Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm
Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of...
        Saved in:
      
    
          | Published in | Analytical biochemistry Vol. 561-562; pp. 11 - 17 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        15.11.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0003-2697 1096-0309 1096-0309  | 
| DOI | 10.1016/j.ab.2018.09.007 | 
Cover
| Abstract | Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.
[Display omitted]
•A novel predictor is develop to predict lipoylation sites.•The bi-profile bayes encoding is used to predict and analyze lipoylation sites.•The fuzzy SVM is adopted as classifier.•A free online service is available for prediction. | 
    
|---|---|
| AbstractList | Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.
[Display omitted]
•A novel predictor is develop to predict lipoylation sites.•The bi-profile bayes encoding is used to predict and analyze lipoylation sites.•The fuzzy SVM is adopted as classifier.•A free online service is available for prediction. Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/. Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.  | 
    
| Author | Ju, Zhe Wang, Shi-Yun  | 
    
| Author_xml | – sequence: 1 givenname: Zhe surname: Ju fullname: Ju, Zhe email: juzhe1120@hotmail.com – sequence: 2 givenname: Shi-Yun surname: Wang fullname: Wang, Shi-Yun  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30218638$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkb9v1TAUhS1URF8LOxPyyJJwb5w4DhuqgFaqBAPMluPctH7KL2ynavrX49fXLkggJkv2d46s75yxk2meiLG3CDkCyg_73LR5AahyaHKA-gXbITQyAwHNCdsBgMgK2dSn7CyEPQBiWclX7FRAgUoKtWP33z11zkY33fBhC24iPrhl3gYT3Tzx4CIFvobDc-uyxc-9G4i3ZkvXPZm4euJ0H72xj7yZOt6vDw8bD-uyzD7yO7Jx9nw09vZQboab2bt4O75mL3szBHrzdJ6zn18-_7i4zK6_fb26-HSdWaFEzGSrytqUBhUgKNmjxK60dddiSwawVLUppJFVL1DVipTosAIr2lI2fUG2FOfs_bE3_f3XSiHq0QVLw2AmmtegC6yExKKp8D9QqKDEuqgT-u4JXduROr14Nxq_6WexCZBHwPo5BE-9ti4-Ok2u3KAR9GFBvdem1YcFNTQ6LZiC8EfwufsfkY_HCCWPd468DtbRZNOwPtnX3ez-Hv4NA-GzRw | 
    
| CitedBy_id | crossref_primary_10_2174_1389202919666191014092843 crossref_primary_10_1016_j_measurement_2022_111032 crossref_primary_10_1155_2021_8881631 crossref_primary_10_32604_cmc_2022_021849 crossref_primary_10_1016_j_ab_2019_113494 crossref_primary_10_1109_ACCESS_2020_2991477 crossref_primary_10_1155_2019_1603867 crossref_primary_10_1016_j_tibs_2024_04_002 crossref_primary_10_2174_0929867328666210910125802  | 
    
| Cites_doi | 10.1093/protein/gzt042 10.1093/bioinformatics/btq043 10.1016/j.biochi.2011.01.013 10.1016/j.jtbi.2013.08.013 10.1093/bioinformatics/btw380 10.1016/j.ab.2015.12.009 10.1006/jmbi.1994.1267 10.1016/j.jtbi.2018.05.006 10.1016/j.ab.2015.12.017 10.18632/oncotarget.10027 10.1016/j.jtbi.2010.12.024 10.1016/j.ab.2014.12.009 10.1039/c3mb70326f 10.1038/bjc.2015.226 10.1039/C5MB00155B 10.2174/157016409789973707 10.3390/ijms150711204 10.3390/ijms150610410 10.2174/1568026617666170414145508 10.1006/jmbi.1994.1130 10.3390/ijms15057594 10.1016/j.jtbi.2016.01.020 10.1016/j.ab.2014.06.022 10.1016/j.biopha.2015.04.013 10.1016/j.jtbi.2018.05.035 10.1016/j.ygeno.2017.10.002 10.1371/journal.pone.0055844 10.1371/journal.pone.0004920 10.2174/1568026615666150819110421 10.1093/nar/gks1450 10.18632/oncotarget.9987 10.2174/1573406411666141229162834 10.1093/bioinformatics/btl151 10.1016/j.jtbi.2018.02.008 10.1093/bioinformatics/btl158 10.1016/j.cbpa.2017.11.003 10.1016/j.omtn.2017.03.006 10.1016/j.ygeno.2017.10.008 10.1016/j.ab.2013.01.019 10.1016/j.jtbi.2018.04.037 10.1016/j.jmgm.2017.08.020 10.1016/S0065-2911(05)50003-1 10.1371/journal.ppat.0020132 10.1093/bioinformatics/bth466 10.1016/j.jtbi.2018.03.034 10.1042/BJ20121150 10.1016/j.jtbi.2018.07.032 10.1016/j.ab.2014.04.001 10.1016/j.ygeno.2018.05.017 10.1016/j.omtn.2018.03.012 10.2174/1573406413666170623082245 10.1016/j.ab.2018.04.021 10.1152/ajpheart.00663.2008 10.1093/bioinformatics/btw387 10.18632/oncotarget.17104 10.1039/C7MB00267J 10.1093/nar/26.8.1974 10.1007/978-981-10-4032-0 10.1109/72.991432 10.1080/07391102.2014.968875 10.1155/2013/701317 10.1016/j.ab.2015.08.021 10.1155/2014/947416 10.1093/bioinformatics/btq003 10.2174/1573406413666170419150052 10.1073/pnas.0408677102 10.1093/bioinformatics/btx476 10.1093/bioinformatics/btx711 10.1016/j.ygeno.2017.08.005 10.1186/1471-2105-9-101 10.1016/j.gene.2017.07.036 10.1074/jbc.R100026200 10.1093/nar/gkv458 10.1007/BF03033161 10.7717/peerj.171 10.1093/bioinformatics/btr021 10.1093/bioinformatics/btx579 10.1128/MMBR.00008-10 10.1002/prot.1035 10.1093/bioinformatics/bty628 10.18632/oncotarget.9148  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| DOI | 10.1016/j.ab.2018.09.007 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry  | 
    
| EISSN | 1096-0309 | 
    
| EndPage | 17 | 
    
| ExternalDocumentID | 30218638 10_1016_j_ab_2018_09_007 S000326971830914X  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 85S 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABGSF ABMAC ABOCM ABUDA ABYKQ ACDAQ ACGFO ACNCT ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLW IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SBG SCC SDF SDG SDP SES SPC SPCBC SSK SSU SSZ T5K WH7 XPP Y6R ZA5 ZMT .55 .GJ 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADRHT ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 J5H MVM R2- SCB SEW VH1 WUQ X7M XOL YYP ZGI ZKB ZY4 ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c383t-6b847a4a1801086f161d4c7db1bea01487a26a65f31878e83d150c3b469f2ec43 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0003-2697 1096-0309  | 
    
| IngestDate | Sun Sep 28 03:07:06 EDT 2025 Sun Sep 28 04:36:11 EDT 2025 Mon Jul 21 06:07:25 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Oct 01 02:02:25 EDT 2025 Fri Feb 23 02:25:21 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Post-translational modification ACC AAC BE Lipoylation AAF PTM SVM MCC Fuzzy support vector machine BPB Feature extraction CKSAAP Sn Sp  | 
    
| Language | English | 
    
| License | Copyright © 2018 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c383t-6b847a4a1801086f161d4c7db1bea01487a26a65f31878e83d150c3b469f2ec43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 30218638 | 
    
| PQID | 2105041727 | 
    
| PQPubID | 23479 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_2153612951 proquest_miscellaneous_2105041727 pubmed_primary_30218638 crossref_citationtrail_10_1016_j_ab_2018_09_007 crossref_primary_10_1016_j_ab_2018_09_007 elsevier_sciencedirect_doi_10_1016_j_ab_2018_09_007  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-11-15 | 
    
| PublicationDateYYYYMMDD | 2018-11-15 | 
    
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Analytical biochemistry | 
    
| PublicationTitleAlternate | Anal Biochem | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Sugden (bib9) 2008; 295 Cheng, Zhao, Lin, Xiao (bib83) 2017; 33 Posner, Upadhyay, Crennell, Watson, Dorus, Danson, Bagby (bib1) 2013; 449 Chou (bib45) 2015; 11 Jia, Liu, Chang, Zhai (bib63) 2011; 93 Sankari, Manimegalai (bib52) 2018 Qiu, Xiao, Lin (bib31) 2015; 33 Lin, Wang (bib73) 2002; 13 Vacic, Iakoucheva, Radivojac (bib89) 2006; 22 Cronan, Zhao, Jiang (bib4) 2005; 50 Chou (bib42) 2011; 273 Jia, Liu, Wang (bib64) 2013; 9 Sabooh, Iqbal, Khan, Khan, Maqbool (bib41) 2018; 452 Rowland, Snowden, Cristea (bib6) 2018; 42 Chen, Feng, Deng, Lin (bib57) 2014; 462 Jia, Liu, Xiao, Liu (bib23) 2016; 497 Chou (bib54) 2009; 6 Qiu, Jiang, Xu, Xiao (bib39) 2017; 8 Atchley, Zhao, Fernandes, Drüke (bib78) 2005; 102 Qiu, Sun, Xiao, Xu (bib26) 2016; 7 Ju, He (bib28) 2017; 77 Liu, Wu (bib60) 2017; 9 Reed (bib3) 2001; 276 Shen (bib81) 2009; 1 Xu, Shao, Wu, Deng (bib20) 2013; 1 Shao, Xu, Tsai, Wang, Ngai (bib40) 2009; 4 Cheng, Xiao (bib84) 2018; 110 Jia, Zhang, Liu, Xiao (bib29) 2016; 32 Chou (bib47) 2005; 21 Min, Xiao (bib65) 2013; 2013 Xu (bib13) 2016; 16 Mei, Zhao (bib50) 2018; 427 Feng, Ding, Yang, Chen, Lin (bib14) 2017; 7 Liu, Xiao, Qiu (bib70) 2015; 474 Liu, Liu, Wang, Chen, Fang (bib59) 2015; 43 Song, Tan, Shen, Mahmood, Boyd, Webb, Akutsu, Whisstock (bib61) 2010; 26 Cheng, Xiao (bib85) 2018; 110 Cheng, Xiao (bib86) 2018; 34 Jia, Lin, Wang (bib21) 2014; 15 Xiao, Min, Wang (bib66) 2013; 8 Liu, Yang, Huang (bib69) 2018; 34 Qiu, Sun, Xiao, Xu (bib17) 2017; 36 Chen, Lin (bib58) 2015; 11 Pocernich, Butterfield (bib7) 2003; 5 Xiao, Min, Wang (bib67) 2013; 337C Wallis, Perham (bib2) 1994; 236 Spalding, Prigge (bib5) 2010; 74 Jia, Liu, Xiao, Liu (bib33) 2016; 7 Xu, Li (bib32) 2017; 13 Liu, Xiao, Yu, Jia, Qiu (bib37) 2016; 497 Liang, Zhang (bib49) 2018; 454 Qiu, Jiang, Sun, Xiao, Cheng (bib38) 2017; 13 Cheng, Xiao (bib87) 2017; 13 Khan, Rasool, Hussain, Khan (bib18) 2018; 550 Li, Godzik (bib43) 2006; 22 Chen, Lei, Jin, Lin (bib56) 2014; 456 Xuao, Cheng, Chen, Mao (bib71) 2018 Batuwita, Palade (bib75) 2013 Wang, Zhang, Sun, Guo (bib62) 2011; 27 Xu, Wen, Shao, Deng (bib25) 2014; 15 Qiu, Xiao, Lin (bib34) 2014; 2014 Xu, Ding, Wu (bib19) 2013; 8 Huang, Cui, Yu, Lu, Zhang, Tang, Peng (bib10) 2015; 72 Cheng, Lin, Xiao (bib72) 2018 Chen, Lin (bib88) 2006 Nakashima, Nishikawa (bib77) 1994; 238 Chen, Tang, Ye, Lin (bib36) 2016; 5 Veropoulos, Campbell, Cristianini (bib74) 1999 Xie, Fu, Nie (bib30) 2013; 26 Miyo, Yamamoto, Konno, Colvin, Nishida, Koseki, Kawamoto, Ogawa, Hamabe, Uemura, Nishimura (bib11) 2015; 113 Krishnan (bib48) 2018; 445 Sagara, Shimizu, Kawabata, Nakamura, Ikeguchi, Shimizu (bib79) 1998; 26 Munger, Bajad, Coller, Shenk, Rabinowitz (bib8) 2006; 2 Chen, Feng, Yang, Ding, Lin (bib15) 2018; 11 Cheng, Xiao (bib82) 2017; 628 Jia, Liu, Xiao, Liu (bib24) 2016; 394 Xiao, Wang, Lin, Jia (bib68) 2013; 436 Qiu, Sun, Xiao, Xu, Jia (bib27) 2018; 110 Chou (bib53) 2017; 17 Chen, Tang, Sheng, Zhang (bib80) 2008; 9 Qiu, Xiao, Xu (bib16) 2016; 7 Rahman, Shatabda, Saha, Kaykobad, Sohel Rahman (bib51) 2018; 452 Qiu, Sun, Xiao, Xu (bib12) 2016; 32 Chou (bib55) 2011; 273 Chen, Feng, Ding, Lin (bib35) 2015; 490 Zhang, Zhao, Sun, Ma (bib22) 2014; 15 Huang, Niu, Gao, Fu, Li (bib44) 2010; 26 Chen, Feng, Lin (bib76) 2013; 41 Chou (bib46) 2001; 43 Huang (10.1016/j.ab.2018.09.007_bib44) 2010; 26 Cheng (10.1016/j.ab.2018.09.007_bib84) 2018; 110 Xu (10.1016/j.ab.2018.09.007_bib19) 2013; 8 Sabooh (10.1016/j.ab.2018.09.007_bib41) 2018; 452 Liang (10.1016/j.ab.2018.09.007_bib49) 2018; 454 Liu (10.1016/j.ab.2018.09.007_bib70) 2015; 474 Spalding (10.1016/j.ab.2018.09.007_bib5) 2010; 74 Xiao (10.1016/j.ab.2018.09.007_bib66) 2013; 8 Cheng (10.1016/j.ab.2018.09.007_bib72) 2018 Chen (10.1016/j.ab.2018.09.007_bib36) 2016; 5 Qiu (10.1016/j.ab.2018.09.007_bib39) 2017; 8 Min (10.1016/j.ab.2018.09.007_bib65) 2013; 2013 Nakashima (10.1016/j.ab.2018.09.007_bib77) 1994; 238 Chen (10.1016/j.ab.2018.09.007_bib80) 2008; 9 Cheng (10.1016/j.ab.2018.09.007_bib87) 2017; 13 Wang (10.1016/j.ab.2018.09.007_bib62) 2011; 27 Zhang (10.1016/j.ab.2018.09.007_bib22) 2014; 15 Jia (10.1016/j.ab.2018.09.007_bib63) 2011; 93 Posner (10.1016/j.ab.2018.09.007_bib1) 2013; 449 Qiu (10.1016/j.ab.2018.09.007_bib17) 2017; 36 Batuwita (10.1016/j.ab.2018.09.007_bib75) 2013 Liu (10.1016/j.ab.2018.09.007_bib37) 2016; 497 Sugden (10.1016/j.ab.2018.09.007_bib9) 2008; 295 Veropoulos (10.1016/j.ab.2018.09.007_bib74) 1999 Jia (10.1016/j.ab.2018.09.007_bib33) 2016; 7 Reed (10.1016/j.ab.2018.09.007_bib3) 2001; 276 Qiu (10.1016/j.ab.2018.09.007_bib38) 2017; 13 Xiao (10.1016/j.ab.2018.09.007_bib67) 2013; 337C Qiu (10.1016/j.ab.2018.09.007_bib31) 2015; 33 Cheng (10.1016/j.ab.2018.09.007_bib85) 2018; 110 Qiu (10.1016/j.ab.2018.09.007_bib34) 2014; 2014 Chou (10.1016/j.ab.2018.09.007_bib45) 2015; 11 Chen (10.1016/j.ab.2018.09.007_bib56) 2014; 456 Huang (10.1016/j.ab.2018.09.007_bib10) 2015; 72 Jia (10.1016/j.ab.2018.09.007_bib23) 2016; 497 Lin (10.1016/j.ab.2018.09.007_bib73) 2002; 13 Atchley (10.1016/j.ab.2018.09.007_bib78) 2005; 102 Qiu (10.1016/j.ab.2018.09.007_bib12) 2016; 32 Jia (10.1016/j.ab.2018.09.007_bib29) 2016; 32 Chou (10.1016/j.ab.2018.09.007_bib46) 2001; 43 Khan (10.1016/j.ab.2018.09.007_bib18) 2018; 550 Sankari (10.1016/j.ab.2018.09.007_bib52) 2018 Chou (10.1016/j.ab.2018.09.007_bib53) 2017; 17 Xu (10.1016/j.ab.2018.09.007_bib25) 2014; 15 Jia (10.1016/j.ab.2018.09.007_bib21) 2014; 15 Chen (10.1016/j.ab.2018.09.007_bib15) 2018; 11 Shen (10.1016/j.ab.2018.09.007_bib81) 2009; 1 Rowland (10.1016/j.ab.2018.09.007_bib6) 2018; 42 Liu (10.1016/j.ab.2018.09.007_bib69) 2018; 34 Cheng (10.1016/j.ab.2018.09.007_bib86) 2018; 34 Munger (10.1016/j.ab.2018.09.007_bib8) 2006; 2 Qiu (10.1016/j.ab.2018.09.007_bib27) 2018; 110 Shao (10.1016/j.ab.2018.09.007_bib40) 2009; 4 Li (10.1016/j.ab.2018.09.007_bib43) 2006; 22 Cheng (10.1016/j.ab.2018.09.007_bib83) 2017; 33 Chou (10.1016/j.ab.2018.09.007_bib42) 2011; 273 Chou (10.1016/j.ab.2018.09.007_bib54) 2009; 6 Chen (10.1016/j.ab.2018.09.007_bib58) 2015; 11 Pocernich (10.1016/j.ab.2018.09.007_bib7) 2003; 5 Miyo (10.1016/j.ab.2018.09.007_bib11) 2015; 113 Qiu (10.1016/j.ab.2018.09.007_bib26) 2016; 7 Chou (10.1016/j.ab.2018.09.007_bib47) 2005; 21 Chen (10.1016/j.ab.2018.09.007_bib76) 2013; 41 Chen (10.1016/j.ab.2018.09.007_bib88) 2006 Jia (10.1016/j.ab.2018.09.007_bib24) 2016; 394 Xie (10.1016/j.ab.2018.09.007_bib30) 2013; 26 Jia (10.1016/j.ab.2018.09.007_bib64) 2013; 9 Liu (10.1016/j.ab.2018.09.007_bib60) 2017; 9 Xiao (10.1016/j.ab.2018.09.007_bib68) 2013; 436 Krishnan (10.1016/j.ab.2018.09.007_bib48) 2018; 445 Cronan (10.1016/j.ab.2018.09.007_bib4) 2005; 50 Chou (10.1016/j.ab.2018.09.007_bib55) 2011; 273 Song (10.1016/j.ab.2018.09.007_bib61) 2010; 26 Cheng (10.1016/j.ab.2018.09.007_bib82) 2017; 628 Sagara (10.1016/j.ab.2018.09.007_bib79) 1998; 26 Qiu (10.1016/j.ab.2018.09.007_bib16) 2016; 7 Mei (10.1016/j.ab.2018.09.007_bib50) 2018; 427 Vacic (10.1016/j.ab.2018.09.007_bib89) 2006; 22 Xuao (10.1016/j.ab.2018.09.007_bib71) 2018 Feng (10.1016/j.ab.2018.09.007_bib14) 2017; 7 Xu (10.1016/j.ab.2018.09.007_bib32) 2017; 13 Rahman (10.1016/j.ab.2018.09.007_bib51) 2018; 452 Chen (10.1016/j.ab.2018.09.007_bib35) 2015; 490 Wallis (10.1016/j.ab.2018.09.007_bib2) 1994; 236 Xu (10.1016/j.ab.2018.09.007_bib20) 2013; 1 Xu (10.1016/j.ab.2018.09.007_bib13) 2016; 16 Ju (10.1016/j.ab.2018.09.007_bib28) 2017; 77 Liu (10.1016/j.ab.2018.09.007_bib59) 2015; 43 Chen (10.1016/j.ab.2018.09.007_bib57) 2014; 462 39191609 - Anal Biochem. 2024 Aug 26:115653. doi: 10.1016/j.ab.2024.115653  | 
    
| References_xml | – volume: 2014 start-page: 947416 year: 2014 ident: bib34 article-title: iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach publication-title: BioMed Res. Int. – volume: 7 start-page: 44310 year: 2016 end-page: 44321 ident: bib26 article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC publication-title: Oncotarget – volume: 1 start-page: 63 year: 2009 end-page: 92 ident: bib81 article-title: Recent advances in developing web-servers for predicting protein attributes publication-title: Nat. Sci. – volume: 1 start-page: e171 year: 2013 ident: bib20 article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins publication-title: PeerJ – volume: 7 start-page: 34558 year: 2016 end-page: 34570 ident: bib33 article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC publication-title: Oncotarget – volume: 436 start-page: 168 year: 2013 end-page: 177 ident: bib68 article-title: iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types publication-title: Anal. Biochem. – volume: 27 start-page: 777 year: 2011 end-page: 784 ident: bib62 article-title: High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles publication-title: Bioinformatics – volume: 474 start-page: 69 year: 2015 end-page: 77 ident: bib70 article-title: iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition publication-title: Anal. Biochem. – volume: 8 start-page: e55844 year: 2013 ident: bib19 article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition publication-title: PLoS One – volume: 449 start-page: 415 year: 2013 end-page: 425 ident: bib1 article-title: Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation publication-title: Biochem. J. – volume: 238 start-page: 54 year: 1994 end-page: 61 ident: bib77 article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies publication-title: J. Mol. Biol. – volume: 50 start-page: 103 year: 2005 end-page: 146 ident: bib4 article-title: Function, attachment and synthesis of lipoic acid in Escherichia coli publication-title: Adv. Microb. Physiol. – volume: 32 start-page: 3133 year: 2016 end-page: 3141 ident: bib29 article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC publication-title: Bioinformatics – volume: 8 start-page: 41178 year: 2017 end-page: 41188 ident: bib39 article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition publication-title: Oncotarget – volume: 9 start-page: 67 year: 2017 end-page: 91 ident: bib60 article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nat. Sci. – volume: 2013 start-page: 701317 year: 2013 ident: bib65 article-title: iEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking publication-title: BioMed Res. Int. – volume: 276 start-page: 38329 year: 2001 end-page: 38336 ident: bib3 article-title: A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes publication-title: J. Biol. Chem. – volume: 5 start-page: e332 year: 2016 ident: bib36 article-title: iRNA-PseU: identifying RNA pseudouridine sites publication-title: Mol. Ther. Nucleic Acids – volume: 295 start-page: H917 year: 2008 end-page: H919 ident: bib9 article-title: PDC deletion: the way to a man's heart disease publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 15 start-page: 10410 year: 2014 end-page: 10423 ident: bib21 article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou's pseudo amino acid composition publication-title: Int. J. Mol. Sci. – volume: 102 start-page: 6395 year: 2005 end-page: 6400 ident: bib78 article-title: Solving the protein sequence metric problem publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 456 start-page: 53 year: 2014 end-page: 60 ident: bib56 article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition publication-title: Anal. Biochem. – volume: 15 start-page: 11204 year: 2014 end-page: 11219 ident: bib22 article-title: PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC publication-title: Int. J. Mol. Sci. – volume: 26 start-page: 1974 year: 1998 end-page: 1979 ident: bib79 article-title: The use of sequence comparison to detect ‘identities' in tRNA genes publication-title: Nucleic Acids Res. – volume: 26 start-page: 735 year: 2013 end-page: 742 ident: bib30 article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC publication-title: Protein Eng. Des. Sel. – volume: 13 start-page: 464 year: 2002 end-page: 471 ident: bib73 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Network. – volume: 9 start-page: 101 year: 2008 ident: bib80 article-title: Prediction of mucin-type Oglycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs publication-title: BMC Bioinf. – volume: 77 start-page: 200 year: 2017 end-page: 204 ident: bib28 article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Mol. Graph. Model. – volume: 22 start-page: 1658 year: 2006 end-page: 1659 ident: bib43 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics – volume: 15 start-page: 7594 year: 2014 end-page: 7610 ident: bib25 article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition publication-title: Int. J. Mol. Sci. – volume: 490 start-page: 26 year: 2015 end-page: 33 ident: bib35 article-title: iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition publication-title: Anal. Biochem. – volume: 22 start-page: 1536 year: 2006 end-page: 1537 ident: bib89 article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments publication-title: Bioinformatics – volume: 7 start-page: 51270 year: 2016 end-page: 51283 ident: bib16 article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier publication-title: Oncotarget – volume: 34 start-page: 33 year: 2018 end-page: 40 ident: bib69 article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC publication-title: Bioinformatics – volume: 452 start-page: 22 year: 2018 end-page: 34 ident: bib51 article-title: DPP-PseAAC: a DNA-binding Protein Prediction model using Chou's general PseAAC publication-title: J. Theor. Biol. – volume: 21 start-page: 10 year: 2005 end-page: 19 ident: bib47 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics – year: 2018 ident: bib72 article-title: pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC publication-title: Bioinformatics – volume: 93 start-page: 778 year: 2011 end-page: 782 ident: bib63 article-title: Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction publication-title: Biochimie – volume: 11 start-page: 2620 year: 2015 end-page: 2634 ident: bib58 article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences publication-title: Mol. Biosyst. – volume: 16 start-page: 591 year: 2016 end-page: 603 ident: bib13 article-title: Recent progress in predicting posttranslational modification sites in proteins publication-title: Curr. Top. Med. Chem. – volume: 9 start-page: 2909 year: 2013 end-page: 2913 ident: bib64 article-title: O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites publication-title: Mol. Biosyst. – volume: 13 start-page: 544 year: 2017 end-page: 551 ident: bib32 article-title: iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC publication-title: Med. Chem. – volume: 6 start-page: 262 year: 2009 end-page: 274 ident: bib54 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr. Proteomics – volume: 337C start-page: 71 year: 2013 end-page: 79 ident: bib67 article-title: iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints publication-title: J. Theor. Biol. – volume: 26 start-page: 680 year: 2010 end-page: 682 ident: bib44 article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences publication-title: Bioinformatics – volume: 7 start-page: 155 year: 2017 end-page: 163 ident: bib14 article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC publication-title: Mol. Ther. Nucleic Acids – volume: 273 start-page: 236 year: 2011 end-page: 247 ident: bib42 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition publication-title: J. Theor. Biol. – volume: 11 start-page: 218 year: 2015 end-page: 234 ident: bib45 article-title: Impacts of bioinformatics to medicinal chemistry publication-title: Med. Chem. – volume: 454 start-page: 22 year: 2018 end-page: 29 ident: bib49 article-title: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou's general PseAAC via Kullback-Leibler divergence publication-title: J. Theor. Biol. – start-page: 83 year: 2013 end-page: 96 ident: bib75 article-title: Class imbalance learning methods for support vector machines publication-title: Imbalanced Learning: Foundations, Algorithms, and Applications – start-page: 315 year: 2006 end-page: 324 ident: bib88 article-title: Combining SVMs with various feature selection strategies publication-title: Feature Extraction – volume: 452 start-page: 1 year: 2018 end-page: 9 ident: bib41 article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC publication-title: J. Theor. Biol. – volume: 26 start-page: 752 year: 2010 end-page: 760 ident: bib61 article-title: Cascleave: towards more accurate prediction of caspase substrate cleavage sites publication-title: Bioinformatics – volume: 462 start-page: 76 year: 2014 end-page: 83 ident: bib57 article-title: iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition publication-title: Anal. Biochem. – volume: 74 start-page: 200 year: 2010 end-page: 228 ident: bib5 article-title: Lipoic acid metabolism in microbial pathogens publication-title: Microbiol. Mol. Biol. Rev. – year: 2018 ident: bib52 article-title: Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC publication-title: J. Theor. Biol. – volume: 628 start-page: 315 year: 2017 end-page: 321 ident: bib82 article-title: pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC publication-title: Gene – volume: 33 start-page: 1731 year: 2015 end-page: 1742 ident: bib31 article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model publication-title: J. Biomol. Struct. Dyn. – volume: 34 start-page: 1448 year: 2018 end-page: 1456 ident: bib86 article-title: pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information publication-title: Bioinformatics – volume: 110 start-page: 231 year: 2018 end-page: 239 ident: bib85 article-title: pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC publication-title: Genomics – volume: 11 start-page: 468 year: 2018 end-page: 474 ident: bib15 article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites publication-title: Mol. Ther. Nucleic Acids – volume: 236 start-page: 209 year: 1994 end-page: 216 ident: bib2 article-title: Structural dependence of posttranslational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex publication-title: J. Mol. Biol. – volume: 110 start-page: 239 year: 2018 end-page: 246 ident: bib27 article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier publication-title: Genomics – volume: 273 start-page: 236 year: 2011 end-page: 247 ident: bib55 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review) publication-title: J. Theor. Biol. – volume: 113 start-page: 492 year: 2015 end-page: 499 ident: bib11 article-title: Tumour-suppressive function of sirt4 in human colorectal cancer publication-title: Br. J. Canc. – volume: 394 start-page: 223 year: 2016 end-page: 230 ident: bib24 article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach publication-title: J. Theor. Biol. – volume: 43 start-page: W65 year: 2015 end-page: W71 ident: bib59 article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nucleic Acids Res. – year: 2018 ident: bib71 article-title: pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC publication-title: Genomics – volume: 32 start-page: 3116 year: 2016 end-page: 3123 ident: bib12 article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types publication-title: Bioinformatics – volume: 42 start-page: 76 year: 2018 end-page: 85 ident: bib6 article-title: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease publication-title: Curr. Opin. Chem. Biol. – volume: 43 start-page: 246 year: 2001 end-page: 255 ident: bib46 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Protein Struct. Funct. Genet. – volume: 41 start-page: e68 year: 2013 ident: bib76 article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition publication-title: Nucleic Acids Res. – start-page: 55 year: 1999 end-page: 60 ident: bib74 article-title: Controlling the sensitivity of support vector machines publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – volume: 497 start-page: 60 year: 2016 end-page: 67 ident: bib37 article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties publication-title: Anal. Biochem. – volume: 17 start-page: 2337 year: 2017 end-page: 2358 ident: bib53 article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science publication-title: Curr. Top. Med. Chem. – volume: 33 start-page: 3524 year: 2017 end-page: 3531 ident: bib83 article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites publication-title: Bioinformatics – volume: 36 year: 2017 ident: bib17 article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory publication-title: Mol. Inform. – volume: 72 start-page: 135 year: 2015 end-page: 139 ident: bib10 article-title: Sirtuin-4 (sirt4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma publication-title: Biomed. Pharmacother. – volume: 445 start-page: 62 year: 2018 end-page: 74 ident: bib48 article-title: Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains publication-title: J. Theor. Biol. – volume: 427 start-page: 147 year: 2018 end-page: 153 ident: bib50 article-title: Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features publication-title: J. Theor. Biol. – volume: 550 start-page: 109 year: 2018 end-page: 116 ident: bib18 article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC publication-title: Anal. Biochem. – volume: 497 start-page: 48 year: 2016 end-page: 56 ident: bib23 article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset publication-title: Anal. Biochem. – volume: 2 start-page: 1165 year: 2006 end-page: 1175 ident: bib8 article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection publication-title: PLoS Pathog. – volume: 13 start-page: 734 year: 2017 end-page: 743 ident: bib38 article-title: iRNA-2methyl: identify RNA 2'-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier publication-title: Med. Chem. – volume: 4 start-page: e4920 year: 2009 ident: bib40 article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction publication-title: PLoS One – volume: 110 start-page: 50 year: 2018 end-page: 58 ident: bib84 article-title: pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC publication-title: Genomics – volume: 8 year: 2013 ident: bib66 article-title: iGPCR-Drug: a web server for predicting interaction between GPCRs and drugs in cellular networking publication-title: PLoS One – volume: 13 start-page: 1722 year: 2017 end-page: 1727 ident: bib87 article-title: pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC publication-title: Mol. Biosyst. – volume: 5 start-page: 515 year: 2003 end-page: 520 ident: bib7 article-title: Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease publication-title: Neurotox. Res. – volume: 26 start-page: 735 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib30 article-title: Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzt042 – volume: 26 start-page: 752 year: 2010 ident: 10.1016/j.ab.2018.09.007_bib61 article-title: Cascleave: towards more accurate prediction of caspase substrate cleavage sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq043 – volume: 93 start-page: 778 year: 2011 ident: 10.1016/j.ab.2018.09.007_bib63 article-title: Prediction of mitochondrial proteins of malaria parasite using bi-profile Bayes feature extraction publication-title: Biochimie doi: 10.1016/j.biochi.2011.01.013 – volume: 337C start-page: 71 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib67 article-title: iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2013.08.013 – volume: 32 start-page: 3116 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib12 article-title: iPTM-mLys: identifying multiple lysine PTM sites and their different types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw380 – volume: 497 start-page: 48 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib23 article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.12.009 – volume: 238 start-page: 54 year: 1994 ident: 10.1016/j.ab.2018.09.007_bib77 article-title: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1267 – volume: 452 start-page: 22 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib51 article-title: DPP-PseAAC: a DNA-binding Protein Prediction model using Chou's general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.05.006 – volume: 497 start-page: 60 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib37 article-title: pRNAm-PC: predicting N-methyladenosine sites in RNA sequences via physical-chemical properties publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.12.017 – volume: 7 start-page: 44310 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib26 article-title: iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC publication-title: Oncotarget doi: 10.18632/oncotarget.10027 – volume: 273 start-page: 236 year: 2011 ident: 10.1016/j.ab.2018.09.007_bib55 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review) publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.12.024 – volume: 474 start-page: 69 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib70 article-title: iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.12.009 – volume: 9 start-page: 2909 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib64 article-title: O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites publication-title: Mol. Biosyst. doi: 10.1039/c3mb70326f – volume: 273 start-page: 236 year: 2011 ident: 10.1016/j.ab.2018.09.007_bib42 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2010.12.024 – volume: 113 start-page: 492 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib11 article-title: Tumour-suppressive function of sirt4 in human colorectal cancer publication-title: Br. J. Canc. doi: 10.1038/bjc.2015.226 – volume: 11 start-page: 2620 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib58 article-title: Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences publication-title: Mol. Biosyst. doi: 10.1039/C5MB00155B – volume: 6 start-page: 262 year: 2009 ident: 10.1016/j.ab.2018.09.007_bib54 article-title: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology publication-title: Curr. Proteomics doi: 10.2174/157016409789973707 – volume: 15 start-page: 11204 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib22 article-title: PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150711204 – volume: 15 start-page: 10410 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib21 article-title: Prediction of protein S-nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou's pseudo amino acid composition publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150610410 – volume: 17 start-page: 2337 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib53 article-title: An unprecedented revolution in medicinal chemistry driven by the progress of biological science publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026617666170414145508 – volume: 236 start-page: 209 year: 1994 ident: 10.1016/j.ab.2018.09.007_bib2 article-title: Structural dependence of posttranslational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1130 – volume: 15 start-page: 7594 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib25 article-title: iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15057594 – volume: 394 start-page: 223 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib24 article-title: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.01.020 – volume: 462 start-page: 76 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib57 article-title: iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.06.022 – volume: 72 start-page: 135 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib10 article-title: Sirtuin-4 (sirt4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.04.013 – volume: 454 start-page: 22 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib49 article-title: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou's general PseAAC via Kullback-Leibler divergence publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.05.035 – volume: 110 start-page: 231 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib85 article-title: pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC publication-title: Genomics doi: 10.1016/j.ygeno.2017.10.002 – volume: 8 start-page: e55844 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib19 article-title: iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition publication-title: PLoS One doi: 10.1371/journal.pone.0055844 – volume: 4 start-page: e4920 year: 2009 ident: 10.1016/j.ab.2018.09.007_bib40 article-title: Computational identification of protein methylation sites through Bi-Profile bayes feature extraction publication-title: PLoS One doi: 10.1371/journal.pone.0004920 – volume: 16 start-page: 591 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib13 article-title: Recent progress in predicting posttranslational modification sites in proteins publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026615666150819110421 – volume: 41 start-page: e68 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib76 article-title: iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1450 – volume: 7 start-page: 51270 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib16 article-title: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier publication-title: Oncotarget doi: 10.18632/oncotarget.9987 – volume: 11 start-page: 218 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib45 article-title: Impacts of bioinformatics to medicinal chemistry publication-title: Med. Chem. doi: 10.2174/1573406411666141229162834 – volume: 22 start-page: 1536 year: 2006 ident: 10.1016/j.ab.2018.09.007_bib89 article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl151 – volume: 445 start-page: 62 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib48 article-title: Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.02.008 – volume: 8 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib66 article-title: iGPCR-Drug: a web server for predicting interaction between GPCRs and drugs in cellular networking publication-title: PLoS One – start-page: 55 year: 1999 ident: 10.1016/j.ab.2018.09.007_bib74 article-title: Controlling the sensitivity of support vector machines – volume: 22 start-page: 1658 year: 2006 ident: 10.1016/j.ab.2018.09.007_bib43 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 42 start-page: 76 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib6 article-title: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2017.11.003 – volume: 7 start-page: 155 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib14 article-title: iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.03.006 – volume: 110 start-page: 239 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib27 article-title: iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier publication-title: Genomics doi: 10.1016/j.ygeno.2017.10.008 – volume: 436 start-page: 168 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib68 article-title: iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.01.019 – volume: 452 start-page: 1 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib41 article-title: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.04.037 – volume: 77 start-page: 200 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib28 article-title: Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2017.08.020 – volume: 50 start-page: 103 year: 2005 ident: 10.1016/j.ab.2018.09.007_bib4 article-title: Function, attachment and synthesis of lipoic acid in Escherichia coli publication-title: Adv. Microb. Physiol. doi: 10.1016/S0065-2911(05)50003-1 – start-page: 83 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib75 article-title: Class imbalance learning methods for support vector machines – volume: 2 start-page: 1165 year: 2006 ident: 10.1016/j.ab.2018.09.007_bib8 article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0020132 – volume: 21 start-page: 10 year: 2005 ident: 10.1016/j.ab.2018.09.007_bib47 article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth466 – volume: 427 start-page: 147 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib50 article-title: Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.03.034 – volume: 449 start-page: 415 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib1 article-title: Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation publication-title: Biochem. J. doi: 10.1042/BJ20121150 – year: 2018 ident: 10.1016/j.ab.2018.09.007_bib52 article-title: Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.07.032 – volume: 456 start-page: 53 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib56 article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.04.001 – year: 2018 ident: 10.1016/j.ab.2018.09.007_bib71 article-title: pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC publication-title: Genomics doi: 10.1016/j.ygeno.2018.05.017 – volume: 11 start-page: 468 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib15 article-title: iRNA-3typeA: identifying 3-types of modification at RNA's adenosine sites publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.03.012 – volume: 13 start-page: 734 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib38 article-title: iRNA-2methyl: identify RNA 2'-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier publication-title: Med. Chem. doi: 10.2174/1573406413666170623082245 – volume: 550 start-page: 109 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib18 article-title: iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC publication-title: Anal. Biochem. doi: 10.1016/j.ab.2018.04.021 – volume: 9 start-page: 67 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib60 article-title: Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nat. Sci. – volume: 295 start-page: H917 year: 2008 ident: 10.1016/j.ab.2018.09.007_bib9 article-title: PDC deletion: the way to a man's heart disease publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00663.2008 – volume: 32 start-page: 3133 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib29 article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw387 – volume: 8 start-page: 41178 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib39 article-title: iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition publication-title: Oncotarget doi: 10.18632/oncotarget.17104 – volume: 13 start-page: 1722 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib87 article-title: pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC publication-title: Mol. Biosyst. doi: 10.1039/C7MB00267J – volume: 26 start-page: 1974 year: 1998 ident: 10.1016/j.ab.2018.09.007_bib79 article-title: The use of sequence comparison to detect ‘identities' in tRNA genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.8.1974 – volume: 36 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib17 article-title: iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory publication-title: Mol. Inform. doi: 10.1007/978-981-10-4032-0 – volume: 13 start-page: 464 year: 2002 ident: 10.1016/j.ab.2018.09.007_bib73 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.991432 – volume: 33 start-page: 1731 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib31 article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2014.968875 – volume: 1 start-page: 63 year: 2009 ident: 10.1016/j.ab.2018.09.007_bib81 article-title: Recent advances in developing web-servers for predicting protein attributes publication-title: Nat. Sci. – volume: 2013 start-page: 701317 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib65 article-title: iEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking publication-title: BioMed Res. Int. doi: 10.1155/2013/701317 – volume: 490 start-page: 26 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib35 article-title: iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition publication-title: Anal. Biochem. doi: 10.1016/j.ab.2015.08.021 – start-page: 315 year: 2006 ident: 10.1016/j.ab.2018.09.007_bib88 article-title: Combining SVMs with various feature selection strategies – volume: 2014 start-page: 947416 year: 2014 ident: 10.1016/j.ab.2018.09.007_bib34 article-title: iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach publication-title: BioMed Res. Int. doi: 10.1155/2014/947416 – volume: 26 start-page: 680 year: 2010 ident: 10.1016/j.ab.2018.09.007_bib44 article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – volume: 13 start-page: 544 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib32 article-title: iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC publication-title: Med. Chem. doi: 10.2174/1573406413666170419150052 – volume: 102 start-page: 6395 year: 2005 ident: 10.1016/j.ab.2018.09.007_bib78 article-title: Solving the protein sequence metric problem publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0408677102 – volume: 33 start-page: 3524 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib83 article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx476 – volume: 34 start-page: 1448 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib86 article-title: pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx711 – volume: 110 start-page: 50 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib84 article-title: pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC publication-title: Genomics doi: 10.1016/j.ygeno.2017.08.005 – volume: 9 start-page: 101 year: 2008 ident: 10.1016/j.ab.2018.09.007_bib80 article-title: Prediction of mucin-type Oglycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-101 – volume: 628 start-page: 315 year: 2017 ident: 10.1016/j.ab.2018.09.007_bib82 article-title: pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC publication-title: Gene doi: 10.1016/j.gene.2017.07.036 – volume: 276 start-page: 38329 year: 2001 ident: 10.1016/j.ab.2018.09.007_bib3 article-title: A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.R100026200 – volume: 43 start-page: W65 year: 2015 ident: 10.1016/j.ab.2018.09.007_bib59 article-title: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv458 – volume: 5 start-page: 515 year: 2003 ident: 10.1016/j.ab.2018.09.007_bib7 article-title: Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease publication-title: Neurotox. Res. doi: 10.1007/BF03033161 – volume: 1 start-page: e171 year: 2013 ident: 10.1016/j.ab.2018.09.007_bib20 article-title: iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins publication-title: PeerJ doi: 10.7717/peerj.171 – volume: 27 start-page: 777 year: 2011 ident: 10.1016/j.ab.2018.09.007_bib62 article-title: High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr021 – volume: 34 start-page: 33 year: 2018 ident: 10.1016/j.ab.2018.09.007_bib69 article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx579 – volume: 74 start-page: 200 year: 2010 ident: 10.1016/j.ab.2018.09.007_bib5 article-title: Lipoic acid metabolism in microbial pathogens publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00008-10 – volume: 5 start-page: e332 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib36 article-title: iRNA-PseU: identifying RNA pseudouridine sites publication-title: Mol. Ther. Nucleic Acids – volume: 43 start-page: 246 year: 2001 ident: 10.1016/j.ab.2018.09.007_bib46 article-title: Prediction of protein cellular attributes using pseudo amino acid composition publication-title: Protein Struct. Funct. Genet. doi: 10.1002/prot.1035 – year: 2018 ident: 10.1016/j.ab.2018.09.007_bib72 article-title: pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty628 – volume: 7 start-page: 34558 year: 2016 ident: 10.1016/j.ab.2018.09.007_bib33 article-title: iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC publication-title: Oncotarget doi: 10.18632/oncotarget.9148 – reference: 39191609 - Anal Biochem. 2024 Aug 26:115653. doi: 10.1016/j.ab.2024.115653  | 
    
| SSID | ssj0011456 | 
    
| Score | 2.3286676 | 
    
| Snippet | Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 11 | 
    
| SubjectTerms | Bayes Theorem bioinformatics computational methodology Feature extraction Fuzzy Logic Fuzzy support vector machine Lipoylation lysine Lysine - metabolism metabolic diseases palmitoylation Post-translational modification prediction Support Vector Machine support vector machines  | 
    
| Title | Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.ab.2018.09.007 https://www.ncbi.nlm.nih.gov/pubmed/30218638 https://www.proquest.com/docview/2105041727 https://www.proquest.com/docview/2153612951  | 
    
| Volume | 561-562 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-0309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011456 issn: 0003-2697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1096-0309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011456 issn: 0003-2697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-0309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011456 issn: 0003-2697 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1096-0309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011456 issn: 0003-2697 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011456 issn: 0003-2697 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CcmgvpXm0ddOELZRAD1tL2dXDR2MS3BpCKQ31bdmXUhVbNn6UOIf-9sysJEMh9aEnIbESi2aZ-Wb3m_kAPmQOw04eWy6d91x6EfEeBjJudVykhbUkVElsi5t0eCu_jJPxHgzaWhiiVTa-v_bpwVs3T7rN3-zOy5JqfCPEHvjlXGDQk2OqYJcZqRh8-rOleSDcDwquNJjT6OaosuZ4aUPkrjx0OiVB2adD07-gZwhB1y_hRYMdWb-e3iHs-eoIjvsV5s3TDbtggc0ZtsmP4NmgVXI7hvuvCzqOIYIzow4klWeTcj7b1DQ4RufHS0YE-DtmSt6oeDOjN_i48KHzJ0MfvqhrIJiuHCvWDw8btlzPCb6z32Hrn00DMdMzPbmbLcrVz-kJ3F5ffR8MeaO4wC1mqiueGgxWWuoY4xbmOgXCQSdt5kxsvKa9x0xfpjpNCvQEWe5z4RBPWmEwxy4uvZXiFexXs8q_AaaTyPecxuxRR9IVPne4GvLU9CSBsjjrQLf92co27chJFWOiWt7ZL6WNIvOoqKfQPB34uH1jXrfi2DFWtPZTfy0nhZFix1vvW1MrNBEdnejKz9ZLhYlxEkkCe7vGJALxIkLWDryu18l2niJof4n87X_N6xSe0x2VQMbJO9hfLdb-DLHQypyHxX4OB_3Po-ENXUfffoweARY1Co0 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9lAuCFqg4VUjISQOJrux95FjFVGlpVQcWik3y69tt0o2UR6I9MBvZ8a7GwmJ5tCrd7yyPNbMN57PMwCfModuJ48tl857Lr2IeB8dGbc6LtLCWmpUSWyLy3R4Lc9HyWgHBu1bGKJVNra_tunBWjcj3WY3u7OypDe-EWIP_HMu0OnJ0RPYk0kvowjs658NzwPxfmjhStKcxJtcZU3y0obYXXkodUodZf_vmx7CnsEHnT6HZw14ZCf1-l7Ajq8O4PCkwsB5smafWaBzhnvyA9gftK3cDuH3zznlY4jhzKgESeXZuJxN1zUPjlECecGIAX_DTMmbNt7M6DUOFz6U_mRoxOf1IwimK8eK1f39mi1WM8Lv7Fe4-2eTwMz0TI9vpvNyeTt5Cden364GQ960XOAWQ9UlTw16Ky11jI4Lg50C8aCTNnMmNl7T5WOme6lOkwJNQZb7XDgElFYYDLKLnrdSvILdalr5I2A6iXzfaQwfdSRd4XOHxyFPTV8SKouzDnTbzVa2qUdObTHGqiWe3SltFKlHRX2F6unAl82MWV2LY4usaPWn_jlPCl3FllkfW1UrVBHlTnTlp6uFwsg4iSShvW0yiUDAiJi1A6_rc7JZpwjNv0T-5lHrOob94dWPC3Vxdvn9LTylL_QeMk7ewe5yvvLvERgtzYdw8P8C0XYKfw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+lysine+lipoylation+sites+using+bi-profile+bayes+feature+extraction+and+fuzzy+support+vector+machine+algorithm&rft.jtitle=Analytical+biochemistry&rft.au=Ju%2C+Zhe&rft.au=Wang%2C+Shi-Yun&rft.date=2018-11-15&rft.issn=1096-0309&rft.eissn=1096-0309&rft.volume=561-562&rft.spage=11&rft_id=info:doi/10.1016%2Fj.ab.2018.09.007&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2697&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2697&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2697&client=summon |