Multitarget Detection Strategy for Distributed MIMO Radar With Widely Separated Antennas
In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called "defocused transmit-defocused receive" operating mode. The proposed method employs a grid-based data matching algorithm, aiming to ass...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 16 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 1558-0644 |
| DOI | 10.1109/TGRS.2022.3175046 |
Cover
| Abstract | In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called "defocused transmit-defocused receive" operating mode. The proposed method employs a grid-based data matching algorithm, aiming to associate the target responses to potential target locations, solving the resulting data puzzle that evaluates the various cells under test (CUTs) in the surveillance area resulting from the intertwined range cells across all transmit-receive channels. Sketchily, the approach divides the surveillance area into identically interlocking and analytically expressible grid cells and then selects the grid cells with the best fitting multichannel data to be equivalently regarded as the CUTs. Next, the generalized likelihood ratio test (GLRT) detector is derived to test for target presence in each of the selected grid cells. A separate procedure is introduced to eliminate the spurious "shadow targets," false alarms occurring in the grid cells without a target while sharing range cells with the targets. The essence of this procedure is to find the source of the observed contributions to the grid cells whose test statistics exceed their thresholds, and simultaneously obtain the positions of the targets. The proposed method is evaluated using both numerical simulations and experimental data recorded by five small radars, demonstrating the effectiveness of the proposed technique. |
|---|---|
| AbstractList | In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called “defocused transmit-defocused receive” operating mode. The proposed method employs a grid-based data matching algorithm, aiming to associate the target responses to potential target locations, solving the resulting data puzzle that evaluates the various cells under test (CUTs) in the surveillance area resulting from the intertwined range cells across all transmit-receive channels. Sketchily, the approach divides the surveillance area into identically interlocking and analytically expressible grid cells and then selects the grid cells with the best fitting multichannel data to be equivalently regarded as the CUTs. Next, the generalized likelihood ratio test (GLRT) detector is derived to test for target presence in each of the selected grid cells. A separate procedure is introduced to eliminate the spurious “shadow targets,” false alarms occurring in the grid cells without a target while sharing range cells with the targets. The essence of this procedure is to find the source of the observed contributions to the grid cells whose test statistics exceed their thresholds, and simultaneously obtain the positions of the targets. The proposed method is evaluated using both numerical simulations and experimental data recorded by five small radars, demonstrating the effectiveness of the proposed technique. |
| Author | Yi, Wei Yang, Shixing Jakobsson, Andreas |
| Author_xml | – sequence: 1 givenname: Shixing surname: Yang fullname: Yang, Shixing email: victorshixing@gmail.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Wei orcidid: 0000-0001-9878-7048 surname: Yi fullname: Yi, Wei email: kussoyi@gmail.com organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Andreas orcidid: 0000-0002-2156-6973 surname: Jakobsson fullname: Jakobsson, Andreas email: aj@math.lth.se organization: Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden |
| BookMark | eNp9UcFu1TAQtFCReC18AOISiXMea8eOnWPV0lKpT5X6iuC2cpJ16yokwXaE3t_j6BUOHLjsXmZ2dmZO2ck4jcTYew5bzqH59HB9v98KEGJbca1A1q_YhitlSqilPGEb4E1dCtOIN-w0xmcALhXXG_Z9twzJJxseKRWXlKhLfhqLfQo20eOhcFMoLn1MwbdLor7Y3ezuinvb21B88-kpj56GQ7Gn2a6MvjgfE42jjW_Za2eHSO9e9hn7evX54eJLeXt3fXNxflt2lalSmZ-XlQYp8tumJ1c7C2BV24BS4KBrrW6BGqMUSScJpFWaDO-qtnFgnKrOmD3ejb9oXlqcg_9hwwEn63GeQrIDBopkQ_eEw4KRMKMG39nVZ8ReWF11JFBmaZRcGGy5a5G7Xuc4Ve8MZY2PR405TD8XigmfpyWM2RaKum54DabmGaWPqC5MMQZy2OVgV5kcph-QA65V4VoVrlXhS1WZyf9h_nHxP86HI8cT0V98o7WsalP9BgugopI |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3442777 crossref_primary_10_1109_TGRS_2023_3298825 crossref_primary_10_1109_TAES_2023_3336304 crossref_primary_10_1109_LAWP_2024_3428706 crossref_primary_10_1109_LGRS_2022_3233259 crossref_primary_10_1109_TAES_2023_3296344 crossref_primary_10_1109_TAES_2024_3438103 crossref_primary_10_1109_JIOT_2022_3178265 crossref_primary_10_1109_JSEN_2024_3432636 crossref_primary_10_1109_TGRS_2023_3299233 crossref_primary_10_1109_TVT_2023_3293023 crossref_primary_10_1109_TAES_2024_3430241 crossref_primary_10_1109_TAES_2023_3272302 crossref_primary_10_1109_TSP_2024_3516709 crossref_primary_10_1109_TSP_2023_3246233 crossref_primary_10_1109_TGRS_2023_3267499 crossref_primary_10_1109_TSP_2022_3191800 |
| Cites_doi | 10.1109/TSP.2021.3089440 10.1109/TAES.2015.140170 10.1049/iet-rsn:20070024 10.1109/TSP.2021.3087897 10.1109/TSP.2010.2044613 10.23919/FUSION43075.2019.9011235 10.1109/ACSSC.2003.1292087 10.1109/TAES.2015.130754 10.1109/RADAR.2010.5494600 10.1016/j.aeue.2012.01.006 10.1109/TSP.2020.2976587 10.1109/TSP.2007.893220 10.1109/LSP.2017.2704612 10.1109/TAES.2020.2995528 10.1109/ACSSC.2004.1399141 10.1109/TSP.2019.2941119 10.1109/TIT.2010.2046246 10.1109/TSP.2007.893937 10.1109/MSP.2007.904812 10.1109/TSP.2005.862813 10.1109/TSP.2018.2838564 10.1016/j.inffus.2010.01.004 10.1109/TAES.2013.6621809 10.1109/TSP.2020.3047519 10.1109/TSP.2011.2159602 10.1109/TSP.2020.2968282 10.1109/MAES.2016.160071 10.1109/TSP.2018.2879038 10.1109/TVT.2018.2877265 10.1109/TAES.2007.4383581 10.1109/TAES.2010.5545189 10.1109/TSP.2008.928693 10.1109/NRC.2004.1316398 10.1109/TSP.2020.3009836 10.1109/TSP.2013.2245323 10.1109/TSP.2016.2519005 10.1109/TSP.2020.2964227 10.1109/TSP.2018.2841860 10.1109/TSP.2004.823484 10.1109/MSP.2008.4408448 10.1109/ACSSC.2004.1399140 10.1109/TIT.2010.2068930 10.1109/TAES.2018.2818579 10.1109/TSP.2016.2598312 10.1109/LSP.2019.2916749 10.1109/TAES.2018.2870445 10.21236/ada403877 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| CorporateAuthor | Matematisk statistik Lunds universitet LTH profilområden Profile areas and other strong research environments Naturvetenskapliga fakulteten Faculty of Engineering, LTH Lunds Tekniska Högskola Faculty of Science Mathematical Statistics Lund University LTH Profile areas ELLIIT: the Linköping-Lund initiative on IT and mobile communication Strategiska forskningsområden (SFO) LTH Profile Area: Engineering Health LTH Profile Area: AI and Digitalization Centre for Mathematical Sciences LTH profilområde: Teknik för hälsa Strategic research areas (SRA) Matematikcentrum LTH profilområde: AI och digitalisering eSSENCE: The e-Science Collaboration Profilområden och andra starka forskningsmiljöer |
| CorporateAuthor_xml | – name: LTH profilområde: Teknik för hälsa – name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication – name: Strategiska forskningsområden (SFO) – name: Naturvetenskapliga fakulteten – name: LTH Profile Area: Engineering Health – name: LTH Profile Area: AI and Digitalization – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Lunds universitet – name: Faculty of Science – name: Mathematical Statistics – name: Faculty of Engineering, LTH – name: Profilområden och andra starka forskningsmiljöer – name: LTH Profile areas – name: LTH profilområden – name: Lund University – name: LTH profilområde: AI och digitalisering – name: Centre for Mathematical Sciences – name: Profile areas and other strong research environments – name: eSSENCE: The e-Science Collaboration – name: Matematisk statistik – name: Matematikcentrum |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTPV AOWAS D95 |
| DOI | 10.1109/TGRS.2022.3175046 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 16 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e 10_1109_TGRS_2022_3175046 9774368 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swedish SRA eSSENCE grantid: 2020 6:2 – fundername: National Natural Science Foundation of China grantid: 61771110; U19B2017; 61871103 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds of Central Universities grantid: ZYGX2020ZB029 funderid: 10.13039/501100012226 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTPV AOWAS D95 |
| ID | FETCH-LOGICAL-c383t-1104370423178def6fa00a5b90550f0cba7b0e9855e4f4e04a57e81c3b9f08f53 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 1558-0644 |
| IngestDate | Sun Oct 19 00:41:08 EDT 2025 Tue Aug 26 15:40:21 EDT 2025 Wed Oct 01 02:20:16 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 Wed Aug 27 02:36:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c383t-1104370423178def6fa00a5b90550f0cba7b0e9855e4f4e04a57e81c3b9f08f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9878-7048 0000-0002-2156-6973 |
| PQID | 2669160861 |
| PQPubID | 85465 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3175046 swepub_primary_oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e ieee_primary_9774368 proquest_journals_2669160861 crossref_citationtrail_10_1109_TGRS_2022_3175046 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref16 ref19 ref18 Richards (ref26) 2014 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Zinkevich (ref51) 2010; 23 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref40 ref35 ref34 Chernyak (ref5) 1998 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Rabideau (ref17) 2004 |
| References_xml | – ident: ref47 doi: 10.1109/TSP.2021.3089440 – ident: ref41 doi: 10.1109/TAES.2015.140170 – ident: ref40 doi: 10.1049/iet-rsn:20070024 – ident: ref44 doi: 10.1109/TSP.2021.3087897 – ident: ref22 doi: 10.1109/TSP.2010.2044613 – ident: ref42 doi: 10.23919/FUSION43075.2019.9011235 – volume-title: Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar year: 2004 ident: ref17 – ident: ref4 doi: 10.1109/ACSSC.2003.1292087 – ident: ref9 doi: 10.1109/TAES.2015.130754 – ident: ref50 doi: 10.1109/RADAR.2010.5494600 – ident: ref39 doi: 10.1016/j.aeue.2012.01.006 – ident: ref23 doi: 10.1109/TSP.2020.2976587 – ident: ref21 doi: 10.1109/TSP.2007.893220 – ident: ref28 doi: 10.1109/LSP.2017.2704612 – ident: ref27 doi: 10.1109/TAES.2020.2995528 – ident: ref14 doi: 10.1109/ACSSC.2004.1399141 – ident: ref38 doi: 10.1109/TSP.2019.2941119 – ident: ref43 doi: 10.1109/TIT.2010.2046246 – ident: ref2 doi: 10.1109/TSP.2007.893937 – ident: ref8 doi: 10.1109/MSP.2007.904812 – ident: ref12 doi: 10.1109/TSP.2005.862813 – ident: ref30 doi: 10.1109/TSP.2018.2838564 – ident: ref15 doi: 10.1016/j.inffus.2010.01.004 – ident: ref16 doi: 10.1109/TAES.2013.6621809 – ident: ref45 doi: 10.1109/TSP.2020.3047519 – ident: ref35 doi: 10.1109/TSP.2011.2159602 – ident: ref36 doi: 10.1109/TSP.2020.2968282 – ident: ref20 doi: 10.1109/MAES.2016.160071 – ident: ref3 doi: 10.1109/TSP.2018.2879038 – ident: ref7 doi: 10.1109/TVT.2018.2877265 – ident: ref29 doi: 10.1109/TAES.2007.4383581 – ident: ref13 doi: 10.1109/TAES.2010.5545189 – ident: ref24 doi: 10.1109/TSP.2008.928693 – ident: ref1 doi: 10.1109/NRC.2004.1316398 – ident: ref32 doi: 10.1109/TSP.2020.3009836 – ident: ref33 doi: 10.1109/TSP.2013.2245323 – volume-title: Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems year: 1998 ident: ref5 – ident: ref31 doi: 10.1109/TSP.2016.2519005 – ident: ref34 doi: 10.1109/TSP.2020.2964227 – ident: ref49 doi: 10.1109/TSP.2018.2841860 – volume: 23 start-page: 2595 year: 2010 ident: ref51 article-title: Parallelized stochastic gradient descent publication-title: Adv. Neural Inf. Process. Syst. – ident: ref48 doi: 10.1109/TSP.2004.823484 – ident: ref10 doi: 10.1109/MSP.2008.4408448 – ident: ref6 doi: 10.1109/ACSSC.2004.1399140 – ident: ref11 doi: 10.1109/TIT.2010.2068930 – volume-title: Fundamentals of Radar Signal Processing year: 2014 ident: ref26 – ident: ref18 doi: 10.1109/TAES.2018.2818579 – ident: ref25 doi: 10.1109/TSP.2016.2598312 – ident: ref37 doi: 10.1109/LSP.2019.2916749 – ident: ref46 doi: 10.1109/TAES.2018.2870445 – ident: ref19 doi: 10.21236/ada403877 |
| SSID | ssj0014517 |
| Score | 2.5249276 |
| Snippet | In this article, we propose a novel solution to detect multiple targets using a distributed multiple-input multiple-output (MIMO) radar under the so-called... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Annan medicinsk bioteknologi Cells Detectors Distributed multiple-input multiple-output (MIMO) radar False alarms generalized likelihood ratio test (GLRT) detector Likelihood ratio Medical and Health Sciences Medical Biotechnology Medicin och hälsovetenskap Medicinsk bioteknologi MIMO communication MIMO radar multitarget detection Other Medical Biotechnology Probability density function Procedures Radar Radar detection Receiving antennas Statistical methods Statistical tests Surveillance Target detection |
| Title | Multitarget Detection Strategy for Distributed MIMO Radar With Widely Separated Antennas |
| URI | https://ieeexplore.ieee.org/document/9774368 https://www.proquest.com/docview/2669160861 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 1558-0644 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgwKMFsaUgHzghsrUT20mOFaUUpAWpD7HiYvkxVhGrtOpmD-XXYzveaEEIcYlysKOJx8l8nz3zGeA1pc4K62mhWy0KLp0tjNa-qAxn1qDzXMTi5NlneXrJP83FfAvejrUwiJiSz3Aab9Nevru2q7hUdhixSiWbbdiuGznUao07BlywXBoti0AiyryDyWh7ePHh7DwwwbKcxmBJI9bdiEHpUJXf8eWmZmiKMyePYLa2cEgv-TFd9WZqf_4h3vi_r_AYHmbASY6GGfIEtrDbhQcbMoS7cC-lgdrlHsyHetyUHU6OsU95Wh3JErZ3JCBcchylduMpWejI7OPsCznTTt-Sr9_7q3BxuLgj55gUxUODo5gh3-nlU7g8eX_x7rTIZy8UNnDWvggDx6s6Js2wunHopdeUamFaGiiNp9bo2lBsGyGQe46Ua1Fjw2xlWk8bL6pnsNNdd_gciKwi63Glky5gL6x1Hf4plWBecNvK1k-Arr2hbBYmj-djLFQiKLRV0YEqOlBlB07gzdjlZlDl-FfjveiHsWF2wQQO1i5X-btdqgBXAl4ONI9N4NswDcZ-UYh74EQqCzFdqcVKLcOTN1ZYlSt1XVksFQ-DpniI_8owbxTzrg5mCecb3P-7SS_gfjR8WOE5gJ3-doUvA-bpzas02X8Bmdj-2Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQceLRFXSjgAydEtk5i53GsKGULTZHarVhxsfwYq4hVWnWzh_LrsR1vtCCEuEQ52JHtsePvs2e-AXhDqdFcW5rIWvKEFUYnSkqb5IqlWqGxjPvg5Oa0mFywTzM-24B3QywMIgbnMxz713CXb6700h-V7XuskhfVHbjLGWO8j9Ya7gwYT2NwdJE4GpHFO8yU1vvTj2fnjgtm2dhvl9Sj3bVdKKRV-R1hrquGhp3m6DE0qzb2DiY_xstOjfXPP-Qb_7cTT-BRhJzkoJ8jT2ED2y14uCZEuAX3giOoXmzDrI_IDf7h5BC74KnVkihie0scxiWHXmzX58lCQ5rj5gs5k0bekK_fu0v3MDi_JecYNMVdgQPvI9_KxQ5cHH2Yvp8kMftCoh1r7RI3cCwvvdtMWlYGbWElpZKrmjpSY6lWslQU64pzZJYhZZKXWKU6V7WlleX5M9hsr1rcBVLknveYzBTGoS8sZen-KjlPLWe6Lmo7ArqyhtBRmtxnyJiLQFFoLbwBhTegiAYcwduhynWvy_GvwtveDkPBaIIR7K1MLuLKXQgHWBxidkQvHcG3fhoM9bwUd8-KRJRiuhTzpVi4L6-dsQqTyTLXmAnmBk0whwCESq0SqTWlaxY3tsLnf2_Sa7g_mTYn4uT49PMLeOA70Z_37MFmd7PElw4BdepVmPi_ABLyAjU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Detection+Strategy+for+Distributed+MIMO+Radar+With+Widely+Separated+Antennas&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yang%2C+Shixing&rft.au=Yi%2C+Wei&rft.au=Jakobsson%2C+Andreas&rft.date=2022&rft.issn=1558-0644&rft.volume=60&rft_id=info:doi/10.1109%2FTGRS.2022.3175046&rft.externalDocID=oai_portal_research_lu_se_publications_d2a73ce2_4f6f_4128_b1fb_1fd72025df8e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |