Label Propagation through Linear Neighborhoods
In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fie...
Saved in:
| Published in | IEEE transactions on knowledge and data engineering Vol. 20; no. 1; pp. 55 - 67 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.01.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1041-4347 1558-2191 |
| DOI | 10.1109/TKDE.2007.190672 |
Cover
| Abstract | In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. In recent years, graph-based semi supervised learning has been becoming one of the most active research areas in the semi supervised learning community. In this paper, a novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named linear neighborhood propagation (LNP), can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness. A theoretical analysis of the properties of LNP is presented in this paper. Furthermore, we also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit, and text classification tasks. |
|---|---|
| AbstractList | In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. In recent years, graph-based semi supervised learning has been becoming one of the most active research areas in the semi supervised learning community. In this paper, a novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named linear neighborhood propagation (LNP), can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness. A theoretical analysis of the properties of LNP is presented in this paper. Furthermore, we also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit, and text classification tasks. In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. [...] semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. |
| Author | Fei Wang Changshui Zhang |
| Author_xml | – sequence: 1 givenname: Fei surname: Wang fullname: Wang, Fei – sequence: 2 givenname: Changshui surname: Zhang fullname: Zhang, Changshui |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19940645$$DView record in Pascal Francis |
| BookMark | eNp9kb1PwzAQxS0EEqWwI7FUSMCUcuePxB4RlA9RAUOZLcd1WlchLnY68N-T0qoDEtxyN_zek-69I7LfhMYRcoowRAR1PXm-Gw0pQDFEBXlB90gPhZAZRYX73Q0cM854cUiOUloAgCwk9shwbEpXD95iWJqZaX1oBu08htVsPhj7xpk4eHF-Ni9DnIcwTcfkoDJ1cifb3Sfv96PJ7WM2fn14ur0ZZ5ZJ1mYcraAUhGRAGUcxRV4hLRlIVgiKsuTCQm4ld6XASlBTwNSi5YXiiAYV65Orje8yhs-VS63-8Mm6ujaNC6ukZSGgexOwIy__JRkXSuQIHXj-C1yEVWy6L7RCSiVbT59cbCGTrKmraBrrk15G_2Hil0alOORcdFy-4WwMKUVXaevbn_jaaHytEfS6Fb1uRa9b0ZtWOiH8Eu68_5acbSTeObfDORNSdQF_A2gJlT4 |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s10515_016_0194_x crossref_primary_10_1109_TMM_2010_2041100 crossref_primary_10_1016_j_jrras_2024_100858 crossref_primary_10_1007_s10115_022_01738_w crossref_primary_10_1007_s11042_016_3371_9 crossref_primary_10_1016_j_compbiomed_2018_03_017 crossref_primary_10_1007_s10618_010_0207_5 crossref_primary_10_1109_LGRS_2019_2958410 crossref_primary_10_1109_TKDE_2024_3374357 crossref_primary_10_1109_TIP_2012_2207397 crossref_primary_10_1016_j_ijar_2017_09_008 crossref_primary_10_1109_TCYB_2019_2903591 crossref_primary_10_1007_s00521_018_3478_1 crossref_primary_10_1109_TPAMI_2023_3309970 crossref_primary_10_3390_app8122636 crossref_primary_10_1016_j_ins_2015_07_005 crossref_primary_10_2200_S00590ED1V01Y201408AIM029 crossref_primary_10_1007_s12161_020_01955_5 crossref_primary_10_1109_TCBB_2019_2931546 crossref_primary_10_1109_LSP_2016_2619352 crossref_primary_10_1109_LSP_2014_2329056 crossref_primary_10_1109_TSP_2016_2550016 crossref_primary_10_1109_TGRS_2019_2948361 crossref_primary_10_1007_s11042_013_1811_3 crossref_primary_10_1109_TKDE_2020_2987784 crossref_primary_10_1109_TIP_2016_2621663 crossref_primary_10_1016_j_ins_2021_10_041 crossref_primary_10_1108_LHT_08_2019_0175 crossref_primary_10_1109_TIP_2012_2190083 crossref_primary_10_1109_TKDE_2019_2949297 crossref_primary_10_1155_2013_589386 crossref_primary_10_1109_ACCESS_2018_2851228 crossref_primary_10_1016_j_neunet_2016_01_008 crossref_primary_10_1007_s41870_023_01558_3 crossref_primary_10_1016_j_neucom_2013_09_025 crossref_primary_10_4018_jmdem_2013040103 crossref_primary_10_1109_TCSS_2024_3390931 crossref_primary_10_1007_s12539_022_00501_7 crossref_primary_10_3390_biom12010064 crossref_primary_10_3390_rs12020280 crossref_primary_10_1007_s12559_022_10056_w crossref_primary_10_1109_TMM_2022_3179895 crossref_primary_10_1109_TKDE_2020_2978844 crossref_primary_10_1016_j_neunet_2017_02_003 crossref_primary_10_3390_rs9020109 crossref_primary_10_1016_j_patcog_2016_09_011 crossref_primary_10_1109_TNNLS_2021_3120100 crossref_primary_10_1016_j_knosys_2021_107661 crossref_primary_10_1016_j_neunet_2018_12_003 crossref_primary_10_1021_acs_jproteome_6b00686 crossref_primary_10_1007_s10489_020_01724_1 crossref_primary_10_1109_ACCESS_2021_3087185 crossref_primary_10_1109_ACCESS_2020_2995399 crossref_primary_10_1049_cje_2021_05_003 crossref_primary_10_1109_TNNLS_2017_2727526 crossref_primary_10_1109_TSMCB_2009_2034632 crossref_primary_10_1016_j_ins_2013_03_012 crossref_primary_10_1080_07038992_2015_1089161 crossref_primary_10_1109_TNNLS_2021_3059511 crossref_primary_10_1007_s10044_024_01217_8 crossref_primary_10_3390_rs10040515 crossref_primary_10_1016_j_neunet_2017_07_013 crossref_primary_10_1007_s11042_021_11843_7 crossref_primary_10_1093_bib_bbad203 crossref_primary_10_1007_s10115_022_01701_9 crossref_primary_10_1007_s10994_019_05855_6 crossref_primary_10_1016_j_eswa_2022_117384 crossref_primary_10_1093_bib_bbac595 crossref_primary_10_1016_j_neucom_2014_08_035 crossref_primary_10_1016_j_eswa_2021_116276 crossref_primary_10_1016_j_neucom_2015_06_064 crossref_primary_10_1109_TKDE_2014_2339860 crossref_primary_10_1109_TKDE_2011_119 crossref_primary_10_3724_SP_J_1004_2010_01655 crossref_primary_10_1109_LSP_2015_2488632 crossref_primary_10_3390_app10217740 crossref_primary_10_1016_j_neucom_2018_05_084 crossref_primary_10_1007_s11063_023_11282_5 crossref_primary_10_1109_TNN_2010_2099237 crossref_primary_10_1109_TGRS_2021_3115354 crossref_primary_10_1109_TPAMI_2022_3166894 crossref_primary_10_1016_j_patrec_2011_12_015 crossref_primary_10_1049_iet_ipr_2016_0371 crossref_primary_10_1109_TGRS_2017_2760909 crossref_primary_10_1016_j_knosys_2018_05_011 crossref_primary_10_1007_s10994_023_06447_1 crossref_primary_10_1109_ACCESS_2020_3003916 crossref_primary_10_1016_j_jvcir_2015_09_005 crossref_primary_10_1007_s11042_016_3572_2 crossref_primary_10_1016_j_ins_2018_06_074 crossref_primary_10_1016_j_neucom_2022_02_026 crossref_primary_10_1016_j_jvcir_2014_09_004 crossref_primary_10_1109_TCYB_2022_3164696 crossref_primary_10_1109_TMM_2014_2298841 crossref_primary_10_1109_ACCESS_2024_3512379 crossref_primary_10_1016_j_engappai_2020_103722 crossref_primary_10_1016_j_patrec_2011_12_005 crossref_primary_10_1016_j_neunet_2021_04_033 crossref_primary_10_1016_j_patcog_2022_109112 crossref_primary_10_1016_j_patrec_2016_12_023 crossref_primary_10_1109_ACCESS_2019_2913213 crossref_primary_10_1109_TIP_2018_2806278 crossref_primary_10_1109_LSP_2015_2421971 crossref_primary_10_3390_rs10050685 crossref_primary_10_1109_ACCESS_2017_2723433 crossref_primary_10_1109_TCYB_2019_2910751 crossref_primary_10_1016_j_ins_2014_02_067 crossref_primary_10_1109_TKDE_2017_2654445 crossref_primary_10_1109_TNNLS_2022_3157746 crossref_primary_10_1016_j_micpro_2020_103070 crossref_primary_10_1145_3480967 crossref_primary_10_1109_TMM_2012_2199970 crossref_primary_10_3233_JIFS_212590 crossref_primary_10_3390_e21111125 crossref_primary_10_1109_LGRS_2009_2012443 crossref_primary_10_1016_j_compmedimag_2019_101663 crossref_primary_10_1186_s12859_019_3078_9 crossref_primary_10_3389_fgene_2020_615144 crossref_primary_10_1109_TNNLS_2018_2843798 crossref_primary_10_3389_fgene_2021_666575 crossref_primary_10_1007_s11460_011_0130_6 crossref_primary_10_1016_j_knosys_2016_01_021 crossref_primary_10_1016_j_image_2018_06_008 crossref_primary_10_1016_j_image_2009_11_001 crossref_primary_10_1109_TPAMI_2021_3070599 crossref_primary_10_1007_s11432_010_0066_0 crossref_primary_10_1016_j_neucom_2014_08_082 crossref_primary_10_1016_j_patcog_2018_03_027 crossref_primary_10_1109_TKDE_2023_3270940 crossref_primary_10_1109_TKDE_2013_142 crossref_primary_10_1109_TKDE_2015_2415497 crossref_primary_10_1109_TNNLS_2020_2979607 crossref_primary_10_1007_s11042_013_1796_y crossref_primary_10_1109_TCYB_2013_2272642 crossref_primary_10_1109_TKDE_2023_3288002 crossref_primary_10_1016_j_diamond_2020_107990 crossref_primary_10_1109_TKDE_2021_3073157 crossref_primary_10_1109_TSMC_2021_3066545 crossref_primary_10_1016_j_ins_2024_120702 crossref_primary_10_1145_2501643_2501646 crossref_primary_10_1016_j_neucom_2023_03_016 crossref_primary_10_1007_s11704_019_8452_2 crossref_primary_10_1109_TGRS_2014_2365676 crossref_primary_10_1109_TPAMI_2011_170 crossref_primary_10_1109_JSTARS_2019_2926123 crossref_primary_10_1016_j_neucom_2012_03_017 crossref_primary_10_1088_1742_6596_490_1_012022 crossref_primary_10_1016_j_neucom_2017_04_066 crossref_primary_10_1016_j_patcog_2009_12_022 crossref_primary_10_1007_s11263_020_01342_x crossref_primary_10_1007_s12539_024_00607_0 crossref_primary_10_1117_1_JEI_23_6_063004 crossref_primary_10_1587_transinf_E97_D_1673 crossref_primary_10_1016_j_patcog_2010_07_012 crossref_primary_10_1186_s40537_021_00423_z crossref_primary_10_1016_j_patrec_2019_01_013 crossref_primary_10_1007_s13042_022_01701_9 crossref_primary_10_1109_TKDE_2019_2901853 crossref_primary_10_1016_j_knosys_2023_111124 crossref_primary_10_1109_JBHI_2015_2425365 crossref_primary_10_1145_3589291 crossref_primary_10_1109_TGRS_2020_3013968 crossref_primary_10_1109_TIM_2023_3261909 crossref_primary_10_1016_j_ins_2024_120954 crossref_primary_10_1109_TGRS_2015_2427791 crossref_primary_10_1007_s00500_019_04269_9 crossref_primary_10_1007_s11063_011_9195_8 crossref_primary_10_1109_TNNLS_2011_2181413 crossref_primary_10_1016_j_neucom_2009_10_022 crossref_primary_10_1109_TSMCB_2008_2006045 crossref_primary_10_1007_s11063_018_9783_y crossref_primary_10_1016_j_neucom_2014_02_044 crossref_primary_10_1016_j_knosys_2014_12_014 crossref_primary_10_1007_s00521_018_3342_3 crossref_primary_10_1186_s12859_024_05662_4 crossref_primary_10_3724_SP_J_1089_2010_10502 crossref_primary_10_1016_j_neucom_2011_04_042 crossref_primary_10_1109_TIP_2011_2180916 crossref_primary_10_3390_molecules22122056 crossref_primary_10_3390_rs13030361 crossref_primary_10_1371_journal_pone_0275872 crossref_primary_10_1016_j_neunet_2017_08_002 crossref_primary_10_3390_rs10060846 crossref_primary_10_1016_j_patcog_2019_06_015 crossref_primary_10_1007_s11063_014_9396_z crossref_primary_10_1109_TGRS_2020_2972294 crossref_primary_10_1016_j_neucom_2015_11_112 crossref_primary_10_3390_pr8091068 crossref_primary_10_1016_j_patcog_2023_109894 crossref_primary_10_1016_j_culher_2018_01_003 crossref_primary_10_1109_ACCESS_2019_2948374 crossref_primary_10_1016_j_ins_2020_09_015 crossref_primary_10_1007_s11431_020_1824_4 crossref_primary_10_1016_j_knosys_2016_12_005 crossref_primary_10_1142_S0217979214502087 crossref_primary_10_1109_TMM_2009_2037373 crossref_primary_10_3233_AIC_220179 crossref_primary_10_1007_s11434_009_0171_x crossref_primary_10_1109_LSP_2017_2764103 crossref_primary_10_1016_j_patcog_2020_107411 crossref_primary_10_1109_TKDE_2014_2365793 crossref_primary_10_1109_TPAMI_2024_3518595 crossref_primary_10_1371_journal_pone_0233660 crossref_primary_10_1007_s10489_021_02360_z crossref_primary_10_1142_S0219691319400022 crossref_primary_10_1109_TPAMI_2010_35 crossref_primary_10_1007_s10994_024_06560_9 crossref_primary_10_1007_s10994_016_5607_3 crossref_primary_10_1016_j_ins_2015_06_021 crossref_primary_10_1109_TCBB_2021_3081268 crossref_primary_10_1016_j_knosys_2020_106690 crossref_primary_10_1109_TIP_2018_2881907 crossref_primary_10_1016_j_neunet_2012_11_001 crossref_primary_10_1016_j_neunet_2018_02_004 crossref_primary_10_1109_TKDE_2020_2982387 crossref_primary_10_1177_14738716221086589 crossref_primary_10_1109_TKDE_2016_2535367 crossref_primary_10_1016_j_eswa_2021_114791 crossref_primary_10_1007_s00521_020_05078_0 crossref_primary_10_1109_TKDE_2019_2947040 crossref_primary_10_3389_fdata_2021_707951 crossref_primary_10_1016_j_jbi_2018_11_005 crossref_primary_10_1109_TNNLS_2022_3155478 crossref_primary_10_14778_3021924_3021938 crossref_primary_10_1016_j_patcog_2018_04_027 crossref_primary_10_1109_TKDE_2013_182 crossref_primary_10_3390_s23031387 crossref_primary_10_1109_TIP_2010_2049235 crossref_primary_10_1016_j_neunet_2015_01_009 crossref_primary_10_1162_neco_a_01022 crossref_primary_10_1016_j_neunet_2021_06_007 crossref_primary_10_1109_TNNLS_2014_2363679 crossref_primary_10_1016_j_eswa_2015_09_026 crossref_primary_10_1016_j_patcog_2014_08_019 crossref_primary_10_3390_computation7010015 crossref_primary_10_1016_j_patrec_2016_08_002 crossref_primary_10_1016_j_compbiolchem_2022_107722 crossref_primary_10_1186_s12918_017_0477_2 crossref_primary_10_1109_TPAMI_2008_216 crossref_primary_10_1145_2508037_2508042 crossref_primary_10_1016_j_ins_2011_07_043 crossref_primary_10_1109_TGRS_2020_3046780 crossref_primary_10_1007_s10115_012_0481_1 crossref_primary_10_1109_TIP_2023_3319274 crossref_primary_10_1016_j_asoc_2021_108074 crossref_primary_10_7498_aps_63_208701 crossref_primary_10_1109_TCYB_2017_2647904 crossref_primary_10_1016_j_neunet_2015_01_001 crossref_primary_10_1109_JBHI_2017_2732287 crossref_primary_10_1007_s00521_021_06599_y crossref_primary_10_1109_TNSE_2022_3153968 crossref_primary_10_1109_TSIPN_2020_2964249 crossref_primary_10_1080_24725854_2022_2074579 crossref_primary_10_1016_j_ins_2017_09_054 crossref_primary_10_1016_j_knosys_2012_05_011 crossref_primary_10_1039_D1MO00237F crossref_primary_10_1109_ACCESS_2019_2914034 crossref_primary_10_1109_ACCESS_2019_2933589 crossref_primary_10_1016_j_jbi_2018_05_005 crossref_primary_10_1016_j_image_2020_115984 crossref_primary_10_4304_jsw_8_4_1011_1018 crossref_primary_10_1109_TSMC_2022_3161067 crossref_primary_10_1016_j_neucom_2019_08_036 crossref_primary_10_1007_s10618_018_0593_7 crossref_primary_10_1016_j_patrec_2010_12_005 crossref_primary_10_1016_j_knosys_2020_106505 crossref_primary_10_1016_j_ins_2021_06_010 crossref_primary_10_3390_rs14143295 crossref_primary_10_1016_j_ifacol_2016_07_014 crossref_primary_10_1109_TIFS_2012_2188389 crossref_primary_10_1109_TGRS_2017_2710079 crossref_primary_10_1016_j_patcog_2013_11_011 crossref_primary_10_1016_j_patrec_2020_04_021 crossref_primary_10_1016_j_neucom_2014_05_067 crossref_primary_10_1016_j_patcog_2013_01_009 crossref_primary_10_1109_TITS_2023_3305620 crossref_primary_10_1016_j_neucom_2014_11_053 crossref_primary_10_1109_TNNLS_2021_3082496 crossref_primary_10_1016_j_knosys_2019_03_004 crossref_primary_10_1186_s12859_021_04073_z crossref_primary_10_1145_1899412_1899418 crossref_primary_10_1145_1899412_1899416 crossref_primary_10_3390_genes13112032 crossref_primary_10_1109_ACCESS_2022_3174197 crossref_primary_10_1109_TCYB_2018_2804326 crossref_primary_10_1109_TNNLS_2019_2956015 crossref_primary_10_1109_TKDE_2010_144 crossref_primary_10_1145_2898358 crossref_primary_10_1007_s10994_021_05975_y crossref_primary_10_1016_j_knosys_2017_01_019 crossref_primary_10_1016_j_jvcir_2022_103685 crossref_primary_10_1109_JSTARS_2022_3179026 crossref_primary_10_1007_s11704_017_6543_5 crossref_primary_10_1016_j_patcog_2016_07_042 crossref_primary_10_1145_2856058 crossref_primary_10_1109_ACCESS_2025_3535103 crossref_primary_10_1007_s00371_019_01746_y crossref_primary_10_1109_TIP_2016_2601260 crossref_primary_10_1155_2018_7963210 crossref_primary_10_1109_TKDE_2021_3100436 crossref_primary_10_1007_s11042_016_4029_3 crossref_primary_10_1155_2021_6654349 crossref_primary_10_1145_3490478 crossref_primary_10_52547_jsdp_18_4_49 crossref_primary_10_1016_j_cviu_2014_12_008 crossref_primary_10_1016_j_neucom_2015_07_048 crossref_primary_10_1016_j_ymeth_2022_09_005 crossref_primary_10_1016_j_neunet_2014_03_005 crossref_primary_10_1007_s13042_015_0458_y crossref_primary_10_1016_j_neucom_2014_11_028 crossref_primary_10_1016_j_patcog_2012_04_021 crossref_primary_10_1002_tee_23149 crossref_primary_10_1016_j_jag_2022_103153 crossref_primary_10_1016_j_neucom_2016_10_031 crossref_primary_10_1049_iet_ipr_2013_0599 crossref_primary_10_1016_j_patcog_2017_03_014 crossref_primary_10_1109_TNNLS_2021_3123089 crossref_primary_10_1109_TCYB_2014_2300489 crossref_primary_10_1109_TNNLS_2020_3027526 crossref_primary_10_1016_j_cagd_2020_101864 crossref_primary_10_1016_j_cviu_2014_01_008 crossref_primary_10_1109_JPROC_2012_2197809 crossref_primary_10_1109_TCBB_2020_3020595 crossref_primary_10_1016_j_ipm_2021_102534 crossref_primary_10_4304_jsw_7_5_951_958 crossref_primary_10_1109_TSP_2021_3054995 |
| Cites_doi | 10.1007/978-1-4899-7687-1_749 10.7551/mitpress/6173.003.0022 10.2307/2984875 10.1017/cbo9780511546839.020 10.1023/A:1007692713085 10.1126/science.290.5500.2319 10.1109/36.312897 10.1007/978-1-4757-2440-0 10.1145/279943.279962 10.1145/1143844.1143968 10.1007/978-3-540-27819-1_43 10.1162/neco.2006.18.10.2509 10.1023/A:1022643204877 10.1162/neco.1997.9.7.1493 10.1126/science.290.5500.2323 10.1162/089976603321780317 10.7551/mitpress/9780262033589.001.0001 10.1007/978-3-540-28649-3_29 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TKDE.2007.190672 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1558-2191 |
| EndPage | 67 |
| ExternalDocumentID | 2545194171 19940645 10_1109_TKDE_2007_190672 4358958 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c383t-41c5220583023415d14f12b308375218b45c06c84eb51f52a70dc1c479411a193 |
| IEDL.DBID | RIE |
| ISSN | 1041-4347 |
| IngestDate | Thu Oct 02 06:14:17 EDT 2025 Sun Sep 28 05:49:18 EDT 2025 Sun Jun 29 15:30:30 EDT 2025 Mon Jul 21 09:15:29 EDT 2025 Wed Oct 01 06:39:41 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Wed Aug 27 02:52:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Data mining Graph labeling Mining methods and algorithms Machine learning Data analysis semisupervised learning label propagation Information retrieval Information extraction Text Linear model graph Structured data mining Natural language Data structure linear neighborhoods Learning algorithm Artificial intelligence Content analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c383t-41c5220583023415d14f12b308375218b45c06c84eb51f52a70dc1c479411a193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912283333 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2007_190672 proquest_miscellaneous_34595610 crossref_primary_10_1109_TKDE_2007_190672 pascalfrancis_primary_19940645 proquest_journals_912283333 proquest_miscellaneous_875090601 ieee_primary_4358958 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-Jan. 2008-01-00 2008 20080101 |
| PublicationDateYYYYMMDD | 2008-01-01 |
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-Jan. |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2008 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Chapelle (ref9) 2003 ref12 Belkin (ref4) 2006; 7 ref14 Zhu (ref36) 2002 Joachims (ref16) ref31 Jain (ref15) 1988 ref30 ref33 ref10 ref2 Blum (ref7) ref38 ref18 Szummer (ref28) 2002 Chung (ref13); 92 Zhou (ref32) 2004 Zhu (ref37) 2002 ref24 ref23 ref25 Joachims (ref17) ref22 Balcan (ref1) Lawrence (ref20) 2005 Schölkopf (ref26) 2002 Zhu (ref35) Carreira-Perpinan (ref8) 2005 Miller (ref21) 1997 ref27 ref29 Zhou (ref34) 2005 ref3 Zhu (ref39) 2006 ref6 ref5 Kapoor (ref19) 2005 Delalleu (ref11) |
| References_xml | – start-page: 200 volume-title: Proc. 16th Int’l Conf. Machine Learning (ICML ’99) ident: ref16 article-title: Transductive Inference for Text Classification Using Support Vector Machines – ident: ref38 doi: 10.1007/978-1-4899-7687-1_749 – start-page: 571 volume-title: Advances in Neural Information Processing Systems 9 year: 1997 ident: ref21 article-title: A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data – start-page: 321 volume-title: Advances in Neural Information Processing Systems 16 year: 2004 ident: ref32 article-title: Learning with Local and Global Consistency – start-page: 601 volume-title: Advances in Neural Information Processing Systems 15 year: 2003 ident: ref9 article-title: Cluster Kernels for Semi-Supervised Learning – ident: ref25 doi: 10.7551/mitpress/6173.003.0022 – start-page: 96 volume-title: Proc. 10th Int’l Workshop Artificial Intelligence and Statistics (AISTAT ’05) ident: ref11 article-title: Non-Parametric Function Induction in Semi-Supervised Learning – ident: ref12 doi: 10.2307/2984875 – ident: ref14 doi: 10.1017/cbo9780511546839.020 – volume-title: Advances in Neural Information Processing Systems year: 2005 ident: ref19 article-title: Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification – volume-title: Proc. 20th Int’l Conf. Machine Learning (ICML ’03) ident: ref35 article-title: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions – ident: ref22 doi: 10.1023/A:1007692713085 – volume-title: Learning with Kernels year: 2002 ident: ref26 – ident: ref29 doi: 10.1126/science.290.5500.2319 – start-page: 19 volume-title: Proc. 18th Int’l Conf. Machine Learning (ICML ’01) ident: ref7 article-title: Learning from Labeled and Unlabeled Data Using Graph Mincuts – volume-title: Computer Sciences Technical Report 1530, Univ. of Wisconsin, Madison year: 2006 ident: ref39 article-title: Semi-Supervised Learning Literature Survey – start-page: 290 volume-title: Proc. 20th Int’l Conf. Machine Learning (ICML ’03) ident: ref17 article-title: Transductive Learning via Spectral Graph Partitioning – ident: ref27 doi: 10.1109/36.312897 – volume: 92 volume-title: CBMS Regional Conf. Series in Mathematics ident: ref13 article-title: Spectral Graph Theory – ident: ref30 doi: 10.1007/978-1-4757-2440-0 – start-page: 1633 volume-title: Advances in Neural Information Processing Systems 17 year: 2005 ident: ref34 article-title: Semi-Supervised Learning on Directed Graphs – ident: ref6 doi: 10.1145/279943.279962 – ident: ref31 doi: 10.1145/1143844.1143968 – volume-title: Algorithms for Clustering Data year: 1988 ident: ref15 – volume-title: Advances in Neural Information Processing Systems 17 year: 2005 ident: ref20 article-title: Semi-Supervised Learning via Gaussian Processes – ident: ref3 doi: 10.1007/978-3-540-27819-1_43 – start-page: 225 volume-title: Advances in Neural Information Processing Systems 17 year: 2005 ident: ref8 article-title: Proximity Graphs for Clustering and Manifold Learning – volume-title: Technical Report CMU-CALD-02-106, Carnegie Mellon Univ. year: 2002 ident: ref37 article-title: Towards Semi-Supervised Classification with Markov Random Fields – ident: ref5 doi: 10.1162/neco.2006.18.10.2509 – volume-title: Technical Report CMU-CALD-02-107, Carnegie Mellon Univ. year: 2002 ident: ref36 article-title: Learning from Labeled and Unlabeled Data with Label Propagation – volume-title: Proc. ICML Workshop Learning with Partially Classified Training Data ident: ref1 article-title: Person Identification in Webcam Images: An Application of Semi-Supervised Learning – ident: ref23 doi: 10.1023/A:1022643204877 – start-page: 945 volume-title: Advances in Neural Information Processing Systems 14 year: 2002 ident: ref28 article-title: Partially Labeled Classification with Markov Random Walks – ident: ref18 doi: 10.1162/neco.1997.9.7.1493 – ident: ref24 doi: 10.1126/science.290.5500.2323 – ident: ref2 doi: 10.1162/089976603321780317 – volume: 7 start-page: 2399 year: 2006 ident: ref4 article-title: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples publication-title: J. Machine Learning Research – ident: ref10 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: ref33 doi: 10.1007/978-3-540-28649-3_29 |
| SSID | ssj0008781 |
| Score | 2.4539733 |
| Snippet | In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Algorithms Applied sciences Artificial intelligence Classification Computer science; control theory; systems Data mining Data processing. List processing. Character string processing Exact sciences and technology Gaussian processes Graph labeling Labels Learning Machine learning Machine learning algorithms Memory organisation. Data processing Mining methods and algorithms Predictive models Semifabricated products Semisupervised learning Software Speech and sound recognition and synthesis. Linguistics Studies Supervised learning Support vector machine classification Support vector machines Tasks Text categorization Texts Unsupervised learning |
| Title | Label Propagation through Linear Neighborhoods |
| URI | https://ieeexplore.ieee.org/document/4358958 https://www.proquest.com/docview/912283333 https://www.proquest.com/docview/34595610 https://www.proquest.com/docview/875090601 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61TDDwaEGER8nAgkTaOHFiZ0RQhIBWDK3ULUpshwHUItou_Hru8oLyEhmiSHEi-872PXz3HcApYcFyX3mO72lNKTnckVko0UpRiieJ62lFroHBMLwZ89tJMGnAeZ0LY4zJg89Mlx7zs3w9U0tylfVQtMsokE1oChkWuVr1ritFXpAUrQu0iXwuqiNJN-qN7q76BVghSr9QeCsiKK-pQhGRyRyJkhXVLL5tzLm0ud6CQdXPIsjkqbtcpF319gXC8b8D2YbNUu20L4p5sgMNM23BVlXSwS5XeAs2PuETtqF7n6Tm2X54Rcv6MWehXdb1sdGGxTViD8mzitOIwJHnuzC-7o8ub5yywIKj0DBdOJypgBJtCQMMpVmgGc-Yl_qolgkU6zLlgXJDJblJA5YFXiJcrZgiUHrGElT99mBtOpuafbC1FpngmqV448SOVLomMZ72lIkkcy3oVTSPVYk-TkUwnuPcCnGjmLhERTFFXHDJgrP6i5cCeeOPtm0ict2upK8FnRW2fvwnijgB9VlwWPE5LtfuPI4YQQLhZcFJ_RYXHZ2kJFMzW85jnweUEIyjsn9pIUkTI6ybg5-7dgjrReQJOXOOYG3xujTHqN4s0k4-r98B2evzUw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBNyKURwYWJNLGid04I-KhAm3FUCS2KLEdBqoU9bHw67nLizciQxQpTmTf2b6H774DOCEsWO4rz_E9rSklhzsy7Ui0UpTicex6WpFroD_odB_47aN4XICzOhfGGJMHn5kWPeZn-Xqs5uQqa6Nol6GQi7AkOOeiyNaq910Z5CVJ0b5Aq8jnQXUo6Ybt4d3lVQFXiPKvE3ifhFBeVYViIuMpkiUt6ll825pzeXO9Dv2qp0WYyXNrPkta6vULiON_h7IBa6XiaZ8XM2UTFky2BetVUQe7XONbsPoBoXAbWr04MSP7foK29VPORLus7GOjFYurxB6QbxUnEsEjT3fg4fpqeNF1yhILjkLTdOZwpgSl2hIKGMozoRlPmZf4qJgFKNhlwoVyO0pykwiWCi8OXK2YIlh6xmJU_nahkY0zswe21kEacM0SvHFiRyJdExtPe8qEkrkWtCuaR6rEH6cyGKMot0PcMCIuUVnMICq4ZMFp_cVLgb3xR9ttInLdrqSvBUef2Pr-nzDkBNVnQbPic1Su3mkUMgIFwsuC4_otLjs6S4kzM55PI58LSgnGUdm_tJCkixHazf7PXTuG5e6w34t6N4O7JqwUcSjk2jmAxmwyN4eo7MySo3yOvwG9B_ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Propagation+through+Linear+Neighborhoods&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=FEI+WANG&rft.au=CHANGSHUI+ZHANG&rft.date=2008&rft.pub=IEEE+Computer+Society&rft.issn=1041-4347&rft.volume=20&rft.issue=1&rft.spage=55&rft.epage=67&rft_id=info:doi/10.1109%2FTKDE.2007.190672&rft.externalDBID=n%2Fa&rft.externalDocID=19940645 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |