Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification

Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supp...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 37; no. 4; pp. e5075 - n/a
Main Authors Klein, Tobias, Gladytz, Thomas, Millward, Jason M., Cantow, Kathleen, Hummel, Luis, Seeliger, Erdmann, Waiczies, Sonia, Lippert, Christoph, Niendorf, Thoralf
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.5075

Cover

Abstract Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies can be detected through alterations in kidney size, making dynamic parametric MRI a valuable tool for deriving kidney size measurements in the diagnosis, treatment, and monitoring of renal disease. This study utilized dynamic parametric T2 mapping and a custom‐tailored deep dilated U‐Net architecture, achieving exceptional performance in accurately quantifying acute changes in kidney size. This innovative approach has significant potential for developing MRI‐based tools and advancing our understanding of renal pathophysiology.
AbstractList Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies can be detected through alterations in kidney size, making dynamic parametric MRI a valuable tool for deriving kidney size measurements in the diagnosis, treatment, and monitoring of renal disease. This study utilized dynamic parametric T2 mapping and a custom‐tailored deep dilated U‐Net architecture, achieving exceptional performance in accurately quantifying acute changes in kidney size. This innovative approach has significant potential for developing MRI‐based tools and advancing our understanding of renal pathophysiology.
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T 2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Author Millward, Jason M.
Klein, Tobias
Hummel, Luis
Waiczies, Sonia
Seeliger, Erdmann
Gladytz, Thomas
Cantow, Kathleen
Lippert, Christoph
Niendorf, Thoralf
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0000-0003-2236-8490
  surname: Klein
  fullname: Klein, Tobias
  organization: University of Potsdam
– sequence: 2
  givenname: Thomas
  surname: Gladytz
  fullname: Gladytz, Thomas
  organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association
– sequence: 3
  givenname: Jason M.
  surname: Millward
  fullname: Millward, Jason M.
  organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association
– sequence: 4
  givenname: Kathleen
  surname: Cantow
  fullname: Cantow, Kathleen
  organization: Charité – Universitätsmedizin
– sequence: 5
  givenname: Luis
  surname: Hummel
  fullname: Hummel, Luis
  organization: Charité – Universitätsmedizin
– sequence: 6
  givenname: Erdmann
  surname: Seeliger
  fullname: Seeliger, Erdmann
  organization: Charité – Universitätsmedizin
– sequence: 7
  givenname: Sonia
  surname: Waiczies
  fullname: Waiczies, Sonia
  organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association
– sequence: 8
  givenname: Christoph
  surname: Lippert
  fullname: Lippert, Christoph
  organization: Icahn School of Medicine at Mount Sinai
– sequence: 9
  givenname: Thoralf
  surname: Niendorf
  fullname: Niendorf, Thoralf
  email: thoralf.niendorf@mdc-berlin.de
  organization: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38043545$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1v1DAQhi1URLctEr8AWeIChyz-3NjcSqGlUgsSoufIdia7Lo6T2glV-PVkuy1IFXCaOTzvO6PnAO3FLgJCLyhZUkLY22jbpSSlfIIWlGhdUKHZHloQLVnBhSL76CDna0KIEpw9Q_tcEcGlkAs0fpiiab3DvUmmhSHN6-XXc2xijWuAHgcwKfq4foev4g_wYV5xgmjCnBg2Xb-Zsu9Ct57wsEnduN5g49yYzAD4u68jTDj7n4BvRhMH33hnBt_FI_S0MSHD8_t5iK5OP347-VRcfDk7Pzm-KBxXXBaNJNJpa6UQFOqGWa4VqVe1IayxVPHSltwyRsERYa3V9apZGaJYSWtQEoAfoje73jH2Zro1IVR98q1JU0VJtVVXzeqqrbqZfb1j-9TdjJCHqvXZQQgmQjfmiildCqVXlM_oq0fodTem2clMaVnO9gXdFr68p0bbQv378oP8Pxdd6nJO0PzvueUj1PnhTuWQjA9_CxS7wK0PMP2zuPr8_vKO_wWI37N_
CitedBy_id crossref_primary_10_1007_s10334_024_01168_5
Cites_doi 10.1681/ASN.2015030234
10.1111/apha.13549
10.1681/ASN.V1171287
10.1111/apha.13435
10.1111/apha.12393
10.1038/nrneph.2016.135
10.1111/micc.12483
10.1038/nrneph.2016.44
10.1088/0031‐9155/60/22/8675
10.1111/j.1752‐8062.2011.00302.x
10.1016/j.compbiomed.2022.105431
10.1038/s41592‐020‐01008‐z
10.1097/MNH.0000000000000504
10.1016/S2589‐7500(21)00211‐9
10.1097/RLI.0000000000000861
10.1016/j.imu.2020.100357
10.1097/CCM.0000000000001198
10.1007/s10278‐017‐9978‐1
10.1681/ASN.2018090902
10.1016/j.kint.2020.07.040
10.1038/s41581‐018‐0052‐0
10.1016/j.kint.2020.08.021
10.1007/s00134‐017‐4687‐2
10.1007/978‐1‐0716‐0978‐1_1
10.1002/mrm.29016
10.3390/diagnostics12051159
10.1016/j.lanepe.2022.100438
10.1038/s41598‐020‐77981‐4
10.33176/AACB‐18‐00017
10.1371/journal.pone.0178488
10.1002/mrm.27880
10.1007/s10278‐016‐9936‐3
10.1007/978‐1‐0716‐0978‐1_6
10.1109/TBME.2015.2425935
10.1093/ndt/gfaa125
10.1159/000339789
10.1007/978‐1‐0716‐0978‐1_10
10.1007/s00330‐018‐5918‐9
10.1016/j.kint.2021.04.032
10.1111/apha.13868
10.1159/000355375
10.3390/tomography8040152
10.1186/s12014‐021‐09315‐z
10.21037/qims‐20‐1360
10.1111/apha.13701
10.1016/j.kint.2018.09.005
10.1007/978‐1‐0716‐0978‐1_19
10.1146/annurev‐physiol‐020518‐114605
10.1681/ASN.2014111145
10.1016/j.kisu.2021.11.003
10.1681/ASN.2021111400
10.1093/ckj/sfy078
10.1038/s41581‐021‐00410‐w
10.1007/978‐1‐0716‐0978‐1_33
10.1007/978‐3‐658‐41657‐7_7
10.1093/ndt/gfz129
10.1038/srep29965
10.1088/1742‐6596/1345/5/052066
10.2471/BLT.17.206441
10.1161/HYPERTENSIONAHA.113.02047
10.18383/j.tom.2017.00012
10.1007/s10654‐022‐00890‐5
10.1038/s41581‐018‐0080‐9
10.1002/mrm.28768
10.1093/ndt/gfy152
10.1056/NEJM199503093321006
10.1016/j.kint.2019.10.008
10.1097/MCC.0000000000000768
10.1007/978-3-319-24574-4_28
10.1111/1440‐1681.12031
10.1148/radiology.211.3.r99jn19623
10.1016/j.media.2020.101950
10.1681/ASN.2013101138
10.1148/radiol.2015142272
10.1097/RLI.0000000000000205
10.1038/pr.2018.24
10.1016/S0140‐6736(20)30045‐3
10.1016/j.compbiomed.2022.105891
10.1038/s41598‐017‐01779‐0
10.1016/S0140‐6736(17)30788‐2
10.1152/ajprenal.00587.2014
10.1111/apha.13392
10.1038/nrneph.2016.196
10.1007/s10334‐019‐00802‐x
10.1016/j.kint.2021.04.042
10.1681/ASN.2020050597
10.1007/978‐1‐0716‐0978‐1_4
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
DOI 10.1002/nbm.5075
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 10.1002/nbm.5075
38043545
10_1002_nbm_5075
NBM5075
Genre article
Journal Article
GrantInformation_xml – fundername: iNAMES ‐ MDC‐Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the NAno to the MESo
– fundername: iNAMES - MDC-Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the NAno to the MESo
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3835-f505c9bb5441edf2b3980d6da02fb1837b73b221ec04bbb9d6f6a08271de85ee3
IEDL.DBID UNPAY
ISSN 0952-3480
1099-1492
IngestDate Tue Aug 19 22:18:00 EDT 2025
Fri Jul 11 07:52:11 EDT 2025
Tue Oct 07 06:35:51 EDT 2025
Mon Jul 21 05:58:35 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Sat Oct 25 05:11:22 EDT 2025
Wed Jan 22 16:14:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
kidney
parametric mapping
segmentation
MRI
kidney size
Language English
License Attribution-NonCommercial
2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3835-f505c9bb5441edf2b3980d6da02fb1837b73b221ec04bbb9d6f6a08271de85ee3
Notes Funding information
This study was funded in part (T.K., T.N.) by the iNAMES ‐ MDC‐Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the Nano to the MESo.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2236-8490
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nbm.5075
PMID 38043545
PQID 2957149415
PQPubID 2029982
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_nbm_5075
proquest_miscellaneous_2897489613
proquest_journals_2957149415
pubmed_primary_38043545
crossref_primary_10_1002_nbm_5075
crossref_citationtrail_10_1002_nbm_5075
wiley_primary_10_1002_nbm_5075_NBM5075
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-Apr
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2017; 7
2012; 120
2019; 95
2017; 3
2013; 62
2017; 43
2019; 12
2019; 15
2017; 390
2015; 308
2022; 20
2018; 83
1995; 332
2020; 10
2020; 19
2017; 30
2021; 32
2021; 2216
2020; 97
2021; 233
2015; 213
2000; 11
2019; 26
2015; 43
2019; 28
2019; 29
2022; 37
1999; 211
2022; 33
2018; 33
2021; 86
2019; 30
2013; 40
2020; 228
2016; 51
2020; 35
2021; 100
2020; 33
2022; 87
2016; 12
2019; 1345
2015; 26
2016; 6
2019; 82
2019; 81
2019; 40
2021; 99
2021; 11
2013; 38
2015; 60
2023
2022; 4
2015; 62
2020; 395
2020; 230
2021; 18
2015; 277
2021; 17
2022; 8
2017; 13
2017; 12
2022; 12
2023; 237
2022; 57
2020; 26
2018
2018; 96
2016
2015
2016; 27
2012; 5
2022; 148
2018; 14
2022; 146
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 12
  start-page: 7
  issue: 1
  year: 2022
  end-page: 11
  article-title: Epidemiology of chronic kidney disease: an update 2022
  publication-title: Review Kidney Int Suppl
– start-page: 12
  year: 2023
  end-page: 17
– volume: 38
  start-page: 333
  issue: 4
  year: 2013
  end-page: 341
  article-title: Novel approach to estimate kidney and cyst volumes using mid‐slice magnetic resonance images in polycystic kidney disease
  publication-title: Am J Nephrol
– volume: 51
  start-page: 58
  issue: 1
  year: 2016
  end-page: 65
  article-title: Kidney transplantation: multiparametric functional magnetic resonance imaging for assessment of renal allograft pathophysiology in mice
  publication-title: Invest Radiol
– volume: 5
  start-page: 93
  issue: 1
  year: 2012
  end-page: 101
  article-title: Enabling innovative translational research in acute kidney injury
  publication-title: Clin Transl Sci
– volume: 26
  start-page: 1485
  issue: 7
  year: 2015
  end-page: 1488
  article-title: Urinary biomarkers: alone are they enough?
  publication-title: J Am Soc Nephrol
– volume: 2216
  start-page: 327
  year: 2021
  end-page: 347
  article-title: Monitoring renal hemodynamics and oxygenation by invasive probes: experimental protocol
  publication-title: Methods Mol Biol
– volume: 99
  start-page: 173
  issue: 1
  year: 2021
  end-page: 185
  article-title: Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease
  publication-title: Kidney Int
– volume: 30
  start-page: 1514
  issue: 8
  year: 2019
  end-page: 1522
  article-title: Automatic measurement of kidney and liver volumes from MR images of patients affected by autosomal dominant polycystic kidney disease
  publication-title: J Am Soc Nephrol
– volume: 228
  issue: 2
  year: 2020
  article-title: Google maps for tissues: multiscale imaging of biological systems and disease
  publication-title: Acta Physiol
– volume: 395
  start-page: 709
  issue: 10225
  year: 2020
  end-page: 733
  article-title: Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
  publication-title: Lancet
– volume: 81
  start-page: 309
  year: 2019
  end-page: 333
  article-title: Biomarkers of acute and chronic kidney disease
  publication-title: Annu Rev Physiol
– volume: 35
  start-page: 955
  issue: 6
  year: 2020
  end-page: 964
  article-title: Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi‐parametric magnetic resonance imaging
  publication-title: Nephrol Dial Transplant
– volume: 213
  start-page: 19
  issue: 1
  year: 2015
  end-page: 38
  article-title: How bold is blood oxygenation level‐dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions
  publication-title: Acta Physiol
– volume: 2216
  start-page: 89
  year: 2021
  end-page: 107
  article-title: Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts
  publication-title: Methods Mol Biol
– volume: 99
  start-page: 763
  issue: 3
  year: 2021
  end-page: 766
  article-title: Automated total kidney volume measurements in pre‐clinical magnetic resonance imaging for resourcing imaging data, annotations, and source code
  publication-title: Kidney Int
– volume: 8
  start-page: 1804
  issue: 4
  year: 2022
  end-page: 1819
  article-title: Deep learning automation of kidney, liver, and spleen segmentation for organ volume measurements in autosomal dominant polycystic kidney disease
  publication-title: Tomography
– volume: 12
  issue: 5
  year: 2022
  article-title: Deep learning‐based total kidney volume segmentation in autosomal dominant polycystic kidney disease using attention, cosine loss, and sharpness aware minimization
  publication-title: Diagnostics
– year: 2018
– volume: 82
  start-page: 2343
  issue: 6
  year: 2019
  end-page: 2356
  article-title: Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel (1) H/(23) Na radiofrequency antenna array
  publication-title: Magn Reson Med
– volume: 1345
  issue: 5
  year: 2019
  article-title: Accuracy improvement of UNet based on dilated convolution
  publication-title: J Phys Conf Ser
– volume: 26
  issue: 2
  year: 2019
  article-title: Sepsis‐induced acute kidney injury: a disease of the microcirculation
  publication-title: Microcirculation
– volume: 11
  start-page: 3098
  issue: 7
  year: 2021
  end-page: 3119
  article-title: Continuous diffusion spectrum computation for diffusion‐weighted magnetic resonance imaging of the kidney tubule system
  publication-title: Quant Imaging Med Surg
– volume: 12
  start-page: 71
  issue: 1
  year: 2019
  end-page: 77
  article-title: Standardizing total kidney volume measurements for clinical trials of autosomal dominant polycystic kidney disease
  publication-title: Clin Kidney J
– volume: 14
  start-page: 607
  issue: 10
  year: 2018
  end-page: 625
  article-title: Global epidemiology and outcomes of acute kidney injury
  publication-title: Nat Rev Nephrol
– volume: 33
  start-page: 199
  issue: 1
  year: 2020
  end-page: 215
  article-title: Consensus‐based technical recommendations for clinical translation of renal BOLD MRI
  publication-title: MAGMA
– volume: 57
  start-page: 478
  issue: 7
  year: 2022
  end-page: 487
  article-title: Whole‐body magnetic resonance imaging in the large population‐based German National Cohort study: predictive capability of automated image quality assessment for protocol repetitions
  publication-title: Invest Radiol
– volume: 97
  start-page: 442
  issue: 3
  year: 2020
  end-page: 444
  article-title: Does MRI trump pathology? A new era for staging and monitoring of kidney fibrosis
  publication-title: Kidney Int
– volume: 10
  issue: 1
  year: 2020
  article-title: Kidney segmentation in neck‐to‐knee body MRI of 40,000 UK Biobank participants
  publication-title: Sci Rep
– volume: 69
  year: 2021
  article-title: CHAOS challenge—combined (CT‐MR) healthy abdominal organ segmentation
  publication-title: Med Image Anal
– volume: 27
  start-page: 49
  issue: 1
  year: 2016
  end-page: 58
  article-title: Renal hemodynamics in AKI: in search of new treatment targets
  publication-title: J Am Soc Nephrol
– volume: 2216
  start-page: 3
  year: 2021
  end-page: 23
  article-title: Recommendations for preclinical renal MRI: a comprehensive open‐access protocol collection to improve training, reproducibility, and comparability of studies
  publication-title: Methods Mol Biol
– volume: 62
  start-page: 827
  issue: 5
  year: 2013
  end-page: 828
  article-title: Initiation and progression of chronic kidney disease: can we definitively test the chronic hypoxia hypothesis?
  publication-title: Hypertension
– volume: 30
  start-page: 244
  issue: 2
  year: 2017
  end-page: 254
  article-title: Development and evaluation of a semi‐automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non‐contrast T2‐weighted MR images
  publication-title: J Digit Imaging
– volume: 20
  year: 2022
  article-title: Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: the CaReMe CKD study
  publication-title: Lancet Reg Health Eur
– volume: 62
  start-page: 2338
  issue: 10
  year: 2015
  end-page: 2351
  article-title: Fully automated renal tissue volumetry in MR volume data using prior‐shape‐based segmentation in subject‐specific probability maps
  publication-title: IEEE Trans Biomed Eng
– volume: 26
  start-page: 543
  issue: 6
  year: 2020
  end-page: 548
  article-title: New imaging techniques in AKI
  publication-title: Curr Opin Crit Care
– volume: 17
  start-page: 493
  issue: 7
  year: 2021
  end-page: 502
  article-title: Conceptual advances and evolving terminology in acute kidney disease
  publication-title: Nat Rev Nephrol
– volume: 100
  start-page: 1001
  issue: 5
  year: 2021
  end-page: 1011
  article-title: Basic principles and new advances in kidney imaging
  publication-title: Kidney Int
– volume: 18
  start-page: 10
  issue: 1
  year: 2021
  article-title: Rational selection of a biomarker panel targeting unmet clinical needs in kidney injury
  publication-title: Clin Proteomics
– volume: 30
  start-page: 442
  issue: 4
  year: 2017
  end-page: 448
  article-title: Performance of an artificial multi‐observer deep neural network for fully automated segmentation of polycystic kidneys
  publication-title: J Digit Imaging
– year: 2015
– volume: 37
  start-page: 1107
  issue: 10
  year: 2022
  end-page: 1124
  article-title: Framework and baseline examination of the German National Cohort (NAKO)
  publication-title: Eur J Epidemiol
– volume: 11
  start-page: 1287
  issue: 7
  year: 2000
  end-page: 1292
  article-title: Renal enlargement precedes renal hyperfiltration in early experimental diabetes in rats
  publication-title: J Am Soc Nephrol
– volume: 33
  start-page: ii4
  issue: suppl_2
  year: 2018
  end-page: ii14
  article-title: Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA
  publication-title: Nephrol Dial Transplant
– volume: 60
  start-page: 8675
  issue: 22
  year: 2015
  end-page: 8693
  article-title: Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject‐specific probability map generation in native MR volume data
  publication-title: Phys Med Biol
– volume: 19
  year: 2020
  article-title: MSS U‐Net: 3D segmentation of kidneys and tumors from CT images with a multi‐scale supervised U‐Net
  publication-title: IMU
– volume: 3
  start-page: 188
  issue: 4
  year: 2017
  end-page: 200
  article-title: Experimental MRI monitoring of renal blood volume fraction variations en route to renal magnetic resonance oximetry
  publication-title: Tomography
– volume: 146
  year: 2022
  article-title: Automatic cyst and kidney segmentation in autosomal dominant polycystic kidney disease: comparison of U‐Net based methods
  publication-title: Comput Biol Med
– volume: 100
  start-page: 780
  issue: 4
  year: 2021
  end-page: 786
  article-title: Clearly imaging and quantifying the kidney in 3D
  publication-title: Kidney Int
– volume: 4
  start-page: e18
  issue: 1
  year: 2022
  end-page: e26
  article-title: Deep learning‐based classification of kidney transplant pathology: a retrospective, multicentre, proof‐of‐concept study
  publication-title: Lancet Digit Health
– volume: 233
  issue: 2
  year: 2021
  article-title: Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings
  publication-title: Acta Physiol
– volume: 228
  issue: 4
  year: 2020
  article-title: Probing renal blood volume with magnetic resonance imaging
  publication-title: Acta Physiol
– volume: 87
  start-page: 800
  issue: 2
  year: 2022
  end-page: 809
  article-title: Workflow for automatic renal perfusion quantification using ASL‐MRI and machine learning
  publication-title: Magn Reson Med
– volume: 95
  start-page: 21
  issue: 1
  year: 2019
  end-page: 23
  article-title: Long‐term outcomes after AKI‐a major unmet clinical need
  publication-title: Kidney Int
– volume: 13
  start-page: 169
  issue: 3
  year: 2017
  end-page: 180
  article-title: Understanding and preventing contrast‐induced acute kidney injury
  publication-title: Nat Rev Nephrol
– volume: 120
  start-page: c179
  issue: 4
  year: 2012
  end-page: c184
  article-title: KDIGO clinical practice guidelines for acute kidney injury
  publication-title: Nephron Clin Pract
– volume: 86
  start-page: 1125
  issue: 2
  year: 2021
  end-page: 1136
  article-title: Automated renal segmentation in healthy and chronic kidney disease subjects using a convolutional neural network
  publication-title: Magn Reson Med
– volume: 211
  start-page: 623
  issue: 3
  year: 1999
  end-page: 628
  article-title: Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging
  publication-title: Radiology
– volume: 29
  start-page: 4188
  issue: 8
  year: 2019
  end-page: 4197
  article-title: A rapid high‐performance semi‐automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease
  publication-title: Eur Radiol
– volume: 308
  start-page: F101
  issue: 2
  year: 2015
  end-page: F102
  article-title: The chronic hypoxia hypothesis: the search for the smoking gun goes on
  publication-title: Am J Physiol Renal Physiol
– year: 2016
– volume: 43
  start-page: e431
  issue: 10
  year: 2015
  end-page: e439
  article-title: Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury
  publication-title: Crit Care Med
– volume: 35
  start-page: 915
  issue: 6
  year: 2020
  end-page: 919
  article-title: Recent findings on the clinical utility of renal magnetic resonance imaging biomarkers
  publication-title: Nephrol Dial Transplant
– volume: 12
  start-page: 667
  issue: 11
  year: 2016
  end-page: 677
  article-title: The importance of total kidney volume in evaluating progression of polycystic kidney disease
  publication-title: Nat Rev Nephrol
– volume: 148
  year: 2022
  article-title: Stacked dilated convolutions and asymmetric architecture for U‐Net‐based medical image segmentation
  publication-title: Comput Biol Med
– volume: 40
  start-page: 106
  issue: 2
  year: 2013
  end-page: 122
  article-title: Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology
  publication-title: Clin Exp Pharmacol Physiol
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat Methods
– volume: 28
  start-page: 397
  issue: 4
  year: 2019
  end-page: 405
  article-title: Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease
  publication-title: Curr Opin Nephrol Hypertens
– volume: 7
  start-page: 2049
  issue: 1
  year: 2017
  article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease
  publication-title: Sci Rep
– volume: 33
  start-page: 1581
  issue: 8
  year: 2022
  end-page: 1589
  article-title: A deep learning approach for automated segmentation of kidneys and exophytic cysts in individuals with autosomal dominant polycystic kidney disease
  publication-title: J Am Soc Nephrol
– volume: 2216
  start-page: 57
  year: 2021
  end-page: 73
  article-title: Reversible (patho)physiologically relevant test interventions: rationale and examples
  publication-title: Methods Mol Biol
– volume: 40
  start-page: 79
  issue: 2
  year: 2019
  end-page: 97
  article-title: Kidney injury biomarkers in an academic hospital setting: where are we now?
  publication-title: Clin Biochem Rev
– volume: 96
  start-page: 414
  issue: 6
  year: 2018
  end-page: 422D
  article-title: The global burden of kidney disease and the sustainable development goals
  publication-title: Bull World Health Organ
– volume: 332
  start-page: 647
  issue: 10
  year: 1995
  end-page: 655
  article-title: Hypoxia of the renal medulla—its implications for disease
  publication-title: N Engl J Med
– volume: 43
  start-page: 1198
  issue: 9
  year: 2017
  end-page: 1209
  article-title: The intensive care medicine agenda on acute kidney injury
  publication-title: Intensive Care Med
– volume: 390
  start-page: 1888
  issue: 10105
  year: 2017
  end-page: 1917
  article-title: Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy
  publication-title: Lancet
– volume: 12
  start-page: 348
  issue: 6
  year: 2016
  end-page: 359
  article-title: Radiologic imaging of the renal parenchyma structure and function
  publication-title: Nat Rev Nephrol
– volume: 2216
  start-page: 549
  year: 2021
  end-page: 564
  article-title: Subsegmentation of the kidney in experimental MR images using morphology‐based regions‐of‐interest or multiple‐layer concentric objects
  publication-title: Methods Mol Biol
– volume: 2216
  start-page: 171
  year: 2021
  end-page: 185
  article-title: MRI mapping of the blood oxygenation sensitive parameter T2* in the kidney: basic concept
  publication-title: Methods Mol Biol
– volume: 32
  start-page: 52
  issue: 1
  year: 2021
  end-page: 68
  article-title: Deep learning‐based segmentation and quantification in experimental kidney histopathology
  publication-title: J Am Soc Nephrol
– volume: 15
  start-page: 177
  issue: 3
  year: 2019
  end-page: 190
  article-title: Estimated GFR: time for a critical appraisal
  publication-title: Nat Rev Nephrol
– volume: 230
  issue: 3
  year: 2020
  article-title: Imagine physiology without imaging
  publication-title: Acta Physiol
– volume: 237
  issue: 2
  year: 2023
  article-title: Monitoring kidney size to interpret MRI‐based assessment of renal oxygenation in acute pathophysiological scenarios
  publication-title: Acta Physiol
– volume: 26
  start-page: 160
  issue: 1
  year: 2015
  end-page: 172
  article-title: CRISP Investigators Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials
  publication-title: J Am Soc Nephrol
– volume: 277
  start-page: 206
  issue: 1
  year: 2015
  end-page: 220
  article-title: Whole‐body MR imaging in the German National Cohort: rationale, design, and technical background
  publication-title: Radiology
– volume: 83
  start-page: 1067
  issue: 5
  year: 2018
  end-page: 1074
  article-title: Quantitative magnetic resonance imaging assessments of autosomal recessive polycystic kidney disease progression and response to therapy in an animal model
  publication-title: Pediatr Res
– volume: 6
  year: 2016
  article-title: Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation
  publication-title: Sci Rep
– volume: 12
  issue: 5
  year: 2017
  article-title: Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease
  publication-title: PLoS ONE
– ident: e_1_2_8_18_1
  doi: 10.1681/ASN.2015030234
– ident: e_1_2_8_34_1
  doi: 10.1111/apha.13549
– ident: e_1_2_8_42_1
  doi: 10.1681/ASN.V1171287
– ident: e_1_2_8_88_1
  doi: 10.1111/apha.13435
– ident: e_1_2_8_17_1
  doi: 10.1111/apha.12393
– ident: e_1_2_8_37_1
  doi: 10.1038/nrneph.2016.135
– ident: e_1_2_8_86_1
  doi: 10.1111/micc.12483
– ident: e_1_2_8_19_1
  doi: 10.1038/nrneph.2016.44
– ident: e_1_2_8_56_1
  doi: 10.1088/0031‐9155/60/22/8675
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1752‐8062.2011.00302.x
– ident: e_1_2_8_69_1
  doi: 10.1016/j.compbiomed.2022.105431
– ident: e_1_2_8_80_1
  doi: 10.1038/s41592‐020‐01008‐z
– ident: e_1_2_8_87_1
  doi: 10.1097/MNH.0000000000000504
– ident: e_1_2_8_53_1
  doi: 10.1016/S2589‐7500(21)00211‐9
– ident: e_1_2_8_90_1
  doi: 10.1097/RLI.0000000000000861
– ident: e_1_2_8_64_1
  doi: 10.1016/j.imu.2020.100357
– ident: e_1_2_8_83_1
  doi: 10.1097/CCM.0000000000001198
– ident: e_1_2_8_58_1
  doi: 10.1007/s10278‐017‐9978‐1
– ident: e_1_2_8_55_1
  doi: 10.1681/ASN.2018090902
– ident: e_1_2_8_57_1
  doi: 10.1016/j.kint.2020.07.040
– ident: e_1_2_8_2_1
  doi: 10.1038/s41581‐018‐0052‐0
– ident: e_1_2_8_24_1
  doi: 10.1016/j.kint.2020.08.021
– ident: e_1_2_8_9_1
  doi: 10.1007/s00134‐017‐4687‐2
– ident: e_1_2_8_30_1
  doi: 10.1007/978‐1‐0716‐0978‐1_1
– ident: e_1_2_8_65_1
  doi: 10.1002/mrm.29016
– ident: e_1_2_8_70_1
  doi: 10.3390/diagnostics12051159
– ident: e_1_2_8_7_1
  doi: 10.1016/j.lanepe.2022.100438
– ident: e_1_2_8_60_1
  doi: 10.1038/s41598‐020‐77981‐4
– ident: e_1_2_8_15_1
  doi: 10.33176/AACB‐18‐00017
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.pone.0178488
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.27880
– ident: e_1_2_8_47_1
  doi: 10.1007/s10278‐016‐9936‐3
– ident: e_1_2_8_76_1
  doi: 10.1007/978‐1‐0716‐0978‐1_6
– ident: e_1_2_8_54_1
  doi: 10.1109/TBME.2015.2425935
– ident: e_1_2_8_22_1
  doi: 10.1093/ndt/gfaa125
– ident: e_1_2_8_31_1
  doi: 10.1159/000339789
– ident: e_1_2_8_29_1
  doi: 10.1007/978‐1‐0716‐0978‐1_10
– ident: e_1_2_8_51_1
  doi: 10.1007/s00330‐018‐5918‐9
– ident: e_1_2_8_26_1
  doi: 10.1016/j.kint.2021.04.032
– ident: e_1_2_8_45_1
  doi: 10.1111/apha.13868
– ident: e_1_2_8_50_1
  doi: 10.1159/000355375
– ident: e_1_2_8_67_1
  doi: 10.3390/tomography8040152
– ident: e_1_2_8_13_1
  doi: 10.1186/s12014‐021‐09315‐z
– ident: e_1_2_8_36_1
  doi: 10.21037/qims‐20‐1360
– ident: e_1_2_8_41_1
  doi: 10.1111/apha.13701
– ident: e_1_2_8_11_1
  doi: 10.1016/j.kint.2018.09.005
– ident: e_1_2_8_73_1
  doi: 10.1007/978‐1‐0716‐0978‐1_19
– ident: e_1_2_8_16_1
  doi: 10.1146/annurev‐physiol‐020518‐114605
– ident: e_1_2_8_12_1
  doi: 10.1681/ASN.2014111145
– ident: e_1_2_8_5_1
  doi: 10.1016/j.kisu.2021.11.003
– ident: e_1_2_8_68_1
  doi: 10.1681/ASN.2021111400
– ident: e_1_2_8_71_1
  doi: 10.1093/ckj/sfy078
– ident: e_1_2_8_8_1
  doi: 10.1038/s41581‐021‐00410‐w
– ident: e_1_2_8_79_1
  doi: 10.1007/978‐1‐0716‐0978‐1_33
– ident: e_1_2_8_81_1
  doi: 10.1007/978‐3‐658‐41657‐7_7
– ident: e_1_2_8_40_1
  doi: 10.1093/ndt/gfz129
– ident: e_1_2_8_75_1
  doi: 10.1038/srep29965
– ident: e_1_2_8_39_1
– ident: e_1_2_8_63_1
  doi: 10.1088/1742‐6596/1345/5/052066
– ident: e_1_2_8_3_1
  doi: 10.2471/BLT.17.206441
– ident: e_1_2_8_33_1
  doi: 10.1161/HYPERTENSIONAHA.113.02047
– ident: e_1_2_8_74_1
  doi: 10.18383/j.tom.2017.00012
– ident: e_1_2_8_78_1
– ident: e_1_2_8_91_1
  doi: 10.1007/s10654‐022‐00890‐5
– ident: e_1_2_8_14_1
  doi: 10.1038/s41581‐018‐0080‐9
– ident: e_1_2_8_61_1
  doi: 10.1002/mrm.28768
– ident: e_1_2_8_20_1
  doi: 10.1093/ndt/gfy152
– ident: e_1_2_8_82_1
  doi: 10.1056/NEJM199503093321006
– ident: e_1_2_8_21_1
  doi: 10.1016/j.kint.2019.10.008
– ident: e_1_2_8_25_1
  doi: 10.1097/MCC.0000000000000768
– ident: e_1_2_8_62_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_8_84_1
  doi: 10.1111/1440‐1681.12031
– ident: e_1_2_8_46_1
  doi: 10.1148/radiology.211.3.r99jn19623
– ident: e_1_2_8_77_1
  doi: 10.1016/j.media.2020.101950
– ident: e_1_2_8_48_1
  doi: 10.1681/ASN.2013101138
– ident: e_1_2_8_89_1
  doi: 10.1148/radiol.2015142272
– ident: e_1_2_8_44_1
  doi: 10.1097/RLI.0000000000000205
– ident: e_1_2_8_43_1
  doi: 10.1038/pr.2018.24
– ident: e_1_2_8_6_1
  doi: 10.1016/S0140‐6736(20)30045‐3
– ident: e_1_2_8_66_1
  doi: 10.1016/j.compbiomed.2022.105891
– ident: e_1_2_8_38_1
– ident: e_1_2_8_59_1
  doi: 10.1038/s41598‐017‐01779‐0
– ident: e_1_2_8_4_1
  doi: 10.1016/S0140‐6736(17)30788‐2
– ident: e_1_2_8_85_1
  doi: 10.1152/ajprenal.00587.2014
– ident: e_1_2_8_35_1
  doi: 10.1111/apha.13392
– ident: e_1_2_8_10_1
  doi: 10.1038/nrneph.2016.196
– ident: e_1_2_8_27_1
  doi: 10.1007/s10334‐019‐00802‐x
– ident: e_1_2_8_23_1
  doi: 10.1016/j.kint.2021.04.042
– ident: e_1_2_8_52_1
  doi: 10.1681/ASN.2020050597
– ident: e_1_2_8_72_1
  doi: 10.1007/978‐1‐0716‐0978‐1_4
SSID ssj0008432
Score 2.424229
Snippet Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e5075
SubjectTerms Algorithms
Animals
Aorta
Biomarkers
Contrast agents
Contrast media
Deep Learning
Furosemide
Hypoxemia
Image Processing, Computer-Assisted
kidney
Kidney - diagnostic imaging
Kidney diseases
kidney size
Kidneys
Machine learning
Magnetic Resonance Imaging
MRI
Occlusion
Organophosphorus Compounds
parametric mapping
Pathophysiology
Performance measurement
Rats
Segmentation
Triazoles
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEZQeECyvhYIMQnAKTRxn4_QGhaogbYUQK_UW-TGpVt1ml24DKr-eGechKh7ilEPGdpTx2J_t8fcBvEDUKCvjI0dgI1I0ZUSFylxE0DrXhdJVFnhmp4eTg5n6eJQddVmVfBem5YcYNtw4MsJ4zQFu7HrnF9JQe_qa6s-uwrWEYAz3bqk-DaOwVkGcjBCEjFKl4554NpY7fcnLU9Fv-HILNpt6ZS6-m8XiMnQNc8_-bbjVgUbxpvXyHbiC9Qg293qtthHcmHZH5CO4HnI63fouNO9atXnB9N6nrJzlxPTzB2FqLzziSnSKEce7YlZ_wzlfTBdnyC2xTvEybHqEXXfRqfkI41zD3BLiZO5rvBDr-Q8UXxvTZhwFJ9-D2f77L3sHUaeyEDlanWZRRRjIFdayGBn6Stq00LGfeBPLylLA5zZPrZQJulhZaws_qSaGgEOeeNQZYnofNupljQ9B6IzwQIJxmptCIS1kPFY2TrxKDNMWyjG86n946ToKclbCWJQtebIsyTUlu2YMzwbLVUu78Qeb7d5nZRd461IWWU6LPoIlVMXwmrzB5yCmxmVDNrpgzh0CMmN40Pp6aCTVMQFIRaWfD87_xxe8DL3irwbl4dspPx_9r-FjuCkJNbWpQduwcX7W4BNCPef2aejePwEcGP1f
  priority: 102
  providerName: Wiley-Blackwell
Title Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5075
https://www.ncbi.nlm.nih.gov/pubmed/38043545
https://www.proquest.com/docview/2957149415
https://www.proquest.com/docview/2897489613
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nbm.5075
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-1492
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5inWDigUu5FY3JIARP6RLHaRLexsY0kFpNE5XGU-TLCarWpWVtQNuv5zh2IsZNiJfkIceX2Mf259v3AbxEzJCX0gSawEYgaMgIcpHogKB1muUiK5OGZ3Y8GR1NxYfT5NQvuNm7MI4foltwsy2j6a9tA1-a0vXzfnef71bqfEhpJBuwOUoIi_dgczo53vvkCPZ4EIvM0RHkeUBTAd6yz_4Q9Pp49AvIvA1bdbWUl9_kfH4dvzYD0OFdKNqsu3MnZ8N6rYb66idWx___t3twx2NTtuec6T7cwKoPW_utJFwfbo39TnwfbjZHR_XqAdQHTtSeWRbxcyvQpdn45D2TlWEGccm8MMXnN2xafcWZvf_OLtCmZOWQF83aSrO4z7xoEJNa15bCgp3NTIWXbDW7Qvallu5gU-NLD2F6-O7j_lHgxRwCTZPgJCgJaulcKat5hqbkKs6z0IyMDHmpqF9JVRorziPUoVBK5WZUjiThkzQymCWI8SPoVYsKnwDLEoIdEYZxKnOBNF8yWKowMiKSlh2RD-B1W6WF9kznVnBjXjiOZl5Q2Ra2bAfwvLNcOnaP39hst15R-Pa9KniepORQhH4oiu4z1YbdbpEVLmqyyXJL7UN4aQCPnTd1icRZSDhVUOgXnXv9JQevGmf5o0ExeTu276f_Ets29NYXNT4jLLVWO7DBxTE9D074jm883wHtyCGl
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlg4IFheCwUMQnAKTRwnceAEhWoL3RVCXam3yI9Jteo2u3QbUPn1jJ2HqHiIUw4Zx1HGE38ztr8P4DmiRF4qGxgCG4GgKSPIRWICgtaZzIUsE88zO5mm45n4eJgcbsCb7ixMww_RF9xcZPj_tQtwV5De_oU1VJ-8og6SS3BZpFHqMi8uPve_YSm8OhlBCB7EQoYd82zIt7uWF-ei3wDmdRjU1Uqdf1eLxUXs6ief3Ztwo0WN7G3j5luwgdUQBjudWNsQrk7aNfIhXPGbOs36NtTvG7l55vi9T5x0lmGTL3tMVZZZxBVrJSOOXrNZ9Q3n7mQ6O0XXkxMqXvqqhy-7s1bOhyljakcuwY7ntsJztp7_QPa1Vs2WI-_lOzDb_XCwMw5amYXAUHqaBCWBIJNr7dTI0JZcx7kMbWpVyEtNEZ_pLNacR2hCobXObVqmipBDFlmUCWJ8FzarZYX3gcmEAEGEYZypXCBlMhZLHUZWRMrxFvIRvOw-eGFaDnInhbEoGvZkXpBrCueaETztLVcN78YfbLY6nxVt5K0LnicZZX2ES-gR_W3yhlsIURUua7KRuSPdISQzgnuNr_tOYhkSghTU-lnv_H-8wQs_Kv5qUEzfTdz1wf8aPoHB-GCyX-zvTT89hGucIFSzT2gLNs9Oa3xEEOhMP_ZD_SfHxgDa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2zwwKXcCgMMQvCULnGcxoEnWKk2oBWaVmkPSJEvJ6hal5a1AW2_nuPcYNyEeMpDjmPHPrY_28ffB_AUUSLPlPUMgQ1P0JThJSIyHkHrWCZCZlHJMzsa93cn4u1hdLgGL5u7MBU_RLvh5npGOV67Do4Lm23_wBqqj3uUQXQBLoookS6eb7D_nTtKilKdjCAE90Ih_YZ51ufbTcrzc9EvAPMKbBb5Qp1-VbPZeexaTj7Da_CxKXYVc3LUK1a6Z85-YnT8z_-6DldrUMpeVV50A9Yw78DmTqMF14GNUX0E34FLZcyoWd6EYlCp2TNHH37slLkMG-3vMZVbZhEXrFak-PSCTfIvOHUX39kJupycDvK83FQpd_VZrRbElDGF465gR1Ob4ylbTs-QfS5UFdFUOtEtmAzfHOzserWKg2do9Rt5GWEsk2jtxM7QZlyHifRt3yqfZ5oGlFjHoeY8QOMLrXVi-1lfETCJA4syQgxvw3o-z_EuMBkR3gjQD2OVCKSFksVM-4EVgXK0iLwLz5v2TE1Nce6UNmZpRc7MU6rb1NVtFx63louK1uM3NluNS6R1x16mPIliWlQS7KFPtK-pNdw5i8pxXpCNTBynDwGlLtypXKnNJJQ-AVRBqZ-0vvWXEjwrPeWPBun49cg97_2r4SPY-DAYpu_3xu_uw2VOAK2KQtqC9dVJgQ8IYK30w7IjfQOUcSDf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTjDxwKXAKBrIIARPKYlzNW9jMA2kVghRaTxFvpygal3arQ1o-_Ucx07EuAnxlIf4ktjn2J-P7e8DeIZYIK-kCTSBjSChKSMQSaoDgtZ5IZKiSlue2ck0O5wl74_SIx9ws3dhHD9EH3CzntGO19bBV6Zy47zf3ecva3UypjrSq7CVpYTFB7A1m37Y--wI9ngQJ4WjIxAioKUA79hnf8h6eT76BWTegO2mXsnzb3KxuIxf2wno4BaU3ae7cyfH42ajxvriJ1bH__-323DTY1O254zpDlzBegjb-50k3BCuT_xO_BCutUdH9fouNG-cqD2zLOInVqBLs8nHd0zWhhnEFfPCFF9esVn9Fef2_js7Q1uTlUNetrGVNrjPvGgQk1o3lsKCHc9NjedsPb9AdtpId7CptaV7MDt4-2n_MPBiDoGmRXAaVAS1tFDKap6hqbiKRRGazMiQV4rGlVzlseI8Qh0mSilhsiqThE_yyGCRIsb3YVAva3wArEgJdkQYxrkUCdJ6yWClwsgkkbTsiHwEL7ouLbVnOreCG4vScTTzktq2tG07gid9ypVj9_hNmt3OKkrv3-uSizQngyL0Q0X0r6k37HaLrHHZUJpCWGofwksj2HHW1FcSFyHh1IRyP-3N6y9f8Lw1lj8mKKevJ_b58F9K24XB5qzBR4SlNuqxd5jva8Mf5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+parametric+MRI+and+deep+learning%3A+Unveiling+renal+pathophysiology+through+accurate+kidney+size+quantification&rft.jtitle=NMR+in+biomedicine&rft.au=Klein%2C+Tobias&rft.au=Gladytz%2C+Thomas&rft.au=Millward%2C+Jason+M&rft.au=Cantow%2C+Kathleen&rft.date=2024-04-01&rft.eissn=1099-1492&rft.volume=37&rft.issue=4&rft.spage=e5075&rft_id=info:doi/10.1002%2Fnbm.5075&rft_id=info%3Apmid%2F38043545&rft.externalDocID=38043545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon