Label Propagation through Linear Neighborhoods

In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 20; no. 1; pp. 55 - 67
Main Authors Wang, Fei, Zhang, Changshui
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2007.190672

Cover

Abstract In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. In recent years, graph-based semi supervised learning has been becoming one of the most active research areas in the semi supervised learning community. In this paper, a novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named linear neighborhood propagation (LNP), can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness. A theoretical analysis of the properties of LNP is presented in this paper. Furthermore, we also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit, and text classification tasks.
AbstractList In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. In recent years, graph-based semi supervised learning has been becoming one of the most active research areas in the semi supervised learning community. In this paper, a novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named linear neighborhood propagation (LNP), can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness. A theoretical analysis of the properties of LNP is presented in this paper. Furthermore, we also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit, and text classification tasks.
In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. [...] semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields.
Author Fei Wang
Changshui Zhang
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
– sequence: 2
  givenname: Changshui
  surname: Zhang
  fullname: Zhang, Changshui
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19940645$$DView record in Pascal Francis
BookMark eNp9kb1PwzAQxS0EEqWwI7FUSMCUcuePxB4RlA9RAUOZLcd1WlchLnY68N-T0qoDEtxyN_zek-69I7LfhMYRcoowRAR1PXm-Gw0pQDFEBXlB90gPhZAZRYX73Q0cM854cUiOUloAgCwk9shwbEpXD95iWJqZaX1oBu08htVsPhj7xpk4eHF-Ni9DnIcwTcfkoDJ1cifb3Sfv96PJ7WM2fn14ur0ZZ5ZJ1mYcraAUhGRAGUcxRV4hLRlIVgiKsuTCQm4ld6XASlBTwNSi5YXiiAYV65Orje8yhs-VS63-8Mm6ujaNC6ukZSGgexOwIy__JRkXSuQIHXj-C1yEVWy6L7RCSiVbT59cbCGTrKmraBrrk15G_2Hil0alOORcdFy-4WwMKUVXaevbn_jaaHytEfS6Fb1uRa9b0ZtWOiH8Eu68_5acbSTeObfDORNSdQF_A2gJlT4
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s10515_016_0194_x
crossref_primary_10_1109_TMM_2010_2041100
crossref_primary_10_1016_j_jrras_2024_100858
crossref_primary_10_1007_s10115_022_01738_w
crossref_primary_10_1007_s11042_016_3371_9
crossref_primary_10_1016_j_compbiomed_2018_03_017
crossref_primary_10_1007_s10618_010_0207_5
crossref_primary_10_1109_LGRS_2019_2958410
crossref_primary_10_1109_TKDE_2024_3374357
crossref_primary_10_1109_TIP_2012_2207397
crossref_primary_10_1016_j_ijar_2017_09_008
crossref_primary_10_1109_TCYB_2019_2903591
crossref_primary_10_1007_s00521_018_3478_1
crossref_primary_10_1109_TPAMI_2023_3309970
crossref_primary_10_3390_app8122636
crossref_primary_10_1016_j_ins_2015_07_005
crossref_primary_10_2200_S00590ED1V01Y201408AIM029
crossref_primary_10_1007_s12161_020_01955_5
crossref_primary_10_1109_TCBB_2019_2931546
crossref_primary_10_1109_LSP_2016_2619352
crossref_primary_10_1109_LSP_2014_2329056
crossref_primary_10_1109_TSP_2016_2550016
crossref_primary_10_1109_TGRS_2019_2948361
crossref_primary_10_1007_s11042_013_1811_3
crossref_primary_10_1109_TKDE_2020_2987784
crossref_primary_10_1109_TIP_2016_2621663
crossref_primary_10_1016_j_ins_2021_10_041
crossref_primary_10_1108_LHT_08_2019_0175
crossref_primary_10_1109_TIP_2012_2190083
crossref_primary_10_1109_TKDE_2019_2949297
crossref_primary_10_1155_2013_589386
crossref_primary_10_1109_ACCESS_2018_2851228
crossref_primary_10_1016_j_neunet_2016_01_008
crossref_primary_10_1007_s41870_023_01558_3
crossref_primary_10_1016_j_neucom_2013_09_025
crossref_primary_10_4018_jmdem_2013040103
crossref_primary_10_1109_TCSS_2024_3390931
crossref_primary_10_1007_s12539_022_00501_7
crossref_primary_10_3390_biom12010064
crossref_primary_10_3390_rs12020280
crossref_primary_10_1007_s12559_022_10056_w
crossref_primary_10_1109_TMM_2022_3179895
crossref_primary_10_1109_TKDE_2020_2978844
crossref_primary_10_1016_j_neunet_2017_02_003
crossref_primary_10_3390_rs9020109
crossref_primary_10_1016_j_patcog_2016_09_011
crossref_primary_10_1109_TNNLS_2021_3120100
crossref_primary_10_1016_j_knosys_2021_107661
crossref_primary_10_1016_j_neunet_2018_12_003
crossref_primary_10_1021_acs_jproteome_6b00686
crossref_primary_10_1007_s10489_020_01724_1
crossref_primary_10_1109_ACCESS_2021_3087185
crossref_primary_10_1109_ACCESS_2020_2995399
crossref_primary_10_1049_cje_2021_05_003
crossref_primary_10_1109_TNNLS_2017_2727526
crossref_primary_10_1109_TSMCB_2009_2034632
crossref_primary_10_1016_j_ins_2013_03_012
crossref_primary_10_1080_07038992_2015_1089161
crossref_primary_10_1109_TNNLS_2021_3059511
crossref_primary_10_1007_s10044_024_01217_8
crossref_primary_10_3390_rs10040515
crossref_primary_10_1016_j_neunet_2017_07_013
crossref_primary_10_1007_s11042_021_11843_7
crossref_primary_10_1093_bib_bbad203
crossref_primary_10_1007_s10115_022_01701_9
crossref_primary_10_1007_s10994_019_05855_6
crossref_primary_10_1016_j_eswa_2022_117384
crossref_primary_10_1093_bib_bbac595
crossref_primary_10_1016_j_neucom_2014_08_035
crossref_primary_10_1016_j_eswa_2021_116276
crossref_primary_10_1016_j_neucom_2015_06_064
crossref_primary_10_1109_TKDE_2014_2339860
crossref_primary_10_1109_TKDE_2011_119
crossref_primary_10_3724_SP_J_1004_2010_01655
crossref_primary_10_1109_LSP_2015_2488632
crossref_primary_10_3390_app10217740
crossref_primary_10_1016_j_neucom_2018_05_084
crossref_primary_10_1007_s11063_023_11282_5
crossref_primary_10_1109_TNN_2010_2099237
crossref_primary_10_1109_TGRS_2021_3115354
crossref_primary_10_1109_TPAMI_2022_3166894
crossref_primary_10_1016_j_patrec_2011_12_015
crossref_primary_10_1049_iet_ipr_2016_0371
crossref_primary_10_1109_TGRS_2017_2760909
crossref_primary_10_1016_j_knosys_2018_05_011
crossref_primary_10_1007_s10994_023_06447_1
crossref_primary_10_1109_ACCESS_2020_3003916
crossref_primary_10_1016_j_jvcir_2015_09_005
crossref_primary_10_1007_s11042_016_3572_2
crossref_primary_10_1016_j_ins_2018_06_074
crossref_primary_10_1016_j_neucom_2022_02_026
crossref_primary_10_1016_j_jvcir_2014_09_004
crossref_primary_10_1109_TCYB_2022_3164696
crossref_primary_10_1109_TMM_2014_2298841
crossref_primary_10_1109_ACCESS_2024_3512379
crossref_primary_10_1016_j_engappai_2020_103722
crossref_primary_10_1016_j_patrec_2011_12_005
crossref_primary_10_1016_j_neunet_2021_04_033
crossref_primary_10_1016_j_patcog_2022_109112
crossref_primary_10_1016_j_patrec_2016_12_023
crossref_primary_10_1109_ACCESS_2019_2913213
crossref_primary_10_1109_TIP_2018_2806278
crossref_primary_10_1109_LSP_2015_2421971
crossref_primary_10_3390_rs10050685
crossref_primary_10_1109_ACCESS_2017_2723433
crossref_primary_10_1109_TCYB_2019_2910751
crossref_primary_10_1016_j_ins_2014_02_067
crossref_primary_10_1109_TKDE_2017_2654445
crossref_primary_10_1109_TNNLS_2022_3157746
crossref_primary_10_1016_j_micpro_2020_103070
crossref_primary_10_1145_3480967
crossref_primary_10_1109_TMM_2012_2199970
crossref_primary_10_3233_JIFS_212590
crossref_primary_10_3390_e21111125
crossref_primary_10_1109_LGRS_2009_2012443
crossref_primary_10_1016_j_compmedimag_2019_101663
crossref_primary_10_1186_s12859_019_3078_9
crossref_primary_10_3389_fgene_2020_615144
crossref_primary_10_1109_TNNLS_2018_2843798
crossref_primary_10_3389_fgene_2021_666575
crossref_primary_10_1007_s11460_011_0130_6
crossref_primary_10_1016_j_knosys_2016_01_021
crossref_primary_10_1016_j_image_2018_06_008
crossref_primary_10_1016_j_image_2009_11_001
crossref_primary_10_1109_TPAMI_2021_3070599
crossref_primary_10_1007_s11432_010_0066_0
crossref_primary_10_1016_j_neucom_2014_08_082
crossref_primary_10_1016_j_patcog_2018_03_027
crossref_primary_10_1109_TKDE_2023_3270940
crossref_primary_10_1109_TKDE_2013_142
crossref_primary_10_1109_TKDE_2015_2415497
crossref_primary_10_1109_TNNLS_2020_2979607
crossref_primary_10_1007_s11042_013_1796_y
crossref_primary_10_1109_TCYB_2013_2272642
crossref_primary_10_1109_TKDE_2023_3288002
crossref_primary_10_1016_j_diamond_2020_107990
crossref_primary_10_1109_TKDE_2021_3073157
crossref_primary_10_1109_TSMC_2021_3066545
crossref_primary_10_1016_j_ins_2024_120702
crossref_primary_10_1145_2501643_2501646
crossref_primary_10_1016_j_neucom_2023_03_016
crossref_primary_10_1007_s11704_019_8452_2
crossref_primary_10_1109_TGRS_2014_2365676
crossref_primary_10_1109_TPAMI_2011_170
crossref_primary_10_1109_JSTARS_2019_2926123
crossref_primary_10_1016_j_neucom_2012_03_017
crossref_primary_10_1088_1742_6596_490_1_012022
crossref_primary_10_1016_j_neucom_2017_04_066
crossref_primary_10_1016_j_patcog_2009_12_022
crossref_primary_10_1007_s11263_020_01342_x
crossref_primary_10_1007_s12539_024_00607_0
crossref_primary_10_1117_1_JEI_23_6_063004
crossref_primary_10_1587_transinf_E97_D_1673
crossref_primary_10_1016_j_patcog_2010_07_012
crossref_primary_10_1186_s40537_021_00423_z
crossref_primary_10_1016_j_patrec_2019_01_013
crossref_primary_10_1007_s13042_022_01701_9
crossref_primary_10_1109_TKDE_2019_2901853
crossref_primary_10_1016_j_knosys_2023_111124
crossref_primary_10_1109_JBHI_2015_2425365
crossref_primary_10_1145_3589291
crossref_primary_10_1109_TGRS_2020_3013968
crossref_primary_10_1109_TIM_2023_3261909
crossref_primary_10_1016_j_ins_2024_120954
crossref_primary_10_1109_TGRS_2015_2427791
crossref_primary_10_1007_s00500_019_04269_9
crossref_primary_10_1007_s11063_011_9195_8
crossref_primary_10_1109_TNNLS_2011_2181413
crossref_primary_10_1016_j_neucom_2009_10_022
crossref_primary_10_1109_TSMCB_2008_2006045
crossref_primary_10_1007_s11063_018_9783_y
crossref_primary_10_1016_j_neucom_2014_02_044
crossref_primary_10_1016_j_knosys_2014_12_014
crossref_primary_10_1007_s00521_018_3342_3
crossref_primary_10_1186_s12859_024_05662_4
crossref_primary_10_3724_SP_J_1089_2010_10502
crossref_primary_10_1016_j_neucom_2011_04_042
crossref_primary_10_1109_TIP_2011_2180916
crossref_primary_10_3390_molecules22122056
crossref_primary_10_3390_rs13030361
crossref_primary_10_1371_journal_pone_0275872
crossref_primary_10_1016_j_neunet_2017_08_002
crossref_primary_10_3390_rs10060846
crossref_primary_10_1016_j_patcog_2019_06_015
crossref_primary_10_1007_s11063_014_9396_z
crossref_primary_10_1109_TGRS_2020_2972294
crossref_primary_10_1016_j_neucom_2015_11_112
crossref_primary_10_3390_pr8091068
crossref_primary_10_1016_j_patcog_2023_109894
crossref_primary_10_1016_j_culher_2018_01_003
crossref_primary_10_1109_ACCESS_2019_2948374
crossref_primary_10_1016_j_ins_2020_09_015
crossref_primary_10_1007_s11431_020_1824_4
crossref_primary_10_1016_j_knosys_2016_12_005
crossref_primary_10_1142_S0217979214502087
crossref_primary_10_1109_TMM_2009_2037373
crossref_primary_10_3233_AIC_220179
crossref_primary_10_1007_s11434_009_0171_x
crossref_primary_10_1109_LSP_2017_2764103
crossref_primary_10_1016_j_patcog_2020_107411
crossref_primary_10_1109_TKDE_2014_2365793
crossref_primary_10_1109_TPAMI_2024_3518595
crossref_primary_10_1371_journal_pone_0233660
crossref_primary_10_1007_s10489_021_02360_z
crossref_primary_10_1142_S0219691319400022
crossref_primary_10_1109_TPAMI_2010_35
crossref_primary_10_1007_s10994_024_06560_9
crossref_primary_10_1007_s10994_016_5607_3
crossref_primary_10_1016_j_ins_2015_06_021
crossref_primary_10_1109_TCBB_2021_3081268
crossref_primary_10_1016_j_knosys_2020_106690
crossref_primary_10_1109_TIP_2018_2881907
crossref_primary_10_1016_j_neunet_2012_11_001
crossref_primary_10_1016_j_neunet_2018_02_004
crossref_primary_10_1109_TKDE_2020_2982387
crossref_primary_10_1177_14738716221086589
crossref_primary_10_1109_TKDE_2016_2535367
crossref_primary_10_1016_j_eswa_2021_114791
crossref_primary_10_1007_s00521_020_05078_0
crossref_primary_10_1109_TKDE_2019_2947040
crossref_primary_10_3389_fdata_2021_707951
crossref_primary_10_1016_j_jbi_2018_11_005
crossref_primary_10_1109_TNNLS_2022_3155478
crossref_primary_10_14778_3021924_3021938
crossref_primary_10_1016_j_patcog_2018_04_027
crossref_primary_10_1109_TKDE_2013_182
crossref_primary_10_3390_s23031387
crossref_primary_10_1109_TIP_2010_2049235
crossref_primary_10_1016_j_neunet_2015_01_009
crossref_primary_10_1162_neco_a_01022
crossref_primary_10_1016_j_neunet_2021_06_007
crossref_primary_10_1109_TNNLS_2014_2363679
crossref_primary_10_1016_j_eswa_2015_09_026
crossref_primary_10_1016_j_patcog_2014_08_019
crossref_primary_10_3390_computation7010015
crossref_primary_10_1016_j_patrec_2016_08_002
crossref_primary_10_1016_j_compbiolchem_2022_107722
crossref_primary_10_1186_s12918_017_0477_2
crossref_primary_10_1109_TPAMI_2008_216
crossref_primary_10_1145_2508037_2508042
crossref_primary_10_1016_j_ins_2011_07_043
crossref_primary_10_1109_TGRS_2020_3046780
crossref_primary_10_1007_s10115_012_0481_1
crossref_primary_10_1109_TIP_2023_3319274
crossref_primary_10_1016_j_asoc_2021_108074
crossref_primary_10_7498_aps_63_208701
crossref_primary_10_1109_TCYB_2017_2647904
crossref_primary_10_1016_j_neunet_2015_01_001
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1007_s00521_021_06599_y
crossref_primary_10_1109_TNSE_2022_3153968
crossref_primary_10_1109_TSIPN_2020_2964249
crossref_primary_10_1080_24725854_2022_2074579
crossref_primary_10_1016_j_ins_2017_09_054
crossref_primary_10_1016_j_knosys_2012_05_011
crossref_primary_10_1039_D1MO00237F
crossref_primary_10_1109_ACCESS_2019_2914034
crossref_primary_10_1109_ACCESS_2019_2933589
crossref_primary_10_1016_j_jbi_2018_05_005
crossref_primary_10_1016_j_image_2020_115984
crossref_primary_10_4304_jsw_8_4_1011_1018
crossref_primary_10_1109_TSMC_2022_3161067
crossref_primary_10_1016_j_neucom_2019_08_036
crossref_primary_10_1007_s10618_018_0593_7
crossref_primary_10_1016_j_patrec_2010_12_005
crossref_primary_10_1016_j_knosys_2020_106505
crossref_primary_10_1016_j_ins_2021_06_010
crossref_primary_10_3390_rs14143295
crossref_primary_10_1016_j_ifacol_2016_07_014
crossref_primary_10_1109_TIFS_2012_2188389
crossref_primary_10_1109_TGRS_2017_2710079
crossref_primary_10_1016_j_patcog_2013_11_011
crossref_primary_10_1016_j_patrec_2020_04_021
crossref_primary_10_1016_j_neucom_2014_05_067
crossref_primary_10_1016_j_patcog_2013_01_009
crossref_primary_10_1109_TITS_2023_3305620
crossref_primary_10_1016_j_neucom_2014_11_053
crossref_primary_10_1109_TNNLS_2021_3082496
crossref_primary_10_1016_j_knosys_2019_03_004
crossref_primary_10_1186_s12859_021_04073_z
crossref_primary_10_1145_1899412_1899418
crossref_primary_10_1145_1899412_1899416
crossref_primary_10_3390_genes13112032
crossref_primary_10_1109_ACCESS_2022_3174197
crossref_primary_10_1109_TCYB_2018_2804326
crossref_primary_10_1109_TNNLS_2019_2956015
crossref_primary_10_1109_TKDE_2010_144
crossref_primary_10_1145_2898358
crossref_primary_10_1007_s10994_021_05975_y
crossref_primary_10_1016_j_knosys_2017_01_019
crossref_primary_10_1016_j_jvcir_2022_103685
crossref_primary_10_1109_JSTARS_2022_3179026
crossref_primary_10_1007_s11704_017_6543_5
crossref_primary_10_1016_j_patcog_2016_07_042
crossref_primary_10_1145_2856058
crossref_primary_10_1109_ACCESS_2025_3535103
crossref_primary_10_1007_s00371_019_01746_y
crossref_primary_10_1109_TIP_2016_2601260
crossref_primary_10_1155_2018_7963210
crossref_primary_10_1109_TKDE_2021_3100436
crossref_primary_10_1007_s11042_016_4029_3
crossref_primary_10_1155_2021_6654349
crossref_primary_10_1145_3490478
crossref_primary_10_52547_jsdp_18_4_49
crossref_primary_10_1016_j_cviu_2014_12_008
crossref_primary_10_1016_j_neucom_2015_07_048
crossref_primary_10_1016_j_ymeth_2022_09_005
crossref_primary_10_1016_j_neunet_2014_03_005
crossref_primary_10_1007_s13042_015_0458_y
crossref_primary_10_1016_j_neucom_2014_11_028
crossref_primary_10_1016_j_patcog_2012_04_021
crossref_primary_10_1002_tee_23149
crossref_primary_10_1016_j_jag_2022_103153
crossref_primary_10_1016_j_neucom_2016_10_031
crossref_primary_10_1049_iet_ipr_2013_0599
crossref_primary_10_1016_j_patcog_2017_03_014
crossref_primary_10_1109_TNNLS_2021_3123089
crossref_primary_10_1109_TCYB_2014_2300489
crossref_primary_10_1109_TNNLS_2020_3027526
crossref_primary_10_1016_j_cagd_2020_101864
crossref_primary_10_1016_j_cviu_2014_01_008
crossref_primary_10_1109_JPROC_2012_2197809
crossref_primary_10_1109_TCBB_2020_3020595
crossref_primary_10_1016_j_ipm_2021_102534
crossref_primary_10_4304_jsw_7_5_951_958
crossref_primary_10_1109_TSP_2021_3054995
Cites_doi 10.1007/978-1-4899-7687-1_749
10.7551/mitpress/6173.003.0022
10.2307/2984875
10.1017/cbo9780511546839.020
10.1023/A:1007692713085
10.1126/science.290.5500.2319
10.1109/36.312897
10.1007/978-1-4757-2440-0
10.1145/279943.279962
10.1145/1143844.1143968
10.1007/978-3-540-27819-1_43
10.1162/neco.2006.18.10.2509
10.1023/A:1022643204877
10.1162/neco.1997.9.7.1493
10.1126/science.290.5500.2323
10.1162/089976603321780317
10.7551/mitpress/9780262033589.001.0001
10.1007/978-3-540-28649-3_29
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2007.190672
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1558-2191
EndPage 67
ExternalDocumentID 2545194171
19940645
10_1109_TKDE_2007_190672
4358958
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c383t-41c5220583023415d14f12b308375218b45c06c84eb51f52a70dc1c479411a193
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Thu Oct 02 06:14:17 EDT 2025
Sun Sep 28 05:49:18 EDT 2025
Sun Jun 29 15:30:30 EDT 2025
Mon Jul 21 09:15:29 EDT 2025
Wed Oct 01 06:39:41 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Wed Aug 27 02:52:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data mining
Graph labeling
Mining methods and algorithms
Machine learning
Data analysis
semisupervised learning
label propagation
Information retrieval
Information extraction
Text
Linear model
graph
Structured data mining
Natural language
Data structure
linear neighborhoods
Learning algorithm
Artificial intelligence
Content analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-41c5220583023415d14f12b308375218b45c06c84eb51f52a70dc1c479411a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912283333
PQPubID 23500
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2007_190672
proquest_miscellaneous_34595610
crossref_primary_10_1109_TKDE_2007_190672
pascalfrancis_primary_19940645
proquest_journals_912283333
proquest_miscellaneous_875090601
ieee_primary_4358958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-Jan.
2008-01-00
2008
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-Jan.
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2008
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Chapelle (ref9) 2003
ref12
Belkin (ref4) 2006; 7
ref14
Zhu (ref36) 2002
Joachims (ref16)
ref31
Jain (ref15) 1988
ref30
ref33
ref10
ref2
Blum (ref7)
ref38
ref18
Szummer (ref28) 2002
Chung (ref13); 92
Zhou (ref32) 2004
Zhu (ref37) 2002
ref24
ref23
ref25
Joachims (ref17)
ref22
Balcan (ref1)
Lawrence (ref20) 2005
Schölkopf (ref26) 2002
Zhu (ref35)
Carreira-Perpinan (ref8) 2005
Miller (ref21) 1997
ref27
ref29
Zhou (ref34) 2005
ref3
Zhu (ref39) 2006
ref6
ref5
Kapoor (ref19) 2005
Delalleu (ref11)
References_xml – start-page: 200
  volume-title: Proc. 16th Int’l Conf. Machine Learning (ICML ’99)
  ident: ref16
  article-title: Transductive Inference for Text Classification Using Support Vector Machines
– ident: ref38
  doi: 10.1007/978-1-4899-7687-1_749
– start-page: 571
  volume-title: Advances in Neural Information Processing Systems 9
  year: 1997
  ident: ref21
  article-title: A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data
– start-page: 321
  volume-title: Advances in Neural Information Processing Systems 16
  year: 2004
  ident: ref32
  article-title: Learning with Local and Global Consistency
– start-page: 601
  volume-title: Advances in Neural Information Processing Systems 15
  year: 2003
  ident: ref9
  article-title: Cluster Kernels for Semi-Supervised Learning
– ident: ref25
  doi: 10.7551/mitpress/6173.003.0022
– start-page: 96
  volume-title: Proc. 10th Int’l Workshop Artificial Intelligence and Statistics (AISTAT ’05)
  ident: ref11
  article-title: Non-Parametric Function Induction in Semi-Supervised Learning
– ident: ref12
  doi: 10.2307/2984875
– ident: ref14
  doi: 10.1017/cbo9780511546839.020
– volume-title: Advances in Neural Information Processing Systems
  year: 2005
  ident: ref19
  article-title: Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification
– volume-title: Proc. 20th Int’l Conf. Machine Learning (ICML ’03)
  ident: ref35
  article-title: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
– ident: ref22
  doi: 10.1023/A:1007692713085
– volume-title: Learning with Kernels
  year: 2002
  ident: ref26
– ident: ref29
  doi: 10.1126/science.290.5500.2319
– start-page: 19
  volume-title: Proc. 18th Int’l Conf. Machine Learning (ICML ’01)
  ident: ref7
  article-title: Learning from Labeled and Unlabeled Data Using Graph Mincuts
– volume-title: Computer Sciences Technical Report 1530, Univ. of Wisconsin, Madison
  year: 2006
  ident: ref39
  article-title: Semi-Supervised Learning Literature Survey
– start-page: 290
  volume-title: Proc. 20th Int’l Conf. Machine Learning (ICML ’03)
  ident: ref17
  article-title: Transductive Learning via Spectral Graph Partitioning
– ident: ref27
  doi: 10.1109/36.312897
– volume: 92
  volume-title: CBMS Regional Conf. Series in Mathematics
  ident: ref13
  article-title: Spectral Graph Theory
– ident: ref30
  doi: 10.1007/978-1-4757-2440-0
– start-page: 1633
  volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: ref34
  article-title: Semi-Supervised Learning on Directed Graphs
– ident: ref6
  doi: 10.1145/279943.279962
– ident: ref31
  doi: 10.1145/1143844.1143968
– volume-title: Algorithms for Clustering Data
  year: 1988
  ident: ref15
– volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: ref20
  article-title: Semi-Supervised Learning via Gaussian Processes
– ident: ref3
  doi: 10.1007/978-3-540-27819-1_43
– start-page: 225
  volume-title: Advances in Neural Information Processing Systems 17
  year: 2005
  ident: ref8
  article-title: Proximity Graphs for Clustering and Manifold Learning
– volume-title: Technical Report CMU-CALD-02-106, Carnegie Mellon Univ.
  year: 2002
  ident: ref37
  article-title: Towards Semi-Supervised Classification with Markov Random Fields
– ident: ref5
  doi: 10.1162/neco.2006.18.10.2509
– volume-title: Technical Report CMU-CALD-02-107, Carnegie Mellon Univ.
  year: 2002
  ident: ref36
  article-title: Learning from Labeled and Unlabeled Data with Label Propagation
– volume-title: Proc. ICML Workshop Learning with Partially Classified Training Data
  ident: ref1
  article-title: Person Identification in Webcam Images: An Application of Semi-Supervised Learning
– ident: ref23
  doi: 10.1023/A:1022643204877
– start-page: 945
  volume-title: Advances in Neural Information Processing Systems 14
  year: 2002
  ident: ref28
  article-title: Partially Labeled Classification with Markov Random Walks
– ident: ref18
  doi: 10.1162/neco.1997.9.7.1493
– ident: ref24
  doi: 10.1126/science.290.5500.2323
– ident: ref2
  doi: 10.1162/089976603321780317
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref4
  article-title: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
  publication-title: J. Machine Learning Research
– ident: ref10
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref33
  doi: 10.1007/978-3-540-28649-3_29
SSID ssj0008781
Score 2.4539733
Snippet In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Classification
Computer science; control theory; systems
Data mining
Data processing. List processing. Character string processing
Exact sciences and technology
Gaussian processes
Graph labeling
Labels
Learning
Machine learning
Machine learning algorithms
Memory organisation. Data processing
Mining methods and algorithms
Predictive models
Semifabricated products
Semisupervised learning
Software
Speech and sound recognition and synthesis. Linguistics
Studies
Supervised learning
Support vector machine classification
Support vector machines
Tasks
Text categorization
Texts
Unsupervised learning
Title Label Propagation through Linear Neighborhoods
URI https://ieeexplore.ieee.org/document/4358958
https://www.proquest.com/docview/912283333
https://www.proquest.com/docview/34595610
https://www.proquest.com/docview/875090601
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61TDDwaEGER8nAgkTaOHFiZ0RQhIBWDK3ULUpshwHUItou_Hru8oLyEhmiSHEi-872PXz3HcApYcFyX3mO72lNKTnckVko0UpRiieJ62lFroHBMLwZ89tJMGnAeZ0LY4zJg89Mlx7zs3w9U0tylfVQtMsokE1oChkWuVr1ritFXpAUrQu0iXwuqiNJN-qN7q76BVghSr9QeCsiKK-pQhGRyRyJkhXVLL5tzLm0ud6CQdXPIsjkqbtcpF319gXC8b8D2YbNUu20L4p5sgMNM23BVlXSwS5XeAs2PuETtqF7n6Tm2X54Rcv6MWehXdb1sdGGxTViD8mzitOIwJHnuzC-7o8ub5yywIKj0DBdOJypgBJtCQMMpVmgGc-Yl_qolgkU6zLlgXJDJblJA5YFXiJcrZgiUHrGElT99mBtOpuafbC1FpngmqV448SOVLomMZ72lIkkcy3oVTSPVYk-TkUwnuPcCnGjmLhERTFFXHDJgrP6i5cCeeOPtm0ict2upK8FnRW2fvwnijgB9VlwWPE5LtfuPI4YQQLhZcFJ_RYXHZ2kJFMzW85jnweUEIyjsn9pIUkTI6ybg5-7dgjrReQJOXOOYG3xujTHqN4s0k4-r98B2evzUw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBNyKURwYWJNLGid04I-KhAm3FUCS2KLEdBqoU9bHw67nLizciQxQpTmTf2b6H774DOCEsWO4rz_E9rSklhzsy7Ui0UpTicex6WpFroD_odB_47aN4XICzOhfGGJMHn5kWPeZn-Xqs5uQqa6Nol6GQi7AkOOeiyNaq910Z5CVJ0b5Aq8jnQXUo6Ybt4d3lVQFXiPKvE3ifhFBeVYViIuMpkiUt6ll825pzeXO9Dv2qp0WYyXNrPkta6vULiON_h7IBa6XiaZ8XM2UTFky2BetVUQe7XONbsPoBoXAbWr04MSP7foK29VPORLus7GOjFYurxB6QbxUnEsEjT3fg4fpqeNF1yhILjkLTdOZwpgSl2hIKGMozoRlPmZf4qJgFKNhlwoVyO0pykwiWCi8OXK2YIlh6xmJU_nahkY0zswe21kEacM0SvHFiRyJdExtPe8qEkrkWtCuaR6rEH6cyGKMot0PcMCIuUVnMICq4ZMFp_cVLgb3xR9ttInLdrqSvBUef2Pr-nzDkBNVnQbPic1Su3mkUMgIFwsuC4_otLjs6S4kzM55PI58LSgnGUdm_tJCkixHazf7PXTuG5e6w34t6N4O7JqwUcSjk2jmAxmwyN4eo7MySo3yOvwG9B_ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Propagation+through+Linear+Neighborhoods&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=FEI+WANG&rft.au=CHANGSHUI+ZHANG&rft.date=2008&rft.pub=IEEE+Computer+Society&rft.issn=1041-4347&rft.volume=20&rft.issue=1&rft.spage=55&rft.epage=67&rft_id=info:doi/10.1109%2FTKDE.2007.190672&rft.externalDBID=n%2Fa&rft.externalDocID=19940645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon