ident: 10.1016/j.ab.2018.09.007_bib79
  article-title: The use of sequence comparison to detect ‘identities' in tRNA genes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.8.1974
– volume: 36
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib17
  article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
  publication-title: Mol. Inform.
  doi: 10.1007/978-981-10-4032-0
– volume: 13
  start-page: 464
  year: 2002
  ident: 10.1016/j.ab.2018.09.007_bib73
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.991432
– volume: 33
  start-page: 1731
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib31
  article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2014.968875
– volume: 1
  start-page: 63
  year: 2009
  ident: 10.1016/j.ab.2018.09.007_bib81
  article-title: Recent advances in developing web-servers for predicting protein attributes
  publication-title: Nat. Sci.
– volume: 2013
  start-page: 701317
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib65
  article-title: iEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/701317
– volume: 490
  start-page: 26
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib35
  article-title: iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2015.08.021
– start-page: 315
  year: 2006
  ident: 10.1016/j.ab.2018.09.007_bib88
  article-title: Combining SVMs with various feature selection strategies
– volume: 2014
  start-page: 947416
  year: 2014
  ident: 10.1016/j.ab.2018.09.007_bib34
  article-title: iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/947416
– volume: 26
  start-page: 680
  year: 2010
  ident: 10.1016/j.ab.2018.09.007_bib44
  article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq003
– volume: 13
  start-page: 544
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib32
  article-title: iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC
  publication-title: Med. Chem.
  doi: 10.2174/1573406413666170419150052
– volume: 102
  start-page: 6395
  year: 2005
  ident: 10.1016/j.ab.2018.09.007_bib78
  article-title: Solving the protein sequence metric problem
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0408677102
– volume: 33
  start-page: 3524
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib83
  article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx476
– volume: 34
  start-page: 1448
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib86
  article-title: pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx711
– volume: 110
  start-page: 50
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib84
  article-title: pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.08.005
– volume: 9
  start-page: 101
  year: 2008
  ident: 10.1016/j.ab.2018.09.007_bib80
  article-title: Prediction of mucin-type Oglycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-9-101
– volume: 628
  start-page: 315
  year: 2017
  ident: 10.1016/j.ab.2018.09.007_bib82
  article-title: pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC
  publication-title: Gene
  doi: 10.1016/j.gene.2017.07.036
– volume: 276
  start-page: 38329
  year: 2001
  ident: 10.1016/j.ab.2018.09.007_bib3
  article-title: A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R100026200
– volume: 43
  start-page: W65
  year: 2015
  ident: 10.1016/j.ab.2018.09.007_bib59
  article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv458
– volume: 5
  start-page: 515
  year: 2003
  ident: 10.1016/j.ab.2018.09.007_bib7
  article-title: Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease
  publication-title: Neurotox. Res.
  doi: 10.1007/BF03033161
– volume: 1
  start-page: e171
  year: 2013
  ident: 10.1016/j.ab.2018.09.007_bib20
  article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
  publication-title: PeerJ
  doi: 10.7717/peerj.171
– volume: 27
  start-page: 777
  year: 2011
  ident: 10.1016/j.ab.2018.09.007_bib62
  article-title: High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr021
– volume: 34
  start-page: 33
  year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib69
  article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx579
– volume: 74
  start-page: 200
  year: 2010
  ident: 10.1016/j.ab.2018.09.007_bib5
  article-title: Lipoic acid metabolism in microbial pathogens
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00008-10
– volume: 5
  start-page: e332
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib36
  article-title: iRNA-PseU: identifying RNA pseudouridine sites
  publication-title: Mol. Ther. Nucleic Acids
– volume: 43
  start-page: 246
  year: 2001
  ident: 10.1016/j.ab.2018.09.007_bib46
  article-title: Prediction of protein cellular attributes using pseudo amino acid composition
  publication-title: Protein Struct. Funct. Genet.
  doi: 10.1002/prot.1035
– year: 2018
  ident: 10.1016/j.ab.2018.09.007_bib72
  article-title: pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty628
– volume: 7
  start-page: 34558
  year: 2016
  ident: 10.1016/j.ab.2018.09.007_bib33
  article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9148
– reference: 39191609 - Anal Biochem. 2024 Aug 26:115653. doi: 10.1016/j.ab.2024.115653
SSID ssj0011456
Score 2.3286676
Snippet Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Bayes Theorem
bioinformatics
computational methodology
Feature extraction
Fuzzy Logic
Fuzzy support vector machine
Lipoylation
lysine
Lysine - metabolism
metabolic diseases
palmitoylation
Post-translational modification
prediction
Support Vector Machine
support vector machines
Title Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm
URI https://dx.doi.org/10.1016/j.ab.2018.09.007
https://www.ncbi.nlm.nih.gov/pubmed/30218638
https://www.proquest.com/docview/2105041727
https://www.proquest.com/docview/2153612951
Volume 561-562
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-0309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011456
  issn: 0003-2697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1096-0309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011456
  issn: 0003-2697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-0309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011456
  issn: 0003-2697
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-0309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011456
  issn: 0003-2697
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011456
  issn: 0003-2697
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CcmgvpXm0ddOELZRAD1tL2dXDR2MS3BpCKQ31bdmXUhVbNn6UOIf-9sysJEMh9aEnIbESi2aZ-Wb3m_kAPmQOw04eWy6d91x6EfEeBjJudVykhbUkVElsi5t0eCu_jJPxHgzaWhiiVTa-v_bpwVs3T7rN3-zOy5JqfCPEHvjlXGDQk2OqYJcZqRh8-rOleSDcDwquNJjT6OaosuZ4aUPkrjx0OiVB2adD07-gZwhB1y_hRYMdWb-e3iHs-eoIjvsV5s3TDbtggc0ZtsmP4NmgVXI7hvuvCzqOIYIzow4klWeTcj7b1DQ4RufHS0YE-DtmSt6oeDOjN_i48KHzJ0MfvqhrIJiuHCvWDw8btlzPCb6z32Hrn00DMdMzPbmbLcrVz-kJ3F5ffR8MeaO4wC1mqiueGgxWWuoY4xbmOgXCQSdt5kxsvKa9x0xfpjpNCvQEWe5z4RBPWmEwxy4uvZXiFexXs8q_AaaTyPecxuxRR9IVPne4GvLU9CSBsjjrQLf92co27chJFWOiWt7ZL6WNIvOoqKfQPB34uH1jXrfi2DFWtPZTfy0nhZFix1vvW1MrNBEdnejKz9ZLhYlxEkkCe7vGJALxIkLWDryu18l2niJof4n87X_N6xSe0x2VQMbJO9hfLdb-DLHQypyHxX4OB_3Po-ENXUfffoweARY1Co0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9lAuCFqg4VUjISQOJrux95FjFVGlpVQcWik3y69tt0o2UR6I9MBvZ8a7GwmJ5tCrd7yyPNbMN57PMwCfModuJ48tl857Lr2IeB8dGbc6LtLCWmpUSWyLy3R4Lc9HyWgHBu1bGKJVNra_tunBWjcj3WY3u7OypDe-EWIP_HMu0OnJ0RPYk0kvowjs658NzwPxfmjhStKcxJtcZU3y0obYXXkodUodZf_vmx7CnsEHnT6HZw14ZCf1-l7Ajq8O4PCkwsB5smafWaBzhnvyA9gftK3cDuH3zznlY4jhzKgESeXZuJxN1zUPjlECecGIAX_DTMmbNt7M6DUOFz6U_mRoxOf1IwimK8eK1f39mi1WM8Lv7Fe4-2eTwMz0TI9vpvNyeTt5Cden364GQ960XOAWQ9UlTw16Ky11jI4Lg50C8aCTNnMmNl7T5WOme6lOkwJNQZb7XDgElFYYDLKLnrdSvILdalr5I2A6iXzfaQwfdSRd4XOHxyFPTV8SKouzDnTbzVa2qUdObTHGqiWe3SltFKlHRX2F6unAl82MWV2LY4usaPWn_jlPCl3FllkfW1UrVBHlTnTlp6uFwsg4iSShvW0yiUDAiJi1A6_rc7JZpwjNv0T-5lHrOob94dWPC3Vxdvn9LTylL_QeMk7ewe5yvvLvERgtzYdw8P8C0XYKfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+lysine+lipoylation+sites+using+bi-profile+bayes+feature+extraction+and+fuzzy+support+vector+machine+algorithm&rft.jtitle=Analytical+biochemistry&rft.au=Ju%2C+Zhe&rft.au=Wang%2C+Shi-Yun&rft.date=2018-11-15&rft.issn=1096-0309&rft.eissn=1096-0309&rft.volume=561-562&rft.spage=11&rft_id=info:doi/10.1016%2Fj.ab.2018.09.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2697&client=summon