Multitarget Detection Strategy for Distributed MIMO Radar With Widely Separated Antennas

In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called "defocused transmit-defocused receive" operating mode. The proposed method employs a grid-based data matching algorithm, aiming to ass...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 16
Main Authors Yang, Shixing, Yi, Wei, Jakobsson, Andreas
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2022.3175046

Cover

Abstract In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called "defocused transmit-defocused receive" operating mode. The proposed method employs a grid-based data matching algorithm, aiming to associate the target responses to potential target locations, solving the resulting data puzzle that evaluates the various cells under test (CUTs) in the surveillance area resulting from the intertwined range cells across all transmit-receive channels. Sketchily, the approach divides the surveillance area into identically interlocking and analytically expressible grid cells and then selects the grid cells with the best fitting multichannel data to be equivalently regarded as the CUTs. Next, the generalized likelihood ratio test (GLRT) detector is derived to test for target presence in each of the selected grid cells. A separate procedure is introduced to eliminate the spurious "shadow targets," false alarms occurring in the grid cells without a target while sharing range cells with the targets. The essence of this procedure is to find the source of the observed contributions to the grid cells whose test statistics exceed their thresholds, and simultaneously obtain the positions of the targets. The proposed method is evaluated using both numerical simulations and experimental data recorded by five small radars, demonstrating the effectiveness of the proposed technique.
AbstractList In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called “defocused transmit-defocused receive” operating mode. The proposed method employs a grid-based data matching algorithm, aiming to associate the target responses to potential target locations, solving the resulting data puzzle that evaluates the various cells under test (CUTs) in the surveillance area resulting from the intertwined range cells across all transmit-receive channels. Sketchily, the approach divides the surveillance area into identically interlocking and analytically expressible grid cells and then selects the grid cells with the best fitting multichannel data to be equivalently regarded as the CUTs. Next, the generalized likelihood ratio test (GLRT) detector is derived to test for target presence in each of the selected grid cells. A separate procedure is introduced to eliminate the spurious “shadow targets,” false alarms occurring in the grid cells without a target while sharing range cells with the targets. The essence of this procedure is to find the source of the observed contributions to the grid cells whose test statistics exceed their thresholds, and simultaneously obtain the positions of the targets. The proposed method is evaluated using both numerical simulations and experimental data recorded by five small radars, demonstrating the effectiveness of the proposed technique.
Author Yi, Wei
Yang, Shixing
Jakobsson, Andreas
Author_xml – sequence: 1
  givenname: Shixing
  surname: Yang
  fullname: Yang, Shixing
  email: victorshixing@gmail.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-9878-7048
  surname: Yi
  fullname: Yi, Wei
  email: kussoyi@gmail.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0002-2156-6973
  surname: Jakobsson
  fullname: Jakobsson, Andreas
  email: aj@math.lth.se
  organization: Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
BookMark eNp9UcFu1TAQtFCReC18AOISiXMea8eOnWPV0lKpT5X6iuC2cpJ16yokwXaE3t_j6BUOHLjsXmZ2dmZO2ck4jcTYew5bzqH59HB9v98KEGJbca1A1q_YhitlSqilPGEb4E1dCtOIN-w0xmcALhXXG_Z9twzJJxseKRWXlKhLfhqLfQo20eOhcFMoLn1MwbdLor7Y3ezuinvb21B88-kpj56GQ7Gn2a6MvjgfE42jjW_Za2eHSO9e9hn7evX54eJLeXt3fXNxflt2lalSmZ-XlQYp8tumJ1c7C2BV24BS4KBrrW6BGqMUSScJpFWaDO-qtnFgnKrOmD3ejb9oXlqcg_9hwwEn63GeQrIDBopkQ_eEw4KRMKMG39nVZ8ReWF11JFBmaZRcGGy5a5G7Xuc4Ve8MZY2PR405TD8XigmfpyWM2RaKum54DabmGaWPqC5MMQZy2OVgV5kcph-QA65V4VoVrlXhS1WZyf9h_nHxP86HI8cT0V98o7WsalP9BgugopI
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TAES_2024_3442777
crossref_primary_10_1109_TGRS_2023_3298825
crossref_primary_10_1109_TAES_2023_3336304
crossref_primary_10_1109_LAWP_2024_3428706
crossref_primary_10_1109_LGRS_2022_3233259
crossref_primary_10_1109_TAES_2023_3296344
crossref_primary_10_1109_TAES_2024_3438103
crossref_primary_10_1109_JIOT_2022_3178265
crossref_primary_10_1109_JSEN_2024_3432636
crossref_primary_10_1109_TGRS_2023_3299233
crossref_primary_10_1109_TVT_2023_3293023
crossref_primary_10_1109_TAES_2024_3430241
crossref_primary_10_1109_TAES_2023_3272302
crossref_primary_10_1109_TSP_2024_3516709
crossref_primary_10_1109_TSP_2023_3246233
crossref_primary_10_1109_TGRS_2023_3267499
crossref_primary_10_1109_TSP_2022_3191800
Cites_doi 10.1109/TSP.2021.3089440
10.1109/TAES.2015.140170
10.1049/iet-rsn:20070024
10.1109/TSP.2021.3087897
10.1109/TSP.2010.2044613
10.23919/FUSION43075.2019.9011235
10.1109/ACSSC.2003.1292087
10.1109/TAES.2015.130754
10.1109/RADAR.2010.5494600
10.1016/j.aeue.2012.01.006
10.1109/TSP.2020.2976587
10.1109/TSP.2007.893220
10.1109/LSP.2017.2704612
10.1109/TAES.2020.2995528
10.1109/ACSSC.2004.1399141
10.1109/TSP.2019.2941119
10.1109/TIT.2010.2046246
10.1109/TSP.2007.893937
10.1109/MSP.2007.904812
10.1109/TSP.2005.862813
10.1109/TSP.2018.2838564
10.1016/j.inffus.2010.01.004
10.1109/TAES.2013.6621809
10.1109/TSP.2020.3047519
10.1109/TSP.2011.2159602
10.1109/TSP.2020.2968282
10.1109/MAES.2016.160071
10.1109/TSP.2018.2879038
10.1109/TVT.2018.2877265
10.1109/TAES.2007.4383581
10.1109/TAES.2010.5545189
10.1109/TSP.2008.928693
10.1109/NRC.2004.1316398
10.1109/TSP.2020.3009836
10.1109/TSP.2013.2245323
10.1109/TSP.2016.2519005
10.1109/TSP.2020.2964227
10.1109/TSP.2018.2841860
10.1109/TSP.2004.823484
10.1109/MSP.2008.4408448
10.1109/ACSSC.2004.1399140
10.1109/TIT.2010.2068930
10.1109/TAES.2018.2818579
10.1109/TSP.2016.2598312
10.1109/LSP.2019.2916749
10.1109/TAES.2018.2870445
10.21236/ada403877
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
CorporateAuthor Matematisk statistik
Lunds universitet
LTH profilområden
Profile areas and other strong research environments
Naturvetenskapliga fakulteten
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Faculty of Science
Mathematical Statistics
Lund University
LTH Profile areas
ELLIIT: the Linköping-Lund initiative on IT and mobile communication
Strategiska forskningsområden (SFO)
LTH Profile Area: Engineering Health
LTH Profile Area: AI and Digitalization
Centre for Mathematical Sciences
LTH profilområde: Teknik för hälsa
Strategic research areas (SRA)
Matematikcentrum
LTH profilområde: AI och digitalisering
eSSENCE: The e-Science Collaboration
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: LTH profilområde: Teknik för hälsa
– name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication
– name: Strategiska forskningsområden (SFO)
– name: Naturvetenskapliga fakulteten
– name: LTH Profile Area: Engineering Health
– name: LTH Profile Area: AI and Digitalization
– name: Strategic research areas (SRA)
– name: Lunds Tekniska Högskola
– name: Lunds universitet
– name: Faculty of Science
– name: Mathematical Statistics
– name: Faculty of Engineering, LTH
– name: Profilområden och andra starka forskningsmiljöer
– name: LTH Profile areas
– name: LTH profilområden
– name: Lund University
– name: LTH profilområde: AI och digitalisering
– name: Centre for Mathematical Sciences
– name: Profile areas and other strong research environments
– name: eSSENCE: The e-Science Collaboration
– name: Matematisk statistik
– name: Matematikcentrum
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTPV
AOWAS
D95
DOI 10.1109/TGRS.2022.3175046
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e
10_1109_TGRS_2022_3175046
9774368
Genre orig-research
GrantInformation_xml – fundername: Swedish SRA eSSENCE
  grantid: 2020 6:2
– fundername: National Natural Science Foundation of China
  grantid: 61771110; U19B2017; 61871103
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds of Central Universities
  grantid: ZYGX2020ZB029
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c383t-1104370423178def6fa00a5b90550f0cba7b0e9855e4f4e04a57e81c3b9f08f53
IEDL.DBID RIE
ISSN 0196-2892
1558-0644
IngestDate Sun Oct 19 00:41:08 EDT 2025
Tue Aug 26 15:40:21 EDT 2025
Wed Oct 01 02:20:16 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Wed Aug 27 02:36:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-1104370423178def6fa00a5b90550f0cba7b0e9855e4f4e04a57e81c3b9f08f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9878-7048
0000-0002-2156-6973
PQID 2669160861
PQPubID 85465
PageCount 16
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3175046
swepub_primary_oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e
ieee_primary_9774368
proquest_journals_2669160861
crossref_citationtrail_10_1109_TGRS_2022_3175046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref16
ref19
ref18
Richards (ref26) 2014
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Zinkevich (ref51) 2010; 23
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
Chernyak (ref5) 1998
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Rabideau (ref17) 2004
References_xml – ident: ref47
  doi: 10.1109/TSP.2021.3089440
– ident: ref41
  doi: 10.1109/TAES.2015.140170
– ident: ref40
  doi: 10.1049/iet-rsn:20070024
– ident: ref44
  doi: 10.1109/TSP.2021.3087897
– ident: ref22
  doi: 10.1109/TSP.2010.2044613
– ident: ref42
  doi: 10.23919/FUSION43075.2019.9011235
– volume-title: Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar
  year: 2004
  ident: ref17
– ident: ref4
  doi: 10.1109/ACSSC.2003.1292087
– ident: ref9
  doi: 10.1109/TAES.2015.130754
– ident: ref50
  doi: 10.1109/RADAR.2010.5494600
– ident: ref39
  doi: 10.1016/j.aeue.2012.01.006
– ident: ref23
  doi: 10.1109/TSP.2020.2976587
– ident: ref21
  doi: 10.1109/TSP.2007.893220
– ident: ref28
  doi: 10.1109/LSP.2017.2704612
– ident: ref27
  doi: 10.1109/TAES.2020.2995528
– ident: ref14
  doi: 10.1109/ACSSC.2004.1399141
– ident: ref38
  doi: 10.1109/TSP.2019.2941119
– ident: ref43
  doi: 10.1109/TIT.2010.2046246
– ident: ref2
  doi: 10.1109/TSP.2007.893937
– ident: ref8
  doi: 10.1109/MSP.2007.904812
– ident: ref12
  doi: 10.1109/TSP.2005.862813
– ident: ref30
  doi: 10.1109/TSP.2018.2838564
– ident: ref15
  doi: 10.1016/j.inffus.2010.01.004
– ident: ref16
  doi: 10.1109/TAES.2013.6621809
– ident: ref45
  doi: 10.1109/TSP.2020.3047519
– ident: ref35
  doi: 10.1109/TSP.2011.2159602
– ident: ref36
  doi: 10.1109/TSP.2020.2968282
– ident: ref20
  doi: 10.1109/MAES.2016.160071
– ident: ref3
  doi: 10.1109/TSP.2018.2879038
– ident: ref7
  doi: 10.1109/TVT.2018.2877265
– ident: ref29
  doi: 10.1109/TAES.2007.4383581
– ident: ref13
  doi: 10.1109/TAES.2010.5545189
– ident: ref24
  doi: 10.1109/TSP.2008.928693
– ident: ref1
  doi: 10.1109/NRC.2004.1316398
– ident: ref32
  doi: 10.1109/TSP.2020.3009836
– ident: ref33
  doi: 10.1109/TSP.2013.2245323
– volume-title: Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems
  year: 1998
  ident: ref5
– ident: ref31
  doi: 10.1109/TSP.2016.2519005
– ident: ref34
  doi: 10.1109/TSP.2020.2964227
– ident: ref49
  doi: 10.1109/TSP.2018.2841860
– volume: 23
  start-page: 2595
  year: 2010
  ident: ref51
  article-title: Parallelized stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref48
  doi: 10.1109/TSP.2004.823484
– ident: ref10
  doi: 10.1109/MSP.2008.4408448
– ident: ref6
  doi: 10.1109/ACSSC.2004.1399140
– ident: ref11
  doi: 10.1109/TIT.2010.2068930
– volume-title: Fundamentals of Radar Signal Processing
  year: 2014
  ident: ref26
– ident: ref18
  doi: 10.1109/TAES.2018.2818579
– ident: ref25
  doi: 10.1109/TSP.2016.2598312
– ident: ref37
  doi: 10.1109/LSP.2019.2916749
– ident: ref46
  doi: 10.1109/TAES.2018.2870445
– ident: ref19
  doi: 10.21236/ada403877
SSID ssj0014517
Score 2.5249276
Snippet In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Annan medicinsk bioteknologi
Cells
Detectors
Distributed multiple-input multiple-output (MIMO) radar
False alarms
generalized likelihood ratio test (GLRT) detector
Likelihood ratio
Medical and Health Sciences
Medical Biotechnology
Medicin och hälsovetenskap
Medicinsk bioteknologi
MIMO communication
MIMO radar
multitarget detection
Other Medical Biotechnology
Probability density function
Procedures
Radar
Radar detection
Receiving antennas
Statistical methods
Statistical tests
Surveillance
Target detection
Title Multitarget Detection Strategy for Distributed MIMO Radar With Widely Separated Antennas
URI https://ieeexplore.ieee.org/document/9774368
https://www.proquest.com/docview/2669160861
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 1558-0644
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgwKMFsaUgHzghsrUT20mOFaUUpAWpD7HiYvkxVhGrtOpmD-XXYzveaEEIcYlysKOJx8l8nz3zGeA1pc4K62mhWy0KLp0tjNa-qAxn1qDzXMTi5NlneXrJP83FfAvejrUwiJiSz3Aab9Nevru2q7hUdhixSiWbbdiuGznUao07BlywXBoti0AiyryDyWh7ePHh7DwwwbKcxmBJI9bdiEHpUJXf8eWmZmiKMyePYLa2cEgv-TFd9WZqf_4h3vi_r_AYHmbASY6GGfIEtrDbhQcbMoS7cC-lgdrlHsyHetyUHU6OsU95Wh3JErZ3JCBcchylduMpWejI7OPsCznTTt-Sr9_7q3BxuLgj55gUxUODo5gh3-nlU7g8eX_x7rTIZy8UNnDWvggDx6s6Js2wunHopdeUamFaGiiNp9bo2lBsGyGQe46Ua1Fjw2xlWk8bL6pnsNNdd_gciKwi63Glky5gL6x1Hf4plWBecNvK1k-Arr2hbBYmj-djLFQiKLRV0YEqOlBlB07gzdjlZlDl-FfjveiHsWF2wQQO1i5X-btdqgBXAl4ONI9N4NswDcZ-UYh74EQqCzFdqcVKLcOTN1ZYlSt1XVksFQ-DpniI_8owbxTzrg5mCecb3P-7SS_gfjR8WOE5gJ3-doUvA-bpzas02X8Bmdj-2Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLRFXSjgAydEtk5i53GsKGULTZHarVhxsfwYq4hVWnWzh_LrsR1vtCCEuEQ52JHtsePvs2e-AXhDqdFcW5rIWvKEFUYnSkqb5IqlWqGxjPvg5Oa0mFywTzM-24B3QywMIgbnMxz713CXb6700h-V7XuskhfVHbjLGWO8j9Ya7gwYT2NwdJE4GpHFO8yU1vvTj2fnjgtm2dhvl9Sj3bVdKKRV-R1hrquGhp3m6DE0qzb2DiY_xstOjfXPP-Qb_7cTT-BRhJzkoJ8jT2ED2y14uCZEuAX3giOoXmzDrI_IDf7h5BC74KnVkihie0scxiWHXmzX58lCQ5rj5gs5k0bekK_fu0v3MDi_JecYNMVdgQPvI9_KxQ5cHH2Yvp8kMftCoh1r7RI3cCwvvdtMWlYGbWElpZKrmjpSY6lWslQU64pzZJYhZZKXWKU6V7WlleX5M9hsr1rcBVLknveYzBTGoS8sZen-KjlPLWe6Lmo7ArqyhtBRmtxnyJiLQFFoLbwBhTegiAYcwduhynWvy_GvwtveDkPBaIIR7K1MLuLKXQgHWBxidkQvHcG3fhoM9bwUd8-KRJRiuhTzpVi4L6-dsQqTyTLXmAnmBk0whwCESq0SqTWlaxY3tsLnf2_Sa7g_mTYn4uT49PMLeOA70Z_37MFmd7PElw4BdepVmPi_ABLyAjU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Detection+Strategy+for+Distributed+MIMO+Radar+With+Widely+Separated+Antennas&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Shixing&rft.au=Yi%2C+Wei&rft.au=Jakobsson%2C+Andreas&rft.date=2022&rft.issn=1558-0644&rft.volume=60&rft_id=info:doi/10.1109%2FTGRS.2022.3175046&rft.externalDocID=oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon