Improving the Light‐Extraction Efficiency of AlGaN DUV‐LEDs by Using a Superlattice Hole Spreading Layer and an Al Reflector
AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by usin...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 215; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
21.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-6300 1862-6319 |
DOI | 10.1002/pssa.201700436 |
Cover
Abstract | AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6.
Currently, an increase in the efficiency of deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) is one of the major subjects toward the expected large market in sterilization. In this article, the increase of external quantum efficiency (EQE) of 280 nm‐band DUV‐LEDs by enhancing the light‐extraction efficiency (LEE) through introducing a superlattice (SL) hole spreading transparent p‐AlGaN contact layer, a dot matrix p‐type electrode and an Al reflector is demonstrated. |
---|---|
AbstractList | AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6.
Currently, an increase in the efficiency of deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) is one of the major subjects toward the expected large market in sterilization. In this article, the increase of external quantum efficiency (EQE) of 280 nm‐band DUV‐LEDs by enhancing the light‐extraction efficiency (LEE) through introducing a superlattice (SL) hole spreading transparent p‐AlGaN contact layer, a dot matrix p‐type electrode and an Al reflector is demonstrated. AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6. |
Author | Jo, Masafumi Maeda, Noritoshi Hirayama, Hideki |
Author_xml | – sequence: 1 givenname: Noritoshi surname: Maeda fullname: Maeda, Noritoshi email: nmaeda@riken.jp organization: The Institute of Physical and Chemical Research (RIKEN) – sequence: 2 givenname: Masafumi surname: Jo fullname: Jo, Masafumi organization: The Institute of Physical and Chemical Research (RIKEN) – sequence: 3 givenname: Hideki surname: Hirayama fullname: Hirayama, Hideki organization: The Institute of Physical and Chemical Research (RIKEN) |
BookMark | eNqFkM9KAzEQh4MoWP9cPQc8tyabbLY5Fq1aWFSs9bqk6URT1t01SdW99RF8Rp_ELBUFQTyECcz3zTC_PbRd1RUgdETJgBKSnDTeq0FCaEYIZ2IL9ehQJH3BqNz-_hOyi_a8X0Yk5RntofXkqXH1i60ecHgEnNuHx_Cxfh-_Bad0sHWFx8ZYbaHSLa4NHpUX6gqfze4jlI_PPJ63eOY7XeHpqgFXqhCsBnxZl4CnjQO16Lq5asFhVS3ii0PwLZgSdKjdAdoxqvRw-FX30ex8fHd62c-vLyano7yv2ZCJPhi5AJ1JkbE55UZoI3mqh2nCKHAumUmI5jJJlZY6XqzE0Ehi5lplPE15Stg-Ot7Mjec-r8CHYlmvXBVXFglhJKNC8CRSfENpV3vvwBTaBtXlEPOwZUFJ0WVddFkX31lHbfBLa5x9Uq79W5Ab4dWW0P5DFzfT6ejH_QSZVZWo |
CitedBy_id | crossref_primary_10_1088_1361_6463_aaf60a crossref_primary_10_1007_s11801_024_3099_0 crossref_primary_10_1021_acsaelm_0c00172 crossref_primary_10_1364_OL_532520 crossref_primary_10_1088_1361_6463_ab4d7b crossref_primary_10_1109_JPHOT_2023_3281342 crossref_primary_10_1109_TDMR_2021_3108541 crossref_primary_10_1364_OE_416826 crossref_primary_10_1109_TED_2023_3325422 crossref_primary_10_1364_OL_461732 crossref_primary_10_7567_1347_4065_ab460b crossref_primary_10_3390_mi11060572 crossref_primary_10_1109_LPT_2019_2920527 crossref_primary_10_1002_adom_201901430 crossref_primary_10_1038_s41598_021_84426_z crossref_primary_10_1109_JPHOT_2019_2950049 crossref_primary_10_1364_OE_471430 crossref_primary_10_1364_AO_57_007325 crossref_primary_10_1364_OE_434636 crossref_primary_10_1016_j_optcom_2018_10_024 crossref_primary_10_1002_pssa_201900185 crossref_primary_10_1063_5_0160177 crossref_primary_10_3390_cryst12081131 |
Cites_doi | 10.7567/APEX.6.092103 10.7567/JJAP.53.100209 10.1143/APEX.5.082101 10.1063/1.1899760 10.1002/pssc.201300278 10.7567/APEX.6.032101 10.1002/pssa.200880961 10.7567/APEX.10.031002 10.1063/1.125042 10.1063/1.2360217 10.1063/1.2770662 10.1143/APEX.3.061004 10.1063/1.1828230 10.1063/1.3334721 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/pssa.201700436 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssa_201700436 PSSA201700436 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA GYQRN H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT .Y3 AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AFFNX AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3836-ef9dec79673b14f6cf945c85231e4493f20c4925ac9c319a68f90fbca74554503 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Wed Aug 13 07:25:27 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 00:55:10 EDT 2025 Wed Jan 22 17:10:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3836-ef9dec79673b14f6cf945c85231e4493f20c4925ac9c319a68f90fbca74554503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2030716642 |
PQPubID | 1036347 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2030716642 crossref_citationtrail_10_1002_pssa_201700436 crossref_primary_10_1002_pssa_201700436 wiley_primary_10_1002_pssa_201700436_PSSA201700436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 21, 2018 |
PublicationDateYYYYMMDD | 2018-04-21 |
PublicationDate_xml | – month: 04 year: 2018 text: April 21, 2018 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 85 2006; 89 2013; 10 2017; 10 2005; 97 2007; 91 2016; 227 1999; 75 2009; 206 2010; 3 2012; 5 2013; 6 2010; 96 2014; 53 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 Kneissl M. (e_1_2_5_3_1) 2016 e_1_2_5_4_1 e_1_2_5_2_1 Hirayama H. (e_1_2_5_17_1) 2016 |
References_xml | – volume: 85 start-page: 5275 year: 2004 publication-title: Appl. Phys. Lett – volume: 6 start-page: 092103 year: 2013 publication-title: Appl. Phys. Express – volume: 97 start-page: 091101 year: 2005 publication-title: J. Appl. Phys – volume: 227 start-page: 1 year: 2016 – volume: 10 start-page: 1521 year: 2013 publication-title: Phys. Status Solidi (c) – volume: 206 start-page: 1176 year: 2009 publication-title: Physica Status Solidi (a) – volume: 5 start-page: 082101 year: 2012 publication-title: Appl. Phys. Express – volume: 10 start-page: 031002 year: 2017 publication-title: Appl. Phys. Express – volume: 89 start-page: 141123 year: 2006 publication-title: Appl. Phys. Lett – volume: 6 start-page: 032101 year: 2013 publication-title: Appl. Phys. Express – volume: 53 start-page: 100209 year: 2014 publication-title: Jap. J. Appl. Phys. (Selected Topic) – volume: 96 start-page: 081109 year: 2010 publication-title: Appl. Phys. Lett – volume: 91 start-page: 071901 year: 2007 publication-title: Appl. Phys. Lett – volume: 227 start-page: 75 year: 2016 – volume: 3 start-page: 061004 year: 2010 publication-title: Appl. Phys. Express – volume: 75 start-page: 2444 year: 1999 publication-title: Appl. Phys. Lett – ident: e_1_2_5_8_1 doi: 10.7567/APEX.6.092103 – ident: e_1_2_5_10_1 doi: 10.7567/JJAP.53.100209 – ident: e_1_2_5_6_1 doi: 10.1143/APEX.5.082101 – ident: e_1_2_5_2_1 doi: 10.1063/1.1899760 – start-page: 1 volume-title: Springer Series in Material Science year: 2016 ident: e_1_2_5_3_1 – ident: e_1_2_5_11_1 doi: 10.1002/pssc.201300278 – ident: e_1_2_5_9_1 doi: 10.7567/APEX.6.032101 – ident: e_1_2_5_5_1 doi: 10.1002/pssa.200880961 – ident: e_1_2_5_12_1 doi: 10.7567/APEX.10.031002 – ident: e_1_2_5_16_1 doi: 10.1063/1.125042 – ident: e_1_2_5_13_1 doi: 10.1063/1.2360217 – start-page: 75 volume-title: Springer Series in Material Science year: 2016 ident: e_1_2_5_17_1 – ident: e_1_2_5_4_1 doi: 10.1063/1.2770662 – ident: e_1_2_5_7_1 doi: 10.1143/APEX.3.061004 – ident: e_1_2_5_15_1 doi: 10.1063/1.1828230 – ident: e_1_2_5_14_1 doi: 10.1063/1.3334721 |
SSID | ssj0045471 |
Score | 2.373444 |
Snippet | AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum gallium nitrides deep‐ultraviolet light‐emitting diodes Economic conditions Efficiency Electrodes external quantum efficiency Light emitting diodes Nickel Organic light emitting diodes reflective electrodes Spreading superlattice Superlattices Ultraviolet radiation |
Title | Improving the Light‐Extraction Efficiency of AlGaN DUV‐LEDs by Using a Superlattice Hole Spreading Layer and an Al Reflector |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201700436 https://www.proquest.com/docview/2030716642 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMdFKQx2WbeupWm78Q6DnZTaluzYx7C4CyULJWlGb0ZSpEtDEmIHup7yJ_Rv3F-y92zHTQdlsB4MNpaErZ_fJz19xNiX0EwTIZ3gwmrJpR9brryp5p6NFVafKDaa5iF_DKP-RF7dhrc7u_grPkQz4UYto-yvqYErnV88QUOXeU7cIOLLSUHMbV9EBM_vjRp-FMGqSosLZTsnttSW2ugFF8-jPx-VnqTmrmAtR5zLA6a231o5mty114Vum4e_MI6v-Zn37F0tR6Fb1Z8PbM_OD9mb0i3U5B_ZpplzABSKMCBL_vfmMb0vVtWGCEhLBAXt34SFg-7suxpCb_ITAw3SXg76F5ROCaBgvF7S3GFB3nbQX8wsjJeryoUfBgqVP6j5FC9MBEbWVcsJR2xymd586_P6zAZu0NaNuHXJ1JpOEnWE9qWLjEtkaGI0d30rZSJc4BniISqTGGz9Kopd4jltVEeisAk9ccz254u5PWGA4lQ4ZVWCxSdDgZaVF9rAdZxvTIxCpsX4tswyUwPN6VyNWVahmIOMcjVrcrXFvjbhlxXK48WQ59sqkNVNOse32B36EdprLRaUZfmPVLLr8bjbPJ3-T6Qz9hbvY1q9Cvxztl-s1vYTiqBCfy4r-h-US_8Z |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9iRQguG_8mOjbwAYmTtyR20uRYbd0KZBVaV8Qtsl37QtVWTSoBp32EfcZ9Et5zmowhISR2yCGJbSX2e_bv_fHPAO9iM82EdIILqyWXYWq5CqaaBzZVKD5JajT5Ic9HyXAiP36Nm2xC2gtT80O0DjfSDD9fk4KTQ_roljV0WZZEHEQEc1IkW_DQB-kIF120DFJEV-VtLgTunNilGt7GIDq6W__uunQLNn-HrH7NOd0B3XxtnWry7XBd6UPz8w8ix3v9zlPY3iBS1q9F6Bk8sPPn8MhnhpryBVy1bgeGWJHlZMzfXF0Pvlerek8EG3gWCtrCyRaO9WdnasROJl-wUD44KZn-wXxeAlNsvF6S-7CihDs2XMwsGy9XdRY_yxWCf6bmU7ywEXZhXR1ReAmT08Hl8ZBvjm3gBs3dhFuXTa3pZUlP6FC6xLhMxiZFize0UmbCRYEhSkRlMoMTgEpSlwVOG9WTiG3iQOxCZ76Y21fAEJ8Kp6zKcPxkLNC4CmIbuZ4LjUkRy3SBN4NWmA2nOR2tMStqNuaooF4t2l7twvu2_LJm8_hryf1GBoqNVpf4FmfEMEGTrQuRH8x_tFJ8Ho_77d3e_1R6C4-Hl-d5kX8YfXoNT_B5SsGsKNyHTrVa2wPERJV-46X-F5C_A0Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CItAuGwOmFTZ4ByRO3pLYcZNjRVsKdNW0rmi3yHHsy6o2alIJOO0j7DPuk-w5abM_EkKCQw5JbCux37N_7_m9nwE-hjqLubCccZMKJvzIMOVlKfNMpEh8ZKRT54c8GcvhVHy7CC_uZfHX_BCNw81pRjVfOwXPM3t8RxqaF4XjDXL8coLLp_BMSForHSw6awikHFtVZXIRbmeOXGpD2-gFxw_rP1yW7rDmfcRaLTmDHVCbj60jTS6PVmV6pH8_4nH8n795CdtrPIrdWoB24YmZv4LnVVyoLl7DVeN0QEKKOHKm_M3Vdf9nuawzIrBfcVC4BE5cWOzOvqgx9qY_qNCo3ysw_YVVVAIqnKxy5zwsXbgdDhczg5N8Wcfw40gR9Ec1z-iiRvDM2Ho_4Q1MB_3zz0O2PrSBaTJ2JTM2zozuxLLDU19YqW0sQh2RvesbIWJuA087QkSlY03qr2RkY8-mWnUEIZvQ43vQmi_mZh-Q0Cm3yqiYhk-EnEwrLzSB7Vhf64iQTBvYZswSvWY0dwdrzJKaizlIXK8mTa-24VNTPq-5PP5Y8mAjAslapwt6S_OhL8lga0NQjeVfWklOJ5Nuc_f2Xyp9gBenvUEy-jr-_g626HHkdrIC_wBa5XJlDgkQlen7SuZvAYCAAfU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Light%E2%80%90Extraction+Efficiency+of+AlGaN+DUV%E2%80%90LEDs+by+Using+a+Superlattice+Hole+Spreading+Layer+and+an+Al+Reflector&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Maeda%2C+Noritoshi&rft.au=Jo%2C+Masafumi&rft.au=Hirayama%2C+Hideki&rft.date=2018-04-21&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=215&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssa.201700436&rft.externalDBID=10.1002%252Fpssa.201700436&rft.externalDocID=PSSA201700436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |