Improving the Light‐Extraction Efficiency of AlGaN DUV‐LEDs by Using a Superlattice Hole Spreading Layer and an Al Reflector

AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by usin...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 215; no. 8
Main Authors Maeda, Noritoshi, Jo, Masafumi, Hirayama, Hideki
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 21.04.2018
Subjects
Online AccessGet full text
ISSN1862-6300
1862-6319
DOI10.1002/pssa.201700436

Cover

Abstract AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6. Currently, an increase in the efficiency of deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) is one of the major subjects toward the expected large market in sterilization. In this article, the increase of external quantum efficiency (EQE) of 280 nm‐band DUV‐LEDs by enhancing the light‐extraction efficiency (LEE) through introducing a superlattice (SL) hole spreading transparent p‐AlGaN contact layer, a dot matrix p‐type electrode and an Al reflector is demonstrated.
AbstractList AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6. Currently, an increase in the efficiency of deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) is one of the major subjects toward the expected large market in sterilization. In this article, the increase of external quantum efficiency (EQE) of 280 nm‐band DUV‐LEDs by enhancing the light‐extraction efficiency (LEE) through introducing a superlattice (SL) hole spreading transparent p‐AlGaN contact layer, a dot matrix p‐type electrode and an Al reflector is demonstrated.
AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of DUV‐LEDs is still much lower than that of blue LEDs due to a quite low light‐extraction efficiency (LEE). We improved the LEE of DUV‐LEDs by using a superlattice (SL) hole spreading p‐AlGaN contact layer, a dot matrix Ni/Au electrode and an Al reflector. DUV‐LED samples in which the SL p‐AlGaN contact layer has various period lengths, and forms two different p‐type electrodes, a conventional Ni/Au electrode and a dot matrix Ni/Au electrode with an Al reflector are fabricated. By comparing these LED samples, it is confirmed that contact layers with relatively longer periods are suitable both for vertical hole injection and lateral spreading of the holes. By increasing the Al content and recovering the transparency of the SL p‐AlGaN contact layer, the LEE is increased by up to a factor of 1.6.
Author Jo, Masafumi
Maeda, Noritoshi
Hirayama, Hideki
Author_xml – sequence: 1
  givenname: Noritoshi
  surname: Maeda
  fullname: Maeda, Noritoshi
  email: nmaeda@riken.jp
  organization: The Institute of Physical and Chemical Research (RIKEN)
– sequence: 2
  givenname: Masafumi
  surname: Jo
  fullname: Jo, Masafumi
  organization: The Institute of Physical and Chemical Research (RIKEN)
– sequence: 3
  givenname: Hideki
  surname: Hirayama
  fullname: Hirayama, Hideki
  organization: The Institute of Physical and Chemical Research (RIKEN)
BookMark eNqFkM9KAzEQh4MoWP9cPQc8tyabbLY5Fq1aWFSs9bqk6URT1t01SdW99RF8Rp_ELBUFQTyECcz3zTC_PbRd1RUgdETJgBKSnDTeq0FCaEYIZ2IL9ehQJH3BqNz-_hOyi_a8X0Yk5RntofXkqXH1i60ecHgEnNuHx_Cxfh-_Bad0sHWFx8ZYbaHSLa4NHpUX6gqfze4jlI_PPJ63eOY7XeHpqgFXqhCsBnxZl4CnjQO16Lq5asFhVS3ii0PwLZgSdKjdAdoxqvRw-FX30ex8fHd62c-vLyano7yv2ZCJPhi5AJ1JkbE55UZoI3mqh2nCKHAumUmI5jJJlZY6XqzE0Ehi5lplPE15Stg-Ot7Mjec-r8CHYlmvXBVXFglhJKNC8CRSfENpV3vvwBTaBtXlEPOwZUFJ0WVddFkX31lHbfBLa5x9Uq79W5Ab4dWW0P5DFzfT6ejH_QSZVZWo
CitedBy_id crossref_primary_10_1088_1361_6463_aaf60a
crossref_primary_10_1007_s11801_024_3099_0
crossref_primary_10_1021_acsaelm_0c00172
crossref_primary_10_1364_OL_532520
crossref_primary_10_1088_1361_6463_ab4d7b
crossref_primary_10_1109_JPHOT_2023_3281342
crossref_primary_10_1109_TDMR_2021_3108541
crossref_primary_10_1364_OE_416826
crossref_primary_10_1109_TED_2023_3325422
crossref_primary_10_1364_OL_461732
crossref_primary_10_7567_1347_4065_ab460b
crossref_primary_10_3390_mi11060572
crossref_primary_10_1109_LPT_2019_2920527
crossref_primary_10_1002_adom_201901430
crossref_primary_10_1038_s41598_021_84426_z
crossref_primary_10_1109_JPHOT_2019_2950049
crossref_primary_10_1364_OE_471430
crossref_primary_10_1364_AO_57_007325
crossref_primary_10_1364_OE_434636
crossref_primary_10_1016_j_optcom_2018_10_024
crossref_primary_10_1002_pssa_201900185
crossref_primary_10_1063_5_0160177
crossref_primary_10_3390_cryst12081131
Cites_doi 10.7567/APEX.6.092103
10.7567/JJAP.53.100209
10.1143/APEX.5.082101
10.1063/1.1899760
10.1002/pssc.201300278
10.7567/APEX.6.032101
10.1002/pssa.200880961
10.7567/APEX.10.031002
10.1063/1.125042
10.1063/1.2360217
10.1063/1.2770662
10.1143/APEX.3.061004
10.1063/1.1828230
10.1063/1.3334721
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.201700436
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID 10_1002_pssa_201700436
PSSA201700436
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
.Y3
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AFFNX
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3836-ef9dec79673b14f6cf945c85231e4493f20c4925ac9c319a68f90fbca74554503
IEDL.DBID DR2
ISSN 1862-6300
IngestDate Wed Aug 13 07:25:27 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Tue Jul 01 00:55:10 EDT 2025
Wed Jan 22 17:10:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3836-ef9dec79673b14f6cf945c85231e4493f20c4925ac9c319a68f90fbca74554503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2030716642
PQPubID 1036347
PageCount 5
ParticipantIDs proquest_journals_2030716642
crossref_citationtrail_10_1002_pssa_201700436
crossref_primary_10_1002_pssa_201700436
wiley_primary_10_1002_pssa_201700436_PSSA201700436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 21, 2018
PublicationDateYYYYMMDD 2018-04-21
PublicationDate_xml – month: 04
  year: 2018
  text: April 21, 2018
  day: 21
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 85
2006; 89
2013; 10
2017; 10
2005; 97
2007; 91
2016; 227
1999; 75
2009; 206
2010; 3
2012; 5
2013; 6
2010; 96
2014; 53
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
Kneissl M. (e_1_2_5_3_1) 2016
e_1_2_5_4_1
e_1_2_5_2_1
Hirayama H. (e_1_2_5_17_1) 2016
References_xml – volume: 85
  start-page: 5275
  year: 2004
  publication-title: Appl. Phys. Lett
– volume: 6
  start-page: 092103
  year: 2013
  publication-title: Appl. Phys. Express
– volume: 97
  start-page: 091101
  year: 2005
  publication-title: J. Appl. Phys
– volume: 227
  start-page: 1
  year: 2016
– volume: 10
  start-page: 1521
  year: 2013
  publication-title: Phys. Status Solidi (c)
– volume: 206
  start-page: 1176
  year: 2009
  publication-title: Physica Status Solidi (a)
– volume: 5
  start-page: 082101
  year: 2012
  publication-title: Appl. Phys. Express
– volume: 10
  start-page: 031002
  year: 2017
  publication-title: Appl. Phys. Express
– volume: 89
  start-page: 141123
  year: 2006
  publication-title: Appl. Phys. Lett
– volume: 6
  start-page: 032101
  year: 2013
  publication-title: Appl. Phys. Express
– volume: 53
  start-page: 100209
  year: 2014
  publication-title: Jap. J. Appl. Phys. (Selected Topic)
– volume: 96
  start-page: 081109
  year: 2010
  publication-title: Appl. Phys. Lett
– volume: 91
  start-page: 071901
  year: 2007
  publication-title: Appl. Phys. Lett
– volume: 227
  start-page: 75
  year: 2016
– volume: 3
  start-page: 061004
  year: 2010
  publication-title: Appl. Phys. Express
– volume: 75
  start-page: 2444
  year: 1999
  publication-title: Appl. Phys. Lett
– ident: e_1_2_5_8_1
  doi: 10.7567/APEX.6.092103
– ident: e_1_2_5_10_1
  doi: 10.7567/JJAP.53.100209
– ident: e_1_2_5_6_1
  doi: 10.1143/APEX.5.082101
– ident: e_1_2_5_2_1
  doi: 10.1063/1.1899760
– start-page: 1
  volume-title: Springer Series in Material Science
  year: 2016
  ident: e_1_2_5_3_1
– ident: e_1_2_5_11_1
  doi: 10.1002/pssc.201300278
– ident: e_1_2_5_9_1
  doi: 10.7567/APEX.6.032101
– ident: e_1_2_5_5_1
  doi: 10.1002/pssa.200880961
– ident: e_1_2_5_12_1
  doi: 10.7567/APEX.10.031002
– ident: e_1_2_5_16_1
  doi: 10.1063/1.125042
– ident: e_1_2_5_13_1
  doi: 10.1063/1.2360217
– start-page: 75
  volume-title: Springer Series in Material Science
  year: 2016
  ident: e_1_2_5_17_1
– ident: e_1_2_5_4_1
  doi: 10.1063/1.2770662
– ident: e_1_2_5_7_1
  doi: 10.1143/APEX.3.061004
– ident: e_1_2_5_15_1
  doi: 10.1063/1.1828230
– ident: e_1_2_5_14_1
  doi: 10.1063/1.3334721
SSID ssj0045471
Score 2.373444
Snippet AlGaN based deep‐ultraviolet light‐emitting diodes (DUV‐LEDs) have a wide range of applications and a large market is expected. However, the efficiency of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum gallium nitrides
deep‐ultraviolet light‐emitting diodes
Economic conditions
Efficiency
Electrodes
external quantum efficiency
Light emitting diodes
Nickel
Organic light emitting diodes
reflective electrodes
Spreading
superlattice
Superlattices
Ultraviolet radiation
Title Improving the Light‐Extraction Efficiency of AlGaN DUV‐LEDs by Using a Superlattice Hole Spreading Layer and an Al Reflector
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201700436
https://www.proquest.com/docview/2030716642
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMdFKQx2WbeupWm78Q6DnZTaluzYx7C4CyULJWlGb0ZSpEtDEmIHup7yJ_Rv3F-y92zHTQdlsB4MNpaErZ_fJz19xNiX0EwTIZ3gwmrJpR9brryp5p6NFVafKDaa5iF_DKP-RF7dhrc7u_grPkQz4UYto-yvqYErnV88QUOXeU7cIOLLSUHMbV9EBM_vjRp-FMGqSosLZTsnttSW2ugFF8-jPx-VnqTmrmAtR5zLA6a231o5mty114Vum4e_MI6v-Zn37F0tR6Fb1Z8PbM_OD9mb0i3U5B_ZpplzABSKMCBL_vfmMb0vVtWGCEhLBAXt34SFg-7suxpCb_ITAw3SXg76F5ROCaBgvF7S3GFB3nbQX8wsjJeryoUfBgqVP6j5FC9MBEbWVcsJR2xymd586_P6zAZu0NaNuHXJ1JpOEnWE9qWLjEtkaGI0d30rZSJc4BniISqTGGz9Kopd4jltVEeisAk9ccz254u5PWGA4lQ4ZVWCxSdDgZaVF9rAdZxvTIxCpsX4tswyUwPN6VyNWVahmIOMcjVrcrXFvjbhlxXK48WQ59sqkNVNOse32B36EdprLRaUZfmPVLLr8bjbPJ3-T6Qz9hbvY1q9Cvxztl-s1vYTiqBCfy4r-h-US_8Z
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9iRQguG_8mOjbwAYmTtyR20uRYbd0KZBVaV8Qtsl37QtVWTSoBp32EfcZ9Et5zmowhISR2yCGJbSX2e_bv_fHPAO9iM82EdIILqyWXYWq5CqaaBzZVKD5JajT5Ic9HyXAiP36Nm2xC2gtT80O0DjfSDD9fk4KTQ_roljV0WZZEHEQEc1IkW_DQB-kIF120DFJEV-VtLgTunNilGt7GIDq6W__uunQLNn-HrH7NOd0B3XxtnWry7XBd6UPz8w8ix3v9zlPY3iBS1q9F6Bk8sPPn8MhnhpryBVy1bgeGWJHlZMzfXF0Pvlerek8EG3gWCtrCyRaO9WdnasROJl-wUD44KZn-wXxeAlNsvF6S-7CihDs2XMwsGy9XdRY_yxWCf6bmU7ywEXZhXR1ReAmT08Hl8ZBvjm3gBs3dhFuXTa3pZUlP6FC6xLhMxiZFize0UmbCRYEhSkRlMoMTgEpSlwVOG9WTiG3iQOxCZ76Y21fAEJ8Kp6zKcPxkLNC4CmIbuZ4LjUkRy3SBN4NWmA2nOR2tMStqNuaooF4t2l7twvu2_LJm8_hryf1GBoqNVpf4FmfEMEGTrQuRH8x_tFJ8Ho_77d3e_1R6C4-Hl-d5kX8YfXoNT_B5SsGsKNyHTrVa2wPERJV-46X-F5C_A0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CItAuGwOmFTZ4ByRO3pLYcZNjRVsKdNW0rmi3yHHsy6o2alIJOO0j7DPuk-w5abM_EkKCQw5JbCux37N_7_m9nwE-hjqLubCccZMKJvzIMOVlKfNMpEh8ZKRT54c8GcvhVHy7CC_uZfHX_BCNw81pRjVfOwXPM3t8RxqaF4XjDXL8coLLp_BMSForHSw6awikHFtVZXIRbmeOXGpD2-gFxw_rP1yW7rDmfcRaLTmDHVCbj60jTS6PVmV6pH8_4nH8n795CdtrPIrdWoB24YmZv4LnVVyoLl7DVeN0QEKKOHKm_M3Vdf9nuawzIrBfcVC4BE5cWOzOvqgx9qY_qNCo3ysw_YVVVAIqnKxy5zwsXbgdDhczg5N8Wcfw40gR9Ec1z-iiRvDM2Ho_4Q1MB_3zz0O2PrSBaTJ2JTM2zozuxLLDU19YqW0sQh2RvesbIWJuA087QkSlY03qr2RkY8-mWnUEIZvQ43vQmi_mZh-Q0Cm3yqiYhk-EnEwrLzSB7Vhf64iQTBvYZswSvWY0dwdrzJKaizlIXK8mTa-24VNTPq-5PP5Y8mAjAslapwt6S_OhL8lga0NQjeVfWklOJ5Nuc_f2Xyp9gBenvUEy-jr-_g626HHkdrIC_wBa5XJlDgkQlen7SuZvAYCAAfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+Light%E2%80%90Extraction+Efficiency+of+AlGaN+DUV%E2%80%90LEDs+by+Using+a+Superlattice+Hole+Spreading+Layer+and+an+Al+Reflector&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Maeda%2C+Noritoshi&rft.au=Jo%2C+Masafumi&rft.au=Hirayama%2C+Hideki&rft.date=2018-04-21&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=215&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssa.201700436&rft.externalDBID=10.1002%252Fpssa.201700436&rft.externalDocID=PSSA201700436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon