A comparative study of hash based approximate nearest neighbor learning and its application in image retrieval

Plenty of data are available due to the growth of digital technology that creates a high expectation in retrieving the relevant images, accurately and efficiently for a given query image. For searching the relevant images efficiently for the Large Scale dataset, the searching algorithm should have f...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 52; no. 1; pp. 323 - 355
Main Authors Arulmozhi, P., Abirami, S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0269-2821
1573-7462
DOI10.1007/s10462-017-9591-1

Cover

Abstract Plenty of data are available due to the growth of digital technology that creates a high expectation in retrieving the relevant images, accurately and efficiently for a given query image. For searching the relevant images efficiently for the Large Scale dataset, the searching algorithm should have fast access capability. The existing Exact Nearest Neighbor search performs in linear time and so it takes more time as both the dataset and data dimension increases. As a remedy to provide sub-linear/logarithmic time complexity, usage of Approximate Nearest Neighbor (ANN) algorithms is emerging at a rapid rate. This paper discusses about the importance of ANN and their general classification; the different categories involved in Learning to Hash has been analyzed with their pros and cons; different bit assignment types and methods to minimize the Quantization Errors have been reviewed along with its merits and demerits. Therefore, it serves to increase the efficiency of the Image Retrieval process in Large Scale.
AbstractList Plenty of data are available due to the growth of digital technology that creates a high expectation in retrieving the relevant images, accurately and efficiently for a given query image. For searching the relevant images efficiently for the Large Scale dataset, the searching algorithm should have fast access capability. The existing Exact Nearest Neighbor search performs in linear time and so it takes more time as both the dataset and data dimension increases. As a remedy to provide sub-linear/logarithmic time complexity, usage of Approximate Nearest Neighbor (ANN) algorithms is emerging at a rapid rate. This paper discusses about the importance of ANN and their general classification; the different categories involved in Learning to Hash has been analyzed with their pros and cons; different bit assignment types and methods to minimize the Quantization Errors have been reviewed along with its merits and demerits. Therefore, it serves to increase the efficiency of the Image Retrieval process in Large Scale.
Audience Academic
Author Arulmozhi, P.
Abirami, S.
Author_xml – sequence: 1
  givenname: P.
  surname: Arulmozhi
  fullname: Arulmozhi, P.
  email: arulmozhikec@gmail.com
  organization: Department of Information Science and Technology, College of Engineering, Anna University
– sequence: 2
  givenname: S.
  surname: Abirami
  fullname: Abirami, S.
  organization: Department of Information Science and Technology, College of Engineering, Anna University
BookMark eNp9UU1r3DAUFCWFbNL8gNwEPTvVk2zLPi6hXxDopT0LrfTsVfBKW0kbmn_ft3EPpdAggeAx82Y0c8UuYorI2C2IOxBCfygg2l42AnQzdiM08IZtoNOq0TS-YBsh-7GRg4RLdlXKoxCik63asLjlLh2ONtsanpCXevLPPE18b8ue72xBz-3xmNOvcLAVeUSbsVR6w7zfpcwXGsQQZ26j56GWM3oJjralyAPdg52RZ6w54JNd3rG3k10K3vx5r9mPTx-_339pHr59_nq_fWicGlQlo63fITovnRwHAXYSqgVnPYy9glY5cDsvprFH7d1kUYAcRK8RrPXToEFds_frXrL-80SOzWM65UiSRsHYCamU7l5DkRCl14pBEupuRc12QRPilGq2jo7HQ3BUwxRovtVA6XZSayLASnA5lZJxMsdMOeRnA8Kc2zJrW4baMue2zNmw_ofjQn1JkcTC8ipTrsxCKnHG_Ncn_kv6DYS4q4Q
CitedBy_id crossref_primary_10_1007_s13369_024_09627_w
crossref_primary_10_1007_s11042_020_10499_z
crossref_primary_10_1007_s10462_022_10334_x
crossref_primary_10_1007_s00371_020_01993_4
Cites_doi 10.2352/ISSN.2470-1173.2016.2.VIPC-231
10.1109/CVPR.2013.64
10.1109/TCYB.2015.2474742
10.1016/j.cviu.2014.04.007
10.1109/ICIP.2013.6738532
10.1109/CVPR.2015.7298739
10.1109/TIP.2016.2545300
10.1016/j.image.2017.07.002
10.1007/978-3-642-15561-1_56
10.1109/ICCV.2011.6126244
10.1109/TPAMI.2012.48
10.1016/j.patcog.2013.08.022
10.1016/j.neucom.2014.09.033
10.1038/nature14539
10.1109/TPAMI.2012.193
10.1016/j.neucom.2016.10.010
10.1016/j.neucom.2015.09.110
10.1145/2484028.2484162
10.1016/j.neucom.2015.08.104
10.1109/CVPR.2009.5206531
10.1016/j.neucom.2012.07.053
10.1007/978-3-319-54181-5_5
10.1186/s13640-017-0167-4
10.1016/j.knosys.2016.01.022
10.1109/CVPR.2013.378
10.1109/TIP.2017.2651390
10.1016/j.patrec.2011.10.002
10.1109/TPAMI.2013.214
10.1145/1743546.1743570
10.1109/CVPR.2012.6247910
10.1109/TIP.2016.2593344
10.1145/1835449.1835455
10.1016/j.neucom.2015.04.012
10.1109/CVPR.2010.5539994
10.1109/CVPR.2012.6247912
10.1007/978-0-387-35973-1_1151
10.1109/JPROC.2015.2487976
10.1109/TCYB.2014.2360856
10.1109/CVPR.2016.553
10.1007/978-3-540-88688-4_27
10.1016/j.jvcir.2017.08.002
10.1109/ICCV.2017.598
10.1109/TIP.2015.2421443
10.1016/j.patcog.2010.12.012
10.1109/CVPR.2006.264
10.1145/2348283.2348293
10.1016/j.ins.2015.10.028
10.1109/TPAMI.2010.110
10.1109/CVPR.2013.69
10.1109/CVPRW.2013.66
10.1109/TIP.2012.2228494
10.1016/j.neucom.2017.01.055
10.1109/TPAMI.2013.113
10.1109/TPAMI.2011.219
10.1109/TNNLS.2014.2307532
10.1023/B:VISI.0000029664.99615.94
10.1016/j.neucom.2015.06.036
10.1609/aaai.v31i1.10858
10.1016/j.imavis.2016.02.005
10.1007/978-3-642-28661-2_3
10.1016/j.jvcir.2016.08.013
10.1109/CVPR.2016.227
10.1016/j.neucom.2016.05.097
10.1109/CVPR.2015.7298598
10.1007/s10032-014-0229-4
10.1609/aaai.v30i1.10235
10.5244/C.25.76
10.1016/j.neucom.2016.02.016
10.1109/ICDM.2011.128
10.1109/CVPR.2015.7298990
10.1109/TMM.2012.2231061
10.1007/978-3-642-33715-4_25
10.1145/997817.997857
10.1109/ICCV.2013.317
10.1137/1.9781611973440.20
10.1145/1991996.1992012
10.1109/CVPR.2012.6248043
10.1145/2502081.2502100
10.1109/TIP.2015.2467315
10.1109/ICCV.2011.6126542
10.1109/ICIP.2011.6116164
10.1145/356924.356930
10.1016/j.neucom.2012.10.021
10.1007/s11042-015-2526-4
10.1016/j.neucom.2014.10.042
10.1109/ICCV.2011.6126544
10.1016/j.neucom.2015.07.093
10.1109/CVPR.2013.206
10.1609/aaai.v31i1.10719
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2017
COPYRIGHT 2019 Springer
Artificial Intelligence Review is a copyright of Springer, (2017). All Rights Reserved.
Copyright Springer Nature B.V. Jun 2019
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2017
– notice: COPYRIGHT 2019 Springer
– notice: Artificial Intelligence Review is a copyright of Springer, (2017). All Rights Reserved.
– notice: Copyright Springer Nature B.V. Jun 2019
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
PSYQQ
Q9U
PRINS
DOI 10.1007/s10462-017-9591-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest Central China
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 355
ExternalDocumentID A718215277
10_1007_s10462_017_9591_1
GrantInformation_xml – fundername: DST PURSE Phase 2 Program -5. Manpower.
  grantid: 9500/PD2/2014
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CCPQU
CNYFK
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
77I
AAFWJ
AAOBN
AARHV
AASML
AAYTO
AAYXX
ABDBE
ABFSG
ABQSL
ACACY
ACBXY
ACSTC
ACULB
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFEXP
AFFNX
AFGCZ
AFGXO
AFHIU
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AYFIA
BBWZM
C24
CAG
CITATION
COF
H13
HF~
ICD
IHE
KOW
LAK
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
PRINS
ID FETCH-LOGICAL-c383t-284dbeecd2c29801af0341cad1963143c1cbd0f96e7dcfae0128067e1aadf8713
IEDL.DBID U2A
ISSN 0269-2821
IngestDate Sat Oct 25 06:56:38 EDT 2025
Sat Oct 25 06:56:01 EDT 2025
Mon Oct 20 16:04:33 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Wed Oct 01 05:58:57 EDT 2025
Fri Feb 21 02:37:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Approximate nearest neighbor
Learning to hash
Deep hashing
Hash based ANN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-284dbeecd2c29801af0341cad1963143c1cbd0f96e7dcfae0128067e1aadf8713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1965734082
PQPubID 36790
PageCount 33
ParticipantIDs proquest_journals_3195023375
proquest_journals_1965734082
gale_infotracacademiconefile_A718215277
crossref_primary_10_1007_s10462_017_9591_1
crossref_citationtrail_10_1007_s10462_017_9591_1
springer_journals_10_1007_s10462_017_9591_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190601
2019-6-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 6
  year: 2019
  text: 20190601
  day: 1
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2019
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Liu W, Wang J, Kumar S, Chang SF (2011a) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 1–8
WangKTangJWangNShaoLSemantic boosting cross-modal hashing for efficient multimedia retrievalInf Sci201633019921010.1016/j.ins.2015.10.028
Jiang YG, Wang J, Chang SF (2011) Lost in binarization: query-adaptive ranking for similar image search with compact codes. In: Proceedings of the 1st ACM international conference on multimedia retrieval, ACM, p 16
Wang X, Shi Y, Kitani KM (2016e) Deep supervised hashing with triplet labels. arXiv preprint arXiv:1612.03900
Zhang X, Zhang L, Shum HY (2012) Qsrank: query-sensitive hash code ranking for efficient-neighbor search. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2058–2065
LiuXHeJLangBMultiple feature kernel hashing for large-scale visual searchPattern Recognit20144727487571326.6823010.1016/j.patcog.2013.08.022
Wang J, Zhang T, Song J, Sebe N, Shen HT (2016c) A survey on learning to hash. arXiv preprint arXiv:1606.00185
ZhangRLinLZhangRZuoWZhangLBit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identificationIEEE Trans Image Process201524124766477934024720701013210.1109/TIP.2015.2467315
KulisBGraumanKKernelized locality-sensitive hashingIEEE Trans Pattern Anal Mach Intell20123461092110410.1109/TPAMI.2011.219
Zhou J, Fu H, Kong X (2011) A balanced semi-supervised hashing method for CBIR. In: 2011 18th IEEE international conference on image processing (ICIP), IEEE, pp 2481–2484
Chatfield K, Lempitsky VS, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, vol 2, p 8
Kong W, Li WJ (2012b) Isotropic hashing. In: Advances in neural information processing systems, pp 1646–1654
Norouzi M, Blei DM (2011) Minimal loss hashing for compact binary codes. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 353–360
ZhuSJinDLiangZWangQSunYXuGIntegration of semantic and visual hashing for image retrievalJ Vis Commun Image Represent20174422923510.1016/j.jvcir.2016.08.013
ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity20071212364649
Wang J, Kumar S, Chang SF (2010) Semi-supervised hashing for scalable image retrieval. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3424–3431
Weiss Y, Fergus R, Torralba A (2012) Multidimensional spectral hashing. In: European conference on computer vision, Springer, pp 340–353
Hadjieleftheriou M, Manolopoulos Y, Theodoridis Y, Tsotras VJ (2008) R-trees—a dynamic index structure for spatial searching. In: Shekhar S, Xiong H (eds) Encyclopedia of GIS. Springer, pp 993–1002
Liu W, Wang J, Ji R, Jiang YG, Chang SF (2012a) Supervised hashing with kernels. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2074–2081
Wang X, Yang M, Cour T, Zhu S, Yu K, Han TX (2011) Contextual weighting for vocabulary tree based image retrieval. In: 2011 IEEE international conference on computer vision (ICCV), IEEE, pp 209–216
Liu X, He J, Lang B, Chang SF (2013) Hash bit selection: a unified solution for selection problems in hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1570–1577
Mu Y, Liu Z (2017) Deep hashing: a joint approach for image signature learning. In: AAAI, pp 2380–2386
He J, Feng J, Liu X, Cheng T, Lin TH, Chung H, Chang SF (2012) Mobile product search with bag of hash bits and boundary reranking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3005–3012
WangXQiuSLiuKTangXWeb image re-ranking using query-specific semantic signaturesIEEE Trans Pattern Anal Mach Intell201436481082310.1109/TPAMI.2013.214
BasriRHassnerTZelnik-ManorLApproximate nearest subspace searchIEEE Trans Pattern Anal Mach Intell201133226627810.1109/TPAMI.2010.110
Leutenegger S, Chli M, Siegwart RY (2011) Brisk: binary robust invariant scalable keypoints. In: 2011 International conference on computer vision, IEEE, pp 2548–2555
LiPChengJLuHHashing with dual complementary projection learning for fast image retrievalNeurocomputing2013120838910.1016/j.neucom.2012.07.053
ZhaoHWangZLiuPWuBA fast binary encoding mechanism for approximate nearest neighbor searchNeurocomputing201617811212210.1016/j.neucom.2015.09.110
Yang E, Deng C, Liu W, Liu X, Tao D, Gao X (2017b) Pairwise relationship guided deep hashing for cross-modal retrieval. In: AAAI, pp 1618–1625
ZhangWJiJZhuJLiJXuHZhangBBithash: an efficient bitwise locality sensitive hashing method with applicationsKnowl Based Syst201697404710.1016/j.knosys.2016.01.022
Heo JP, Lee Y, He J, Chang SF, Yoon SE (2012) Spherical hashing. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2957–2964
DaiQLiJWangJChenYJiangYGA bayesian hashing approach and its application to face recognitionNeurocomputing201621351310.1016/j.neucom.2016.05.097
Wang Z, Duan LY, Lin J, Wang X, Huang T, Gao W (2015) Hamming compatible quantization for hashing. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI, vol 15
Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing systems, pp 1753–1760
JiangYGWangJXueXChangSFQuery-adaptive image search with hash codesIEEE Trans Multimed201315244245310.1109/TMM.2012.2231061
Grauman K, Fergus R (2013) Learning binary hash codes for large-scale image search. In: Cipolla R, Battiato S, Farinella GM (eds) Machine learning for computer vision. Springer, pp 49–87
TangJLiZWangMZhaoRNeighborhood discriminant hashing for large-scale image retrievalIEEE Trans Image Process20152492827284033555940700998410.1109/TIP.2015.2421443
Gong Y, Kumar S, Rowley HA, Lazebnik S (2013a) Learning binary codes for high-dimensional data using bilinear projections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 484–491
LiuXMuYZhangDLangBLiXLarge-scale unsupervised hashing with shared structure learningIEEE Trans Cybern20154591811182210.1109/TCYB.2014.2360856
Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709
FengDYangJLiuCAn efficient indexing method for content-based image retrievalNeurocomputing201310610311410.1016/j.neucom.2012.10.021
KuoCHChouYHChangPCUsing deep convolutional neural networks for image retrievalElectron Imaging201621610.2352/ISSN.2470-1173.2016.2.VIPC-231
WuJFengLLiuSSunMImage retrieval framework based on texton uniform descriptor and modified manifold rankingJ Vis Commun Image Represent201749788810.1016/j.jvcir.2017.08.002
GraumanKEfficiently searching for similar imagesCommun ACM2010536849410.1145/1743546.1743570
LeeYHeoJPYoonSEQuadra-embedding: binary code embedding with low quantization errorComput Vis Image Underst201412521422210.1016/j.cviu.2014.04.007
Ding G, Zhou J, Guo Y, Lin Z, Zhao S, Han J (2017) Large-scale image retrieval with sparse embedded hashing. Neurocomputing 257:24–36
Lin G, Shen C, Suter D, van den Hengel A (2013a) A general two-step approach to learning-based hashing. In: Proceedings of the IEEE international conference on computer vision, pp 2552–2559
Shen F, Shen C, Liu W, Tao Shen H (2015) Supervised discrete hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 37–45
Zhu H, Long M, Wang J, Cao Y (2016) Deep hashing network for efficient similarity retrieval. In: AAAI, pp 2415–2421
Lin Y, Jin R, Cai D, Yan S, Li X (2013b) Compressed hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 446–451
Liu X, Fan X, Deng C, Li Z, Su H, Tao D (2016c) Multilinear hyperplane hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5119–5127
Wu L, Zhao K, Lu H, Wei Z, Lu B (2015) Distance preserving marginal hashing for image retrieval. In: 2015 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6
LiuXMuYLangBChangSFMixed image-keyword query adaptive hashing over multilabel imagesACM Trans Multimed Comput Commun Appl (TOMM)201410222
Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Advances in neural information processing systems, pp 1509–1517
Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the twentieth annual symposium on computational geometry, ACM, pp 253–262
BoatoGDang-NguyenDTMuratovOAlajlanNNataleFGExploiting visual saliency for increasing diversity of image retrieval resultsMultimed Tools Appl201675105581560210.1007/s11042-015-2526-4
Moran S, Lavrenko V, Osborne M (2013a) Neighbourhood preserving quantisation for LSH. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, ACM, pp 1009–1012
Johnson J, Krishna R, Stark M, Li LJ, Shamma D, Bernstein M, Fei-Fei L (2015) Image retrieval using scene graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3668–3678
Moran S, Lavrenko V, Osborne M (2013b) Variable bit quantisation for LSH. In: ACL (2), pp 753–758
ShiMXuRTaoDXuCW-tree indexing for fast visual word generationIEEE Trans Image Process20132231209122230621141373.9437510.1109/TIP.2012.2228494
LiuWMaHQiHZhaoDChenZDeep learning hashing for mobile visual searchEURASIP J Image Video Process201711710.1186/s13640-017-0167-4
Dai L, Sun X, Wu F, Yu N (2013) Large scale image retrieval with visual groups. In: 2013 IEEE international conference on image processing, IEEE, pp 2582–2586
DengCDengHLiuXYuanYAdaptive multi-bit quantization for hashingNeurocomputing201515131932610.1016/j.neucom.2014.09.033
Gong Y, Kumar S, Verma V, Lazebnik S (2012) Angular quantization-based binary codes for fast similarity search. In: Advances in neural informatio
9591_CR26
9591_CR27
9591_CR25
Y Wang (9591_CR94) 2016; 184
9591_CR23
9591_CR20
L Liu (9591_CR66) 2017; 26
R Basri (9591_CR2) 2011; 33
9591_CR19
K Grauman (9591_CR22) 2010; 53
9591_CR38
9591_CR35
9591_CR36
9591_CR33
DG Lowe (9591_CR68) 2004; 60
9591_CR34
9591_CR31
Y Liu (9591_CR53) 2011; 44
S Zhu (9591_CR112) 2017; 44
QZ Guo (9591_CR24) 2015; 151
9591_CR28
B Kulis (9591_CR42) 2012; 34
X Liu (9591_CR65) 2016; 25
B Chandra (9591_CR8) 2016; 171
9591_CR40
9591_CR41
9591_CR48
K Wang (9591_CR92) 2016; 330
Y LeCun (9591_CR46) 2015; 521
9591_CR43
9591_CR39
SH Cha (9591_CR7) 2007; 1
J Wang (9591_CR90) 2016; 171
9591_CR51
9591_CR52
X Liu (9591_CR59) 2014; 47
9591_CR50
G Boato (9591_CR4) 2016; 75
9591_CR57
9591_CR58
Y Lee (9591_CR47) 2014; 125
9591_CR55
9591_CR54
C Xu (9591_CR100) 2017; 222
Q Dai (9591_CR12) 2016; 213
T Yao (9591_CR103) 2016; 193
9591_CR62
J Wu (9591_CR98) 2017; 49
X Liu (9591_CR56) 2012; 33
X Wang (9591_CR87) 2014; 36
9591_CR69
9591_CR64
P Li (9591_CR49) 2013; 120
9591_CR73
9591_CR74
X Liu (9591_CR61) 2015; 45
9591_CR71
9591_CR72
9591_CR70
9591_CR79
H Zhao (9591_CR109) 2016; 178
H Lai (9591_CR45) 2016; 25
9591_CR77
9591_CR75
9591_CR76
X Liu (9591_CR60) 2014; 10
X Liu (9591_CR63) 2016; 46
R Zhang (9591_CR107) 2015; 24
IJ Kim (9591_CR37) 2015; 18
M Shi (9591_CR80) 2013; 22
Y Gong (9591_CR21) 2013; 35
G Hou (9591_CR29) 2015; 166
9591_CR84
9591_CR83
9591_CR81
J Wang (9591_CR85) 2012; 34
Y Huang (9591_CR30) 2014; 36
H Goh (9591_CR18) 2014; 25
9591_CR88
9591_CR86
W Zhang (9591_CR108) 2016; 97
YG Jiang (9591_CR32) 2013; 15
9591_CR110
9591_CR111
J Wang (9591_CR89) 2016; 104
9591_CR95
H Samet (9591_CR78) 1984; 16
9591_CR96
9591_CR93
9591_CR91
D Feng (9591_CR17) 2013; 106
9591_CR1
9591_CR15
9591_CR3
9591_CR16
9591_CR13
CH Kuo (9591_CR44) 2016; 2
9591_CR5
9591_CR6
9591_CR11
9591_CR99
9591_CR97
9591_CR9
9591_CR10
W Liu (9591_CR67) 2017; 1
9591_CR105
9591_CR106
C Deng (9591_CR14) 2015; 151
J Tang (9591_CR82) 2015; 24
9591_CR101
9591_CR102
9591_CR104
References_xml – reference: Liu W, Wang J, Kumar S, Chang SF (2011a) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 1–8
– reference: DaiQLiJWangJChenYJiangYGA bayesian hashing approach and its application to face recognitionNeurocomputing201621351310.1016/j.neucom.2016.05.097
– reference: Zhu H, Long M, Wang J, Cao Y (2016) Deep hashing network for efficient similarity retrieval. In: AAAI, pp 2415–2421
– reference: HuangYWuZWangLTanTFeature coding in image classification: a comprehensive studyIEEE Trans Pattern Anal Mach Intell201436349350610.1109/TPAMI.2013.113
– reference: Kong W, Li WJ, Guo M (2012) Manhattan hashing for large-scale image retrieval. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, ACM, pp 45–54
– reference: Liu W, Mu C, Kumar S, Chang SF (2014a) Discrete graph hashing. In: Advances in neural information processing systems, pp 3419–3427
– reference: BoatoGDang-NguyenDTMuratovOAlajlanNNataleFGExploiting visual saliency for increasing diversity of image retrieval resultsMultimed Tools Appl201675105581560210.1007/s11042-015-2526-4
– reference: Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. In: European conference on computer vision. Springer, pp 778–792
– reference: Chum O, Perd’och M, Matas J (2009) Geometric min-hashing: finding a (thick) needle in a haystack. In: IEEE conference on computer vision and pattern recognition, CVPR 2009, IEEE, pp 17–24
– reference: Kong W, Li WJ (2012a) Double-bit quantization for hashing. In: AAAI, vol 1, p 5
– reference: Mu Y, Liu Z (2017) Deep hashing: a joint approach for image signature learning. In: AAAI, pp 2380–2386
– reference: WangYYaoHZhaoSAuto-encoder based dimensionality reductionNeurocomputing201618423224210.1016/j.neucom.2015.08.104
– reference: XuCLiuQYeMAge invariant face recognition and retrieval by coupled auto-encoder networksNeurocomputing2017222627110.1016/j.neucom.2016.10.010
– reference: WangJXuXSGuoSCuiLWangXLLinear unsupervised hashing for ANN search in Euclidean spaceNeurocomputing201617128329210.1016/j.neucom.2015.06.036
– reference: GuoQZZengZZhangSAdaptive bit allocation hashing for approximate nearest neighbor searchNeurocomputing201515171972810.1016/j.neucom.2014.10.042
– reference: Ding G, Zhou J, Guo Y, Lin Z, Zhao S, Han J (2017) Large-scale image retrieval with sparse embedded hashing. Neurocomputing 257:24–36
– reference: Zhang X, Zhang L, Shum HY (2012) Qsrank: query-sensitive hash code ranking for efficient-neighbor search. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2058–2065
– reference: GohHThomeNCordMLimJHLearning deep hierarchical visual feature codingIEEE Trans Neural Netw Learn Syst201425122212222510.1109/TNNLS.2014.2307532
– reference: ZhangWJiJZhuJLiJXuHZhangBBithash: an efficient bitwise locality sensitive hashing method with applicationsKnowl Based Syst201697404710.1016/j.knosys.2016.01.022
– reference: Yang B, Shang X, Pang S (2017a) Isometric hashing for image retrieval. Signal Process Image Commun 59:117–130
– reference: Grauman K, Fergus R (2013) Learning binary hash codes for large-scale image search. In: Cipolla R, Battiato S, Farinella GM (eds) Machine learning for computer vision. Springer, pp 49–87
– reference: DengCDengHLiuXYuanYAdaptive multi-bit quantization for hashingNeurocomputing201515131932610.1016/j.neucom.2014.09.033
– reference: Moran S, Lavrenko V, Osborne M (2013b) Variable bit quantisation for LSH. In: ACL (2), pp 753–758
– reference: LiuWMaHQiHZhaoDChenZDeep learning hashing for mobile visual searchEURASIP J Image Video Process201711710.1186/s13640-017-0167-4
– reference: Chatfield K, Lempitsky VS, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, vol 2, p 8
– reference: Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to sift or surf. In: 2011 International conference on computer vision, IEEE, pp 2564–2571
– reference: Zhang D, Wang J, Cai D, Lu J (2010) Self-taught hashing for fast similarity search. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval, ACM, pp 18–25
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: LiuXMuYZhangDLangBLiXLarge-scale unsupervised hashing with shared structure learningIEEE Trans Cybern20154591811182210.1109/TCYB.2014.2360856
– reference: Wang X, Yang M, Cour T, Zhu S, Yu K, Han TX (2011) Contextual weighting for vocabulary tree based image retrieval. In: 2011 IEEE international conference on computer vision (ICCV), IEEE, pp 209–216
– reference: Zhou J, Fu H, Kong X (2011) A balanced semi-supervised hashing method for CBIR. In: 2011 18th IEEE international conference on image processing (ICIP), IEEE, pp 2481–2484
– reference: Xiong C, Chen W, Chen G, Johnson DM, Corso JJ (2014) Adaptive quantization for hashing: an information-based approach to learning binary codes. In: SDM, SIAM, vol 1, p 2
– reference: Wang X, Shi Y, Kitani KM (2016e) Deep supervised hashing with triplet labels. arXiv preprint arXiv:1612.03900
– reference: BasriRHassnerTZelnik-ManorLApproximate nearest subspace searchIEEE Trans Pattern Anal Mach Intell201133226627810.1109/TPAMI.2010.110
– reference: WangXQiuSLiuKTangXWeb image re-ranking using query-specific semantic signaturesIEEE Trans Pattern Anal Mach Intell201436481082310.1109/TPAMI.2013.214
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vis20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Hadjieleftheriou M, Manolopoulos Y, Theodoridis Y, Tsotras VJ (2008) R-trees—a dynamic index structure for spatial searching. In: Shekhar S, Xiong H (eds) Encyclopedia of GIS. Springer, pp 993–1002
– reference: TangJLiZWangMZhaoRNeighborhood discriminant hashing for large-scale image retrievalIEEE Trans Image Process20152492827284033555940700998410.1109/TIP.2015.2421443
– reference: LiuLYuMShaoLLearning short binary codes for large-scale image retrievalIEEE Trans Image Process20172631289129936239590701289010.1109/TIP.2017.2651390
– reference: Liu W, Wang J, Mu Y, Kumar S, Chang SF (2012b) Compact hyperplane hashing with bilinear functions. arXiv preprint arXiv:1206.4618
– reference: Kulis B, Darrell T (2009) Learning to hash with binary reconstructive embeddings. In: Advances in neural information processing systems, pp 1042–1050
– reference: Lin Y, Jin R, Cai D, Yan S, Li X (2013b) Compressed hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 446–451
– reference: LiuXDuBDengCLiuMLangBStructure sensitive hashing with adaptive product quantizationIEEE Trans Cybern201646102252226410.1109/TCYB.2015.2474742
– reference: Salakhutdinov R, Hinton GE (2009) Deep boltzmann machines. In: AISTATS, vol 1, p 3
– reference: Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the twentieth annual symposium on computational geometry, ACM, pp 253–262
– reference: Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, CVPR 2004, IEEE, vol 2, pp II–506
– reference: Yu X, Zhang S, Liu B, Zhong L, Metaxas D (2013) Large scale medical image search via unsupervised PCA hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 393–398
– reference: Gong Y, Kumar S, Verma V, Lazebnik S (2012) Angular quantization-based binary codes for fast similarity search. In: Advances in neural information processing systems, pp 1196–1204
– reference: JiangYGWangJXueXChangSFQuery-adaptive image search with hash codesIEEE Trans Multimed201315244245310.1109/TMM.2012.2231061
– reference: Liu X, He J, Lang B, Chang SF (2013) Hash bit selection: a unified solution for selection problems in hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1570–1577
– reference: Lin G, Shen C, Suter D, van den Hengel A (2013a) A general two-step approach to learning-based hashing. In: Proceedings of the IEEE international conference on computer vision, pp 2552–2559
– reference: Kong W, Li WJ (2012b) Isotropic hashing. In: Advances in neural information processing systems, pp 1646–1654
– reference: LiPChengJLuHHashing with dual complementary projection learning for fast image retrievalNeurocomputing2013120838910.1016/j.neucom.2012.07.053
– reference: WangKTangJWangNShaoLSemantic boosting cross-modal hashing for efficient multimedia retrievalInf Sci201633019921010.1016/j.ins.2015.10.028
– reference: GraumanKEfficiently searching for similar imagesCommun ACM2010536849410.1145/1743546.1743570
– reference: Norouzi M, Blei DM (2011) Minimal loss hashing for compact binary codes. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 353–360
– reference: Weiss Y, Fergus R, Torralba A (2012) Multidimensional spectral hashing. In: European conference on computer vision, Springer, pp 340–353
– reference: SametHThe quadtree and related hierarchical data structuresACM Comput Surv (CSUR)198416218726079257210.1145/356924.356930
– reference: WangJLiuWKumarSChangSFLearning to hash for indexing big data—a surveyProc IEEE20161041345710.1109/JPROC.2015.2487976
– reference: Kim S, Choi S (2015) Bilinear random projections for locality-sensitive binary codes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1338–1346
– reference: GongYLazebnikSGordoAPerronninFIterative quantization: a procrustean approach to learning binary codes for large-scale image retrievalIEEE Trans Pattern Anal Mach Intell201335122916292910.1109/TPAMI.2012.193
– reference: ChandraBSharmaRKFast learning in deep neural networksNeurocomputing20161711205121510.1016/j.neucom.2015.07.093
– reference: Gong Y, Kumar S, Rowley HA, Lazebnik S (2013a) Learning binary codes for high-dimensional data using bilinear projections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 484–491
– reference: Leutenegger S, Chli M, Siegwart RY (2011) Brisk: binary robust invariant scalable keypoints. In: 2011 International conference on computer vision, IEEE, pp 2548–2555
– reference: Wang Z, Duan LY, Lin J, Wang X, Huang T, Gao W (2015) Hamming compatible quantization for hashing. In: Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI, vol 15
– reference: Wu L, Zhao K, Lu H, Wei Z, Lu B (2015) Distance preserving marginal hashing for image retrieval. In: 2015 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6
– reference: WangJKumarSChangSFSemi-supervised hashing for large-scale searchIEEE Trans Pattern Anal Mach Intell201234122393240610.1109/TPAMI.2012.48
– reference: LiuXHuangLDengCLangBTaoDQuery-adaptive hash code ranking for large-scale multi-view visual searchIEEE Trans Image Process201625104514452435383990701183610.1109/TIP.2016.2593344
– reference: KulisBGraumanKKernelized locality-sensitive hashingIEEE Trans Pattern Anal Mach Intell20123461092110410.1109/TPAMI.2011.219
– reference: KuoCHChouYHChangPCUsing deep convolutional neural networks for image retrievalElectron Imaging201621610.2352/ISSN.2470-1173.2016.2.VIPC-231
– reference: ZhuSJinDLiangZWangQSunYXuGIntegration of semantic and visual hashing for image retrievalJ Vis Commun Image Represent20174422923510.1016/j.jvcir.2016.08.013
– reference: Shen F, Shen C, Liu W, Tao Shen H (2015) Supervised discrete hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 37–45
– reference: Liu X, Fan X, Deng C, Li Z, Su H, Tao D (2016c) Multilinear hyperplane hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5119–5127
– reference: He K, Wen F, Sun J (2013) K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2938–2945
– reference: Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: 2006 IEEE computer society conference on computer vision and pattern recognition, IEEE, vol 2, pp 2161–2168
– reference: Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing systems, pp 1753–1760
– reference: Johnson J, Krishna R, Stark M, Li LJ, Shamma D, Bernstein M, Fei-Fei L (2015) Image retrieval using scene graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3668–3678
– reference: Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709
– reference: FengDYangJLiuCAn efficient indexing method for content-based image retrievalNeurocomputing201310610311410.1016/j.neucom.2012.10.021
– reference: Wang J, Zhang T, Song J, Sebe N, Shen HT (2016c) A survey on learning to hash. arXiv preprint arXiv:1606.00185
– reference: Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Advances in neural information processing systems, pp 1509–1517
– reference: Aly M, Munich M, Perona P (2011) Distributed kd-trees for retrieval from very large image collections. In: Proceedings of the British machine vision conference (BMVC)
– reference: Moran S, Lavrenko V, Osborne M (2013a) Neighbourhood preserving quantisation for LSH. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, ACM, pp 1009–1012
– reference: Dai L, Sun X, Wu F, Yu N (2013) Large scale image retrieval with visual groups. In: 2013 IEEE international conference on image processing, IEEE, pp 2582–2586
– reference: Cao Z, Long M, Wang J, Yu PS (2017) Hashnet: deep learning to hash by continuation. arXiv preprint arXiv:1702.00758
– reference: Kumar N, Zhang L, Nayar S (2008) What is a good nearest neighbors algorithm for finding similar patches in images? In: European conference on computer vision, Springer, pp 364–378
– reference: WuJFengLLiuSSunMImage retrieval framework based on texton uniform descriptor and modified manifold rankingJ Vis Commun Image Represent201749788810.1016/j.jvcir.2017.08.002
– reference: He J, Feng J, Liu X, Cheng T, Lin TH, Chung H, Chang SF (2012) Mobile product search with bag of hash bits and boundary reranking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3005–3012
– reference: HouGCuiRPanZZhangCTree-based compact hashing for approximate nearest neighbor searchNeurocomputing201516627128110.1016/j.neucom.2015.04.012
– reference: Liu W, Wang J, Ji R, Jiang YG, Chang SF (2012a) Supervised hashing with kernels. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2074–2081
– reference: Wang J, Wang J, Yu N, Li S (2013) Order preserving hashing for approximate nearest neighbor search. In: Proceedings of the 21st ACM international conference on multimedia, ACM, pp 133–142
– reference: Yang E, Deng C, Liu W, Liu X, Tao D, Gao X (2017b) Pairwise relationship guided deep hashing for cross-modal retrieval. In: AAAI, pp 1618–1625
– reference: Heo JP, Lee Y, He J, Chang SF, Yoon SE (2012) Spherical hashing. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2957–2964
– reference: Liu H, Wang R, Shan S, Chen X (2016a) Deep supervised hashing for fast image retrieval. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2064–2072
– reference: Wang J, Kumar S, Chang SF (2010) Semi-supervised hashing for scalable image retrieval. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3424–3431
– reference: Norouzi M, Punjani A, Fleet DJ (2012) Fast search in hamming space with multi-index hashing. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 3108–3115
– reference: LiuXLangBXuYChengBFeature grouping and local soft match for mobile visual searchPattern Recognit Lett201233323924610.1016/j.patrec.2011.10.002
– reference: Erin Liong V, Lu J, Wang G, Moulin P, Zhou J (2015) Deep hashing for compact binary codes learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2475–2483
– reference: Song J, Gao L, Zou F, Yan Y, Sebe N (2016) Deep and fast: deep learning hashing with semi-supervised graph construction. Image Vis Comput 55:101–108
– reference: LiuXMuYLangBChangSFMixed image-keyword query adaptive hashing over multilabel imagesACM Trans Multimed Comput Commun Appl (TOMM)201410222
– reference: LaiHYanPShuXWeiYYanSInstance-aware hashing for multi-label image retrievalIEEE Trans Image Process20162562469247934916840701168310.1109/TIP.2016.2545300
– reference: LiuYZhouSChenQDiscriminative deep belief networks for visual data classificationPattern Recognit20114410228722961218.6812810.1016/j.patcog.2010.12.012
– reference: LiuXHeJLangBMultiple feature kernel hashing for large-scale visual searchPattern Recognit20144727487571326.6823010.1016/j.patcog.2013.08.022
– reference: KimIJXieXHandwritten Hangul recognition using deep convolutional neural networksInt J Doc Anal Recognit (IJDAR)201518111310.1007/s10032-014-0229-4
– reference: ZhaoHWangZLiuPWuBA fast binary encoding mechanism for approximate nearest neighbor searchNeurocomputing201617811212210.1016/j.neucom.2015.09.110
– reference: LeeYHeoJPYoonSEQuadra-embedding: binary code embedding with low quantization errorComput Vis Image Underst201412521422210.1016/j.cviu.2014.04.007
– reference: Kim S, Choi S (2011) Semi-supervised discriminant hashing. In: 2011 IEEE 11th international conference on data mining (ICDM), IEEE, pp 1122–1127
– reference: Jiang YG, Wang J, Chang SF (2011) Lost in binarization: query-adaptive ranking for similar image search with compact codes. In: Proceedings of the 1st ACM international conference on multimedia retrieval, ACM, p 16
– reference: ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity20071212364649
– reference: YaoTKongXFuHTianQSemantic consistency hashing for cross-modal retrievalNeurocomputing201619325025910.1016/j.neucom.2016.02.016
– reference: ShiMXuRTaoDXuCW-tree indexing for fast visual word generationIEEE Trans Image Process20132231209122230621141373.9437510.1109/TIP.2012.2228494
– reference: ZhangRLinLZhangRZuoWZhangLBit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identificationIEEE Trans Image Process201524124766477934024720701013210.1109/TIP.2015.2467315
– volume: 2
  start-page: 1
  year: 2016
  ident: 9591_CR44
  publication-title: Electron Imaging
  doi: 10.2352/ISSN.2470-1173.2016.2.VIPC-231
– ident: 9591_CR75
– ident: 9591_CR51
  doi: 10.1109/CVPR.2013.64
– volume: 46
  start-page: 2252
  issue: 10
  year: 2016
  ident: 9591_CR63
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2474742
– volume: 125
  start-page: 214
  year: 2014
  ident: 9591_CR47
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2014.04.007
– ident: 9591_CR11
  doi: 10.1109/ICIP.2013.6738532
– ident: 9591_CR36
  doi: 10.1109/CVPR.2015.7298739
– volume: 25
  start-page: 2469
  issue: 6
  year: 2016
  ident: 9591_CR45
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2545300
– ident: 9591_CR101
  doi: 10.1016/j.image.2017.07.002
– ident: 9591_CR1
– ident: 9591_CR5
  doi: 10.1007/978-3-642-15561-1_56
– ident: 9591_CR84
  doi: 10.1109/ICCV.2011.6126244
– ident: 9591_CR55
– volume: 34
  start-page: 2393
  issue: 12
  year: 2012
  ident: 9591_CR85
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.48
– volume: 47
  start-page: 748
  issue: 2
  year: 2014
  ident: 9591_CR59
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.08.022
– volume: 151
  start-page: 319
  year: 2015
  ident: 9591_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.033
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 9591_CR46
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 35
  start-page: 2916
  issue: 12
  year: 2013
  ident: 9591_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.193
– volume: 222
  start-page: 62
  year: 2017
  ident: 9591_CR100
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.010
– ident: 9591_CR28
– ident: 9591_CR41
– volume: 1
  start-page: 1
  issue: 2
  year: 2007
  ident: 9591_CR7
  publication-title: City
– volume: 178
  start-page: 112
  year: 2016
  ident: 9591_CR109
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.110
– ident: 9591_CR69
  doi: 10.1145/2484028.2484162
– volume: 184
  start-page: 232
  year: 2016
  ident: 9591_CR94
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– ident: 9591_CR52
– ident: 9591_CR10
  doi: 10.1109/CVPR.2009.5206531
– volume: 120
  start-page: 83
  year: 2013
  ident: 9591_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.053
– ident: 9591_CR93
  doi: 10.1007/978-3-319-54181-5_5
– volume: 1
  start-page: 17
  year: 2017
  ident: 9591_CR67
  publication-title: EURASIP J Image Video Process
  doi: 10.1186/s13640-017-0167-4
– ident: 9591_CR73
– volume: 97
  start-page: 40
  year: 2016
  ident: 9591_CR108
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.01.022
– ident: 9591_CR27
  doi: 10.1109/CVPR.2013.378
– volume: 26
  start-page: 1289
  issue: 3
  year: 2017
  ident: 9591_CR66
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2651390
– volume: 33
  start-page: 239
  issue: 3
  year: 2012
  ident: 9591_CR56
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2011.10.002
– volume: 36
  start-page: 810
  issue: 4
  year: 2014
  ident: 9591_CR87
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.214
– ident: 9591_CR38
– volume: 53
  start-page: 84
  issue: 6
  year: 2010
  ident: 9591_CR22
  publication-title: Commun ACM
  doi: 10.1145/1743546.1743570
– ident: 9591_CR106
  doi: 10.1109/CVPR.2012.6247910
– ident: 9591_CR19
– ident: 9591_CR70
– volume: 25
  start-page: 4514
  issue: 10
  year: 2016
  ident: 9591_CR65
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2593344
– ident: 9591_CR105
  doi: 10.1145/1835449.1835455
– ident: 9591_CR95
– volume: 166
  start-page: 271
  year: 2015
  ident: 9591_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.012
– ident: 9591_CR83
  doi: 10.1109/CVPR.2010.5539994
– ident: 9591_CR54
  doi: 10.1109/CVPR.2012.6247912
– ident: 9591_CR25
  doi: 10.1007/978-0-387-35973-1_1151
– volume: 104
  start-page: 34
  issue: 1
  year: 2016
  ident: 9591_CR89
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2487976
– volume: 45
  start-page: 1811
  issue: 9
  year: 2015
  ident: 9591_CR61
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2360856
– ident: 9591_CR64
  doi: 10.1109/CVPR.2016.553
– ident: 9591_CR43
  doi: 10.1007/978-3-540-88688-4_27
– volume: 49
  start-page: 78
  year: 2017
  ident: 9591_CR98
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.08.002
– ident: 9591_CR58
– ident: 9591_CR6
  doi: 10.1109/ICCV.2017.598
– volume: 24
  start-page: 2827
  issue: 9
  year: 2015
  ident: 9591_CR82
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2421443
– volume: 44
  start-page: 2287
  issue: 10
  year: 2011
  ident: 9591_CR53
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.12.012
– ident: 9591_CR16
– ident: 9591_CR72
  doi: 10.1109/CVPR.2006.264
– ident: 9591_CR40
  doi: 10.1145/2348283.2348293
– volume: 330
  start-page: 199
  year: 2016
  ident: 9591_CR92
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.10.028
– volume: 33
  start-page: 266
  issue: 2
  year: 2011
  ident: 9591_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.110
– ident: 9591_CR20
  doi: 10.1109/CVPR.2013.69
– ident: 9591_CR104
  doi: 10.1109/CVPRW.2013.66
– volume: 22
  start-page: 1209
  issue: 3
  year: 2013
  ident: 9591_CR80
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2228494
– ident: 9591_CR91
– ident: 9591_CR88
– ident: 9591_CR15
  doi: 10.1016/j.neucom.2017.01.055
– volume: 36
  start-page: 493
  issue: 3
  year: 2014
  ident: 9591_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.113
– volume: 34
  start-page: 1092
  issue: 6
  year: 2012
  ident: 9591_CR42
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.219
– ident: 9591_CR97
– volume: 25
  start-page: 2212
  issue: 12
  year: 2014
  ident: 9591_CR18
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2307532
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 9591_CR68
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 171
  start-page: 283
  year: 2016
  ident: 9591_CR90
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.036
– ident: 9591_CR71
  doi: 10.1609/aaai.v31i1.10858
– ident: 9591_CR81
  doi: 10.1016/j.imavis.2016.02.005
– ident: 9591_CR23
  doi: 10.1007/978-3-642-28661-2_3
– ident: 9591_CR39
– volume: 44
  start-page: 229
  year: 2017
  ident: 9591_CR112
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.08.013
– ident: 9591_CR62
  doi: 10.1109/CVPR.2016.227
– volume: 213
  start-page: 5
  year: 2016
  ident: 9591_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.097
– ident: 9591_CR79
  doi: 10.1109/CVPR.2015.7298598
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  ident: 9591_CR37
  publication-title: Int J Doc Anal Recognit (IJDAR)
  doi: 10.1007/s10032-014-0229-4
– ident: 9591_CR111
  doi: 10.1609/aaai.v30i1.10235
– ident: 9591_CR9
  doi: 10.5244/C.25.76
– ident: 9591_CR77
– volume: 193
  start-page: 250
  year: 2016
  ident: 9591_CR103
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.016
– ident: 9591_CR35
  doi: 10.1109/ICDM.2011.128
– ident: 9591_CR33
  doi: 10.1109/CVPR.2015.7298990
– volume: 15
  start-page: 442
  issue: 2
  year: 2013
  ident: 9591_CR32
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2012.2231061
– ident: 9591_CR96
  doi: 10.1007/978-3-642-33715-4_25
– ident: 9591_CR3
– ident: 9591_CR13
  doi: 10.1145/997817.997857
– ident: 9591_CR50
  doi: 10.1109/ICCV.2013.317
– ident: 9591_CR99
  doi: 10.1137/1.9781611973440.20
– ident: 9591_CR31
  doi: 10.1145/1991996.1992012
– ident: 9591_CR34
– volume: 10
  start-page: 22
  issue: 2
  year: 2014
  ident: 9591_CR60
  publication-title: ACM Trans Multimed Comput Commun Appl (TOMM)
– ident: 9591_CR74
  doi: 10.1109/CVPR.2012.6248043
– ident: 9591_CR26
– ident: 9591_CR86
  doi: 10.1145/2502081.2502100
– volume: 24
  start-page: 4766
  issue: 12
  year: 2015
  ident: 9591_CR107
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2467315
– ident: 9591_CR48
  doi: 10.1109/ICCV.2011.6126542
– ident: 9591_CR110
  doi: 10.1109/ICIP.2011.6116164
– volume: 16
  start-page: 187
  issue: 2
  year: 1984
  ident: 9591_CR78
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/356924.356930
– volume: 106
  start-page: 103
  year: 2013
  ident: 9591_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.021
– volume: 75
  start-page: 5581
  issue: 10
  year: 2016
  ident: 9591_CR4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2526-4
– volume: 151
  start-page: 719
  year: 2015
  ident: 9591_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.042
– ident: 9591_CR76
  doi: 10.1109/ICCV.2011.6126544
– volume: 171
  start-page: 1205
  year: 2016
  ident: 9591_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.093
– ident: 9591_CR57
  doi: 10.1109/CVPR.2013.206
– ident: 9591_CR102
  doi: 10.1609/aaai.v31i1.10719
SSID ssj0005243
Score 2.229474
Snippet Plenty of data are available due to the growth of digital technology that creates a high expectation in retrieving the relevant images, accurately and...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Comparative studies
Computer Science
Datasets
Digital imaging
Equipment and supplies
Hash based algorithms
Image management
Image processing
Image retrieval
Learning
Retrieval
Search algorithms
Searching
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe_HiW6wv9iAIymI2mzbkIFJFEcEiouBt2e5DC5qqjeDPdybZ2PqEQA7JLmFnZmc2M_N9ADsY1Xrv04QnmY544q3lWhjLpez4yHqMkQfUjXzZ757fJhd3nbsG9OteGCqrrPfEcqO2I0P_yA8k8ZXGUqado-cXTqxRlF2tKTR0oFawhyXE2Ay0YkLGakLr-LR_dT1V9FHV0cXdjONhQ9R5zqqZLulSmQKlNDPBxRdP9X2__pE4Lf3R2QLMhUCS9SrJL0LD5UswX5M0sGCzy5D3mJkgfLMSTpaNPHvQ4wdGPsyyElf8fYixq2M5YdqOC7zjqR31gwVaiXumc8uGxZhNpbzZEK8n3JHYa0nMhVq7Ardnpzcn5zyQLHCDh9MCVyGxA-eMjU2cobvSPkLHZrQl08RgyggzsJHPui61xmtHDg09nBNaW4-nLbkKzXyUuzVg1qWxywRJGaegUEO61ETWCeld5k0bonpBlQkI5ESE8agm2MkkA4UyUCQDJdqw9znkuYLf-O_lXZKSItPEeY0OHQb4dQRypXroh0sa37QNm7UgVbDZsSJsxVQSAfevjycK2Ib9WvZTo__6qvX_J9uAWYzBsqr6bBOaxeub28I4pxhsB-X9ACX4-h8
  priority: 102
  providerName: ProQuest
Title A comparative study of hash based approximate nearest neighbor learning and its application in image retrieval
URI https://link.springer.com/article/10.1007/s10462-017-9591-1
https://www.proquest.com/docview/1965734082
https://www.proquest.com/docview/3195023375
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XLz4Fuuj7EEQlEA2mzbmGLWtqK2iFvS0bPehBY1iIvjznUkTrU8QAnvI7rLszOzMMDPfAGyhVeuci0IvjJXvhc4YT3FtPCEazjcObeQBVSN3e82jfnh83bgu67izKtu9CkkWL_VYsVvYpDQCCjnG3EOXZ7pBaF7IxP0gGcvrGKXKBc3YQ3-CV6HMn7b4pIy-PsnfYqOFymnPw2xpK7JkRNwFmLDpIsxVfRhYKZZLkCZMf4B4swIxlj06dqeyO0ZqyrACOvx1iOapZSnB1mY5juiYIwuwsnPELVOpYcM8Y2NRbTbE7wEfHfZc9N5CxlyGfrt1dXDklX0UPI3-Z463EJqBtdoEOohRIynno-7SypD0ob2kuR4Y38VNGxntlCWdhUrMcqWMQ4dKrMBU-pjaVWDGRoGNOREStyBrQthI-8Zy4WzsdA386kKlLkHGqdfFvfyARyYaSKSBJBpIXoOd9yVPI4SNvyZvE5UkSR_uq1VZRICnIxwrmaCqLTr1RjXYqAgpS7HMJMEnRoJ6bP_4W1BP3ECIqFGD3Yr2Y6t_O9Xav2avwwxaXfEo32wDpvLnF7uJlk0-qMPkXrtTh-nksHt6SWPn5qSF436rd36Bf7v8rF5w-xs9o_bB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLSXFvpQQ3nsoVWlVqt6vU6sPaAqUFAoEFUVSNy2m32QSK0D2Ij2z_W3MWOvm_TFDSmSD4nXlmf8zWxm5vsAXmJWG0LIM54pk_AsOMeNsI5L2Q2JC5gjj2ga-WjYG5xkH0-7pwvws52FobbKFhNroHZTS_-Rv5OkV5pKmXffn19wUo2i6moroWGitILbqinG4mDHgf9xjVu4cmv_A9r7VZru7R7vDHhUGeAWd2cVR3x2I--tS22qEK9NSBDZrXHkm5hNWGFHLgmq53Nng_GE6AjxXhjjAm43JK57D5YymSnc_C1t7w4_fZ5rMmn69tKewguloq2rNsN7WY_aIqiEqgQXv0XGP-PDX4XaOv7tLcPDmLiyfuNpK7Dgi8fwqBWFYBEjnkDRZ3bGKM5q-lo2DWxsyjGjmOlYzWP-fYK5smcFceiWFR4nZ2P0RxZlLM6YKRybVCWbK7GzCX6-IQKyy1oIDN-Sp3ByJ4_7GSwW08I_B-Z8nnolyKtwCUptpM9t4ryQwatgO5C0D1TbyHhOwhtf9YyrmWyg0QaabKBFB978OuW8ofu47cevyUqaoADXtSZONODdEamW7mPcr2WD8w6stYbUESNKTVyOuSTB739-PXP4DrxtbT939v_uavX2xTbh_uD46FAf7g8PXsADzP9U0_m2BovV5ZVfxxyrGm1ER2bw5a7fnRshaTg8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttAFL3iIVXdQOlDhFKYRatKrQY8HieWF1UVARGUlnZRJHbT8TxI1OJQbNTHp_VX-jPca3tISlt2LJAiZRF74tjnnrk3c-ccgKeY1Xrv04QnmY544q3lWhjLpez6yHrMkXPajfzuoLd7mLw56h7NwK-wF4baKgMn1kRtx4b-I9-U5FcaS5l2N33bFvFhe_D69CsnBylaaQ12Gg1E9t2Pb1i-la_2tvFZP4vjwc7HrV3eOgxwg5VZxZGbbe6csbGJM-Rq7SNkdaMt4RIzCSNMbiOf9VxqjdeO2Bzp3QmtrcdSQ-K4szCfUhlBbYPi_VR7SdOxF_cy_JpYhBXVZtte0qOGCFo8zQQXf8yJV2eGv5Zo65lvsAi_wz1rGl4-b5xX-Yb5eUVO8nbe1Huw0CbkrN9E0BLMuOI-LAazC9Zy3wMo-sxMlNJZLcvLxp4NdTlklAtYVuuzfx9hDeBYQdrAZYXvo-Mhxhlr7TmOmS4sG1Ulm2odYCN8nSCzs7Pa4Ayj_yEc3sivfgRzxbhwy8CsS2OXCYoWHIJSNulSE1knpHeZNx2IAlyUaZXcyVDki5poUBPCFCJMEcKU6MCLy1NOGxmT6w5-ThhURHE4rtHtTg28OhILU33MZ2o75LQDqwFXquW-UpFGZSrJyPyfH08w14GXAdlTZ__vqlauH2wd7iB01du9g_3HcBfT2qxp6FuFuers3D3B1LHK1-oYZfDppvF7AaSVfeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+hash+based+approximate+nearest+neighbor+learning+and+its+application+in+image+retrieval&rft.jtitle=The+Artificial+intelligence+review&rft.au=Arulmozhi%2C+P.&rft.au=Abirami%2C+S.&rft.date=2019-06-01&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=52&rft.issue=1&rft.spage=323&rft.epage=355&rft_id=info:doi/10.1007%2Fs10462-017-9591-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10462_017_9591_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon