Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification
Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supp...
Saved in:
| Published in | NMR in biomedicine Vol. 37; no. 4; pp. e5075 - n/a |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-3480 1099-1492 1099-1492 |
| DOI | 10.1002/nbm.5075 |
Cover
| Abstract | Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.
Renal pathologies can be detected through alterations in kidney size, making dynamic parametric MRI a valuable tool for deriving kidney size measurements in the diagnosis, treatment, and monitoring of renal disease. This study utilized dynamic parametric T2 mapping and a custom‐tailored deep dilated U‐Net architecture, achieving exceptional performance in accurately quantifying acute changes in kidney size. This innovative approach has significant potential for developing MRI‐based tools and advancing our understanding of renal pathophysiology. |
|---|---|
| AbstractList | Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T
mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies can be detected through alterations in kidney size, making dynamic parametric MRI a valuable tool for deriving kidney size measurements in the diagnosis, treatment, and monitoring of renal disease. This study utilized dynamic parametric T2 mapping and a custom‐tailored deep dilated U‐Net architecture, achieving exceptional performance in accurately quantifying acute changes in kidney size. This innovative approach has significant potential for developing MRI‐based tools and advancing our understanding of renal pathophysiology. Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data‐driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T 2 mapping of the kidney in rats in conjunction with a custom‐tailored deep dilated U‐Net (DDU‐Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self‐configuring no new U‐Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU‐Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (−8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (−2% ± 1%), and contrast agent‐induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI‐based tools for kidney disorders, offering unparalleled insights into renal pathophysiology. |
| Author | Millward, Jason M. Klein, Tobias Hummel, Luis Waiczies, Sonia Seeliger, Erdmann Gladytz, Thomas Cantow, Kathleen Lippert, Christoph Niendorf, Thoralf |
| Author_xml | – sequence: 1 givenname: Tobias orcidid: 0000-0003-2236-8490 surname: Klein fullname: Klein, Tobias organization: University of Potsdam – sequence: 2 givenname: Thomas surname: Gladytz fullname: Gladytz, Thomas organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association – sequence: 3 givenname: Jason M. surname: Millward fullname: Millward, Jason M. organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association – sequence: 4 givenname: Kathleen surname: Cantow fullname: Cantow, Kathleen organization: Charité – Universitätsmedizin – sequence: 5 givenname: Luis surname: Hummel fullname: Hummel, Luis organization: Charité – Universitätsmedizin – sequence: 6 givenname: Erdmann surname: Seeliger fullname: Seeliger, Erdmann organization: Charité – Universitätsmedizin – sequence: 7 givenname: Sonia surname: Waiczies fullname: Waiczies, Sonia organization: Max Delbrück Center for Molecular Medicine in the Helmholtz Association – sequence: 8 givenname: Christoph surname: Lippert fullname: Lippert, Christoph organization: Icahn School of Medicine at Mount Sinai – sequence: 9 givenname: Thoralf surname: Niendorf fullname: Niendorf, Thoralf email: thoralf.niendorf@mdc-berlin.de organization: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38043545$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1v1DAQhi1URLctEr8AWeIChyz-3NjcSqGlUgsSoufIdia7Lo6T2glV-PVkuy1IFXCaOTzvO6PnAO3FLgJCLyhZUkLY22jbpSSlfIIWlGhdUKHZHloQLVnBhSL76CDna0KIEpw9Q_tcEcGlkAs0fpiiab3DvUmmhSHN6-XXc2xijWuAHgcwKfq4foev4g_wYV5xgmjCnBg2Xb-Zsu9Ct57wsEnduN5g49yYzAD4u68jTDj7n4BvRhMH33hnBt_FI_S0MSHD8_t5iK5OP347-VRcfDk7Pzm-KBxXXBaNJNJpa6UQFOqGWa4VqVe1IayxVPHSltwyRsERYa3V9apZGaJYSWtQEoAfoje73jH2Zro1IVR98q1JU0VJtVVXzeqqrbqZfb1j-9TdjJCHqvXZQQgmQjfmiildCqVXlM_oq0fodTem2clMaVnO9gXdFr68p0bbQv378oP8Pxdd6nJO0PzvueUj1PnhTuWQjA9_CxS7wK0PMP2zuPr8_vKO_wWI37N_ |
| CitedBy_id | crossref_primary_10_1007_s10334_024_01168_5 |
| Cites_doi | 10.1681/ASN.2015030234 10.1111/apha.13549 10.1681/ASN.V1171287 10.1111/apha.13435 10.1111/apha.12393 10.1038/nrneph.2016.135 10.1111/micc.12483 10.1038/nrneph.2016.44 10.1088/0031‐9155/60/22/8675 10.1111/j.1752‐8062.2011.00302.x 10.1016/j.compbiomed.2022.105431 10.1038/s41592‐020‐01008‐z 10.1097/MNH.0000000000000504 10.1016/S2589‐7500(21)00211‐9 10.1097/RLI.0000000000000861 10.1016/j.imu.2020.100357 10.1097/CCM.0000000000001198 10.1007/s10278‐017‐9978‐1 10.1681/ASN.2018090902 10.1016/j.kint.2020.07.040 10.1038/s41581‐018‐0052‐0 10.1016/j.kint.2020.08.021 10.1007/s00134‐017‐4687‐2 10.1007/978‐1‐0716‐0978‐1_1 10.1002/mrm.29016 10.3390/diagnostics12051159 10.1016/j.lanepe.2022.100438 10.1038/s41598‐020‐77981‐4 10.33176/AACB‐18‐00017 10.1371/journal.pone.0178488 10.1002/mrm.27880 10.1007/s10278‐016‐9936‐3 10.1007/978‐1‐0716‐0978‐1_6 10.1109/TBME.2015.2425935 10.1093/ndt/gfaa125 10.1159/000339789 10.1007/978‐1‐0716‐0978‐1_10 10.1007/s00330‐018‐5918‐9 10.1016/j.kint.2021.04.032 10.1111/apha.13868 10.1159/000355375 10.3390/tomography8040152 10.1186/s12014‐021‐09315‐z 10.21037/qims‐20‐1360 10.1111/apha.13701 10.1016/j.kint.2018.09.005 10.1007/978‐1‐0716‐0978‐1_19 10.1146/annurev‐physiol‐020518‐114605 10.1681/ASN.2014111145 10.1016/j.kisu.2021.11.003 10.1681/ASN.2021111400 10.1093/ckj/sfy078 10.1038/s41581‐021‐00410‐w 10.1007/978‐1‐0716‐0978‐1_33 10.1007/978‐3‐658‐41657‐7_7 10.1093/ndt/gfz129 10.1038/srep29965 10.1088/1742‐6596/1345/5/052066 10.2471/BLT.17.206441 10.1161/HYPERTENSIONAHA.113.02047 10.18383/j.tom.2017.00012 10.1007/s10654‐022‐00890‐5 10.1038/s41581‐018‐0080‐9 10.1002/mrm.28768 10.1093/ndt/gfy152 10.1056/NEJM199503093321006 10.1016/j.kint.2019.10.008 10.1097/MCC.0000000000000768 10.1007/978-3-319-24574-4_28 10.1111/1440‐1681.12031 10.1148/radiology.211.3.r99jn19623 10.1016/j.media.2020.101950 10.1681/ASN.2013101138 10.1148/radiol.2015142272 10.1097/RLI.0000000000000205 10.1038/pr.2018.24 10.1016/S0140‐6736(20)30045‐3 10.1016/j.compbiomed.2022.105891 10.1038/s41598‐017‐01779‐0 10.1016/S0140‐6736(17)30788‐2 10.1152/ajprenal.00587.2014 10.1111/apha.13392 10.1038/nrneph.2016.196 10.1007/s10334‐019‐00802‐x 10.1016/j.kint.2021.04.042 10.1681/ASN.2020050597 10.1007/978‐1‐0716‐0978‐1_4 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| DOI | 10.1002/nbm.5075 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Physics |
| EISSN | 1099-1492 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/nbm.5075 38043545 10_1002_nbm_5075 NBM5075 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: iNAMES ‐ MDC‐Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the NAno to the MESo – fundername: iNAMES - MDC-Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the NAno to the MESo |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3835-f505c9bb5441edf2b3980d6da02fb1837b73b221ec04bbb9d6f6a08271de85ee3 |
| IEDL.DBID | UNPAY |
| ISSN | 0952-3480 1099-1492 |
| IngestDate | Tue Aug 19 22:18:00 EDT 2025 Fri Jul 11 07:52:11 EDT 2025 Tue Oct 07 06:35:51 EDT 2025 Mon Jul 21 05:58:35 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Sat Oct 25 05:11:22 EDT 2025 Wed Jan 22 16:14:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | deep learning kidney parametric mapping segmentation MRI kidney size |
| Language | English |
| License | Attribution-NonCommercial 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3835-f505c9bb5441edf2b3980d6da02fb1837b73b221ec04bbb9d6f6a08271de85ee3 |
| Notes | Funding information This study was funded in part (T.K., T.N.) by the iNAMES ‐ MDC‐Weizmann Helmholtz International Research School (HIRS) for Imaging and Data Science from the Nano to the MESo. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2236-8490 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nbm.5075 |
| PMID | 38043545 |
| PQID | 2957149415 |
| PQPubID | 2029982 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1002_nbm_5075 proquest_miscellaneous_2897489613 proquest_journals_2957149415 pubmed_primary_38043545 crossref_primary_10_1002_nbm_5075 crossref_citationtrail_10_1002_nbm_5075 wiley_primary_10_1002_nbm_5075_NBM5075 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 2024-Apr 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | NMR in biomedicine |
| PublicationTitleAlternate | NMR Biomed |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 69 2017; 7 2012; 120 2019; 95 2017; 3 2013; 62 2017; 43 2019; 12 2019; 15 2017; 390 2015; 308 2022; 20 2018; 83 1995; 332 2020; 10 2020; 19 2017; 30 2021; 32 2021; 2216 2020; 97 2021; 233 2015; 213 2000; 11 2019; 26 2015; 43 2019; 28 2019; 29 2022; 37 1999; 211 2022; 33 2018; 33 2021; 86 2019; 30 2013; 40 2020; 228 2016; 51 2020; 35 2021; 100 2020; 33 2022; 87 2016; 12 2019; 1345 2015; 26 2016; 6 2019; 82 2019; 81 2019; 40 2021; 99 2021; 11 2013; 38 2015; 60 2023 2022; 4 2015; 62 2020; 395 2020; 230 2021; 18 2015; 277 2021; 17 2022; 8 2017; 13 2017; 12 2022; 12 2023; 237 2022; 57 2020; 26 2018 2018; 96 2016 2015 2016; 27 2012; 5 2022; 148 2018; 14 2022; 146 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 12 start-page: 7 issue: 1 year: 2022 end-page: 11 article-title: Epidemiology of chronic kidney disease: an update 2022 publication-title: Review Kidney Int Suppl – start-page: 12 year: 2023 end-page: 17 – volume: 38 start-page: 333 issue: 4 year: 2013 end-page: 341 article-title: Novel approach to estimate kidney and cyst volumes using mid‐slice magnetic resonance images in polycystic kidney disease publication-title: Am J Nephrol – volume: 51 start-page: 58 issue: 1 year: 2016 end-page: 65 article-title: Kidney transplantation: multiparametric functional magnetic resonance imaging for assessment of renal allograft pathophysiology in mice publication-title: Invest Radiol – volume: 5 start-page: 93 issue: 1 year: 2012 end-page: 101 article-title: Enabling innovative translational research in acute kidney injury publication-title: Clin Transl Sci – volume: 26 start-page: 1485 issue: 7 year: 2015 end-page: 1488 article-title: Urinary biomarkers: alone are they enough? publication-title: J Am Soc Nephrol – volume: 2216 start-page: 327 year: 2021 end-page: 347 article-title: Monitoring renal hemodynamics and oxygenation by invasive probes: experimental protocol publication-title: Methods Mol Biol – volume: 99 start-page: 173 issue: 1 year: 2021 end-page: 185 article-title: Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease publication-title: Kidney Int – volume: 30 start-page: 1514 issue: 8 year: 2019 end-page: 1522 article-title: Automatic measurement of kidney and liver volumes from MR images of patients affected by autosomal dominant polycystic kidney disease publication-title: J Am Soc Nephrol – volume: 228 issue: 2 year: 2020 article-title: Google maps for tissues: multiscale imaging of biological systems and disease publication-title: Acta Physiol – volume: 395 start-page: 709 issue: 10225 year: 2020 end-page: 733 article-title: Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet – volume: 81 start-page: 309 year: 2019 end-page: 333 article-title: Biomarkers of acute and chronic kidney disease publication-title: Annu Rev Physiol – volume: 35 start-page: 955 issue: 6 year: 2020 end-page: 964 article-title: Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi‐parametric magnetic resonance imaging publication-title: Nephrol Dial Transplant – volume: 213 start-page: 19 issue: 1 year: 2015 end-page: 38 article-title: How bold is blood oxygenation level‐dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions publication-title: Acta Physiol – volume: 2216 start-page: 89 year: 2021 end-page: 107 article-title: Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts publication-title: Methods Mol Biol – volume: 99 start-page: 763 issue: 3 year: 2021 end-page: 766 article-title: Automated total kidney volume measurements in pre‐clinical magnetic resonance imaging for resourcing imaging data, annotations, and source code publication-title: Kidney Int – volume: 8 start-page: 1804 issue: 4 year: 2022 end-page: 1819 article-title: Deep learning automation of kidney, liver, and spleen segmentation for organ volume measurements in autosomal dominant polycystic kidney disease publication-title: Tomography – volume: 12 issue: 5 year: 2022 article-title: Deep learning‐based total kidney volume segmentation in autosomal dominant polycystic kidney disease using attention, cosine loss, and sharpness aware minimization publication-title: Diagnostics – year: 2018 – volume: 82 start-page: 2343 issue: 6 year: 2019 end-page: 2356 article-title: Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel (1) H/(23) Na radiofrequency antenna array publication-title: Magn Reson Med – volume: 1345 issue: 5 year: 2019 article-title: Accuracy improvement of UNet based on dilated convolution publication-title: J Phys Conf Ser – volume: 26 issue: 2 year: 2019 article-title: Sepsis‐induced acute kidney injury: a disease of the microcirculation publication-title: Microcirculation – volume: 11 start-page: 3098 issue: 7 year: 2021 end-page: 3119 article-title: Continuous diffusion spectrum computation for diffusion‐weighted magnetic resonance imaging of the kidney tubule system publication-title: Quant Imaging Med Surg – volume: 12 start-page: 71 issue: 1 year: 2019 end-page: 77 article-title: Standardizing total kidney volume measurements for clinical trials of autosomal dominant polycystic kidney disease publication-title: Clin Kidney J – volume: 14 start-page: 607 issue: 10 year: 2018 end-page: 625 article-title: Global epidemiology and outcomes of acute kidney injury publication-title: Nat Rev Nephrol – volume: 33 start-page: 199 issue: 1 year: 2020 end-page: 215 article-title: Consensus‐based technical recommendations for clinical translation of renal BOLD MRI publication-title: MAGMA – volume: 57 start-page: 478 issue: 7 year: 2022 end-page: 487 article-title: Whole‐body magnetic resonance imaging in the large population‐based German National Cohort study: predictive capability of automated image quality assessment for protocol repetitions publication-title: Invest Radiol – volume: 97 start-page: 442 issue: 3 year: 2020 end-page: 444 article-title: Does MRI trump pathology? A new era for staging and monitoring of kidney fibrosis publication-title: Kidney Int – volume: 10 issue: 1 year: 2020 article-title: Kidney segmentation in neck‐to‐knee body MRI of 40,000 UK Biobank participants publication-title: Sci Rep – volume: 69 year: 2021 article-title: CHAOS challenge—combined (CT‐MR) healthy abdominal organ segmentation publication-title: Med Image Anal – volume: 27 start-page: 49 issue: 1 year: 2016 end-page: 58 article-title: Renal hemodynamics in AKI: in search of new treatment targets publication-title: J Am Soc Nephrol – volume: 2216 start-page: 3 year: 2021 end-page: 23 article-title: Recommendations for preclinical renal MRI: a comprehensive open‐access protocol collection to improve training, reproducibility, and comparability of studies publication-title: Methods Mol Biol – volume: 62 start-page: 827 issue: 5 year: 2013 end-page: 828 article-title: Initiation and progression of chronic kidney disease: can we definitively test the chronic hypoxia hypothesis? publication-title: Hypertension – volume: 30 start-page: 244 issue: 2 year: 2017 end-page: 254 article-title: Development and evaluation of a semi‐automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non‐contrast T2‐weighted MR images publication-title: J Digit Imaging – volume: 20 year: 2022 article-title: Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: the CaReMe CKD study publication-title: Lancet Reg Health Eur – volume: 62 start-page: 2338 issue: 10 year: 2015 end-page: 2351 article-title: Fully automated renal tissue volumetry in MR volume data using prior‐shape‐based segmentation in subject‐specific probability maps publication-title: IEEE Trans Biomed Eng – volume: 26 start-page: 543 issue: 6 year: 2020 end-page: 548 article-title: New imaging techniques in AKI publication-title: Curr Opin Crit Care – volume: 17 start-page: 493 issue: 7 year: 2021 end-page: 502 article-title: Conceptual advances and evolving terminology in acute kidney disease publication-title: Nat Rev Nephrol – volume: 100 start-page: 1001 issue: 5 year: 2021 end-page: 1011 article-title: Basic principles and new advances in kidney imaging publication-title: Kidney Int – volume: 18 start-page: 10 issue: 1 year: 2021 article-title: Rational selection of a biomarker panel targeting unmet clinical needs in kidney injury publication-title: Clin Proteomics – volume: 30 start-page: 442 issue: 4 year: 2017 end-page: 448 article-title: Performance of an artificial multi‐observer deep neural network for fully automated segmentation of polycystic kidneys publication-title: J Digit Imaging – year: 2015 – volume: 37 start-page: 1107 issue: 10 year: 2022 end-page: 1124 article-title: Framework and baseline examination of the German National Cohort (NAKO) publication-title: Eur J Epidemiol – volume: 11 start-page: 1287 issue: 7 year: 2000 end-page: 1292 article-title: Renal enlargement precedes renal hyperfiltration in early experimental diabetes in rats publication-title: J Am Soc Nephrol – volume: 33 start-page: ii4 issue: suppl_2 year: 2018 end-page: ii14 article-title: Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA publication-title: Nephrol Dial Transplant – volume: 60 start-page: 8675 issue: 22 year: 2015 end-page: 8693 article-title: Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject‐specific probability map generation in native MR volume data publication-title: Phys Med Biol – volume: 19 year: 2020 article-title: MSS U‐Net: 3D segmentation of kidneys and tumors from CT images with a multi‐scale supervised U‐Net publication-title: IMU – volume: 3 start-page: 188 issue: 4 year: 2017 end-page: 200 article-title: Experimental MRI monitoring of renal blood volume fraction variations en route to renal magnetic resonance oximetry publication-title: Tomography – volume: 146 year: 2022 article-title: Automatic cyst and kidney segmentation in autosomal dominant polycystic kidney disease: comparison of U‐Net based methods publication-title: Comput Biol Med – volume: 100 start-page: 780 issue: 4 year: 2021 end-page: 786 article-title: Clearly imaging and quantifying the kidney in 3D publication-title: Kidney Int – volume: 4 start-page: e18 issue: 1 year: 2022 end-page: e26 article-title: Deep learning‐based classification of kidney transplant pathology: a retrospective, multicentre, proof‐of‐concept study publication-title: Lancet Digit Health – volume: 233 issue: 2 year: 2021 article-title: Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings publication-title: Acta Physiol – volume: 228 issue: 4 year: 2020 article-title: Probing renal blood volume with magnetic resonance imaging publication-title: Acta Physiol – volume: 87 start-page: 800 issue: 2 year: 2022 end-page: 809 article-title: Workflow for automatic renal perfusion quantification using ASL‐MRI and machine learning publication-title: Magn Reson Med – volume: 95 start-page: 21 issue: 1 year: 2019 end-page: 23 article-title: Long‐term outcomes after AKI‐a major unmet clinical need publication-title: Kidney Int – volume: 13 start-page: 169 issue: 3 year: 2017 end-page: 180 article-title: Understanding and preventing contrast‐induced acute kidney injury publication-title: Nat Rev Nephrol – volume: 120 start-page: c179 issue: 4 year: 2012 end-page: c184 article-title: KDIGO clinical practice guidelines for acute kidney injury publication-title: Nephron Clin Pract – volume: 86 start-page: 1125 issue: 2 year: 2021 end-page: 1136 article-title: Automated renal segmentation in healthy and chronic kidney disease subjects using a convolutional neural network publication-title: Magn Reson Med – volume: 211 start-page: 623 issue: 3 year: 1999 end-page: 628 article-title: Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging publication-title: Radiology – volume: 29 start-page: 4188 issue: 8 year: 2019 end-page: 4197 article-title: A rapid high‐performance semi‐automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease publication-title: Eur Radiol – volume: 308 start-page: F101 issue: 2 year: 2015 end-page: F102 article-title: The chronic hypoxia hypothesis: the search for the smoking gun goes on publication-title: Am J Physiol Renal Physiol – year: 2016 – volume: 43 start-page: e431 issue: 10 year: 2015 end-page: e439 article-title: Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury publication-title: Crit Care Med – volume: 35 start-page: 915 issue: 6 year: 2020 end-page: 919 article-title: Recent findings on the clinical utility of renal magnetic resonance imaging biomarkers publication-title: Nephrol Dial Transplant – volume: 12 start-page: 667 issue: 11 year: 2016 end-page: 677 article-title: The importance of total kidney volume in evaluating progression of polycystic kidney disease publication-title: Nat Rev Nephrol – volume: 148 year: 2022 article-title: Stacked dilated convolutions and asymmetric architecture for U‐Net‐based medical image segmentation publication-title: Comput Biol Med – volume: 40 start-page: 106 issue: 2 year: 2013 end-page: 122 article-title: Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology publication-title: Clin Exp Pharmacol Physiol – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 article-title: nnU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation publication-title: Nat Methods – volume: 28 start-page: 397 issue: 4 year: 2019 end-page: 405 article-title: Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease publication-title: Curr Opin Nephrol Hypertens – volume: 7 start-page: 2049 issue: 1 year: 2017 article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease publication-title: Sci Rep – volume: 33 start-page: 1581 issue: 8 year: 2022 end-page: 1589 article-title: A deep learning approach for automated segmentation of kidneys and exophytic cysts in individuals with autosomal dominant polycystic kidney disease publication-title: J Am Soc Nephrol – volume: 2216 start-page: 57 year: 2021 end-page: 73 article-title: Reversible (patho)physiologically relevant test interventions: rationale and examples publication-title: Methods Mol Biol – volume: 40 start-page: 79 issue: 2 year: 2019 end-page: 97 article-title: Kidney injury biomarkers in an academic hospital setting: where are we now? publication-title: Clin Biochem Rev – volume: 96 start-page: 414 issue: 6 year: 2018 end-page: 422D article-title: The global burden of kidney disease and the sustainable development goals publication-title: Bull World Health Organ – volume: 332 start-page: 647 issue: 10 year: 1995 end-page: 655 article-title: Hypoxia of the renal medulla—its implications for disease publication-title: N Engl J Med – volume: 43 start-page: 1198 issue: 9 year: 2017 end-page: 1209 article-title: The intensive care medicine agenda on acute kidney injury publication-title: Intensive Care Med – volume: 390 start-page: 1888 issue: 10105 year: 2017 end-page: 1917 article-title: Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy publication-title: Lancet – volume: 12 start-page: 348 issue: 6 year: 2016 end-page: 359 article-title: Radiologic imaging of the renal parenchyma structure and function publication-title: Nat Rev Nephrol – volume: 2216 start-page: 549 year: 2021 end-page: 564 article-title: Subsegmentation of the kidney in experimental MR images using morphology‐based regions‐of‐interest or multiple‐layer concentric objects publication-title: Methods Mol Biol – volume: 2216 start-page: 171 year: 2021 end-page: 185 article-title: MRI mapping of the blood oxygenation sensitive parameter T2* in the kidney: basic concept publication-title: Methods Mol Biol – volume: 32 start-page: 52 issue: 1 year: 2021 end-page: 68 article-title: Deep learning‐based segmentation and quantification in experimental kidney histopathology publication-title: J Am Soc Nephrol – volume: 15 start-page: 177 issue: 3 year: 2019 end-page: 190 article-title: Estimated GFR: time for a critical appraisal publication-title: Nat Rev Nephrol – volume: 230 issue: 3 year: 2020 article-title: Imagine physiology without imaging publication-title: Acta Physiol – volume: 237 issue: 2 year: 2023 article-title: Monitoring kidney size to interpret MRI‐based assessment of renal oxygenation in acute pathophysiological scenarios publication-title: Acta Physiol – volume: 26 start-page: 160 issue: 1 year: 2015 end-page: 172 article-title: CRISP Investigators Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials publication-title: J Am Soc Nephrol – volume: 277 start-page: 206 issue: 1 year: 2015 end-page: 220 article-title: Whole‐body MR imaging in the German National Cohort: rationale, design, and technical background publication-title: Radiology – volume: 83 start-page: 1067 issue: 5 year: 2018 end-page: 1074 article-title: Quantitative magnetic resonance imaging assessments of autosomal recessive polycystic kidney disease progression and response to therapy in an animal model publication-title: Pediatr Res – volume: 6 year: 2016 article-title: Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation publication-title: Sci Rep – volume: 12 issue: 5 year: 2017 article-title: Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease publication-title: PLoS ONE – ident: e_1_2_8_18_1 doi: 10.1681/ASN.2015030234 – ident: e_1_2_8_34_1 doi: 10.1111/apha.13549 – ident: e_1_2_8_42_1 doi: 10.1681/ASN.V1171287 – ident: e_1_2_8_88_1 doi: 10.1111/apha.13435 – ident: e_1_2_8_17_1 doi: 10.1111/apha.12393 – ident: e_1_2_8_37_1 doi: 10.1038/nrneph.2016.135 – ident: e_1_2_8_86_1 doi: 10.1111/micc.12483 – ident: e_1_2_8_19_1 doi: 10.1038/nrneph.2016.44 – ident: e_1_2_8_56_1 doi: 10.1088/0031‐9155/60/22/8675 – ident: e_1_2_8_32_1 doi: 10.1111/j.1752‐8062.2011.00302.x – ident: e_1_2_8_69_1 doi: 10.1016/j.compbiomed.2022.105431 – ident: e_1_2_8_80_1 doi: 10.1038/s41592‐020‐01008‐z – ident: e_1_2_8_87_1 doi: 10.1097/MNH.0000000000000504 – ident: e_1_2_8_53_1 doi: 10.1016/S2589‐7500(21)00211‐9 – ident: e_1_2_8_90_1 doi: 10.1097/RLI.0000000000000861 – ident: e_1_2_8_64_1 doi: 10.1016/j.imu.2020.100357 – ident: e_1_2_8_83_1 doi: 10.1097/CCM.0000000000001198 – ident: e_1_2_8_58_1 doi: 10.1007/s10278‐017‐9978‐1 – ident: e_1_2_8_55_1 doi: 10.1681/ASN.2018090902 – ident: e_1_2_8_57_1 doi: 10.1016/j.kint.2020.07.040 – ident: e_1_2_8_2_1 doi: 10.1038/s41581‐018‐0052‐0 – ident: e_1_2_8_24_1 doi: 10.1016/j.kint.2020.08.021 – ident: e_1_2_8_9_1 doi: 10.1007/s00134‐017‐4687‐2 – ident: e_1_2_8_30_1 doi: 10.1007/978‐1‐0716‐0978‐1_1 – ident: e_1_2_8_65_1 doi: 10.1002/mrm.29016 – ident: e_1_2_8_70_1 doi: 10.3390/diagnostics12051159 – ident: e_1_2_8_7_1 doi: 10.1016/j.lanepe.2022.100438 – ident: e_1_2_8_60_1 doi: 10.1038/s41598‐020‐77981‐4 – ident: e_1_2_8_15_1 doi: 10.33176/AACB‐18‐00017 – ident: e_1_2_8_49_1 doi: 10.1371/journal.pone.0178488 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.27880 – ident: e_1_2_8_47_1 doi: 10.1007/s10278‐016‐9936‐3 – ident: e_1_2_8_76_1 doi: 10.1007/978‐1‐0716‐0978‐1_6 – ident: e_1_2_8_54_1 doi: 10.1109/TBME.2015.2425935 – ident: e_1_2_8_22_1 doi: 10.1093/ndt/gfaa125 – ident: e_1_2_8_31_1 doi: 10.1159/000339789 – ident: e_1_2_8_29_1 doi: 10.1007/978‐1‐0716‐0978‐1_10 – ident: e_1_2_8_51_1 doi: 10.1007/s00330‐018‐5918‐9 – ident: e_1_2_8_26_1 doi: 10.1016/j.kint.2021.04.032 – ident: e_1_2_8_45_1 doi: 10.1111/apha.13868 – ident: e_1_2_8_50_1 doi: 10.1159/000355375 – ident: e_1_2_8_67_1 doi: 10.3390/tomography8040152 – ident: e_1_2_8_13_1 doi: 10.1186/s12014‐021‐09315‐z – ident: e_1_2_8_36_1 doi: 10.21037/qims‐20‐1360 – ident: e_1_2_8_41_1 doi: 10.1111/apha.13701 – ident: e_1_2_8_11_1 doi: 10.1016/j.kint.2018.09.005 – ident: e_1_2_8_73_1 doi: 10.1007/978‐1‐0716‐0978‐1_19 – ident: e_1_2_8_16_1 doi: 10.1146/annurev‐physiol‐020518‐114605 – ident: e_1_2_8_12_1 doi: 10.1681/ASN.2014111145 – ident: e_1_2_8_5_1 doi: 10.1016/j.kisu.2021.11.003 – ident: e_1_2_8_68_1 doi: 10.1681/ASN.2021111400 – ident: e_1_2_8_71_1 doi: 10.1093/ckj/sfy078 – ident: e_1_2_8_8_1 doi: 10.1038/s41581‐021‐00410‐w – ident: e_1_2_8_79_1 doi: 10.1007/978‐1‐0716‐0978‐1_33 – ident: e_1_2_8_81_1 doi: 10.1007/978‐3‐658‐41657‐7_7 – ident: e_1_2_8_40_1 doi: 10.1093/ndt/gfz129 – ident: e_1_2_8_75_1 doi: 10.1038/srep29965 – ident: e_1_2_8_39_1 – ident: e_1_2_8_63_1 doi: 10.1088/1742‐6596/1345/5/052066 – ident: e_1_2_8_3_1 doi: 10.2471/BLT.17.206441 – ident: e_1_2_8_33_1 doi: 10.1161/HYPERTENSIONAHA.113.02047 – ident: e_1_2_8_74_1 doi: 10.18383/j.tom.2017.00012 – ident: e_1_2_8_78_1 – ident: e_1_2_8_91_1 doi: 10.1007/s10654‐022‐00890‐5 – ident: e_1_2_8_14_1 doi: 10.1038/s41581‐018‐0080‐9 – ident: e_1_2_8_61_1 doi: 10.1002/mrm.28768 – ident: e_1_2_8_20_1 doi: 10.1093/ndt/gfy152 – ident: e_1_2_8_82_1 doi: 10.1056/NEJM199503093321006 – ident: e_1_2_8_21_1 doi: 10.1016/j.kint.2019.10.008 – ident: e_1_2_8_25_1 doi: 10.1097/MCC.0000000000000768 – ident: e_1_2_8_62_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_8_84_1 doi: 10.1111/1440‐1681.12031 – ident: e_1_2_8_46_1 doi: 10.1148/radiology.211.3.r99jn19623 – ident: e_1_2_8_77_1 doi: 10.1016/j.media.2020.101950 – ident: e_1_2_8_48_1 doi: 10.1681/ASN.2013101138 – ident: e_1_2_8_89_1 doi: 10.1148/radiol.2015142272 – ident: e_1_2_8_44_1 doi: 10.1097/RLI.0000000000000205 – ident: e_1_2_8_43_1 doi: 10.1038/pr.2018.24 – ident: e_1_2_8_6_1 doi: 10.1016/S0140‐6736(20)30045‐3 – ident: e_1_2_8_66_1 doi: 10.1016/j.compbiomed.2022.105891 – ident: e_1_2_8_38_1 – ident: e_1_2_8_59_1 doi: 10.1038/s41598‐017‐01779‐0 – ident: e_1_2_8_4_1 doi: 10.1016/S0140‐6736(17)30788‐2 – ident: e_1_2_8_85_1 doi: 10.1152/ajprenal.00587.2014 – ident: e_1_2_8_35_1 doi: 10.1111/apha.13392 – ident: e_1_2_8_10_1 doi: 10.1038/nrneph.2016.196 – ident: e_1_2_8_27_1 doi: 10.1007/s10334‐019‐00802‐x – ident: e_1_2_8_23_1 doi: 10.1016/j.kint.2021.04.042 – ident: e_1_2_8_52_1 doi: 10.1681/ASN.2020050597 – ident: e_1_2_8_72_1 doi: 10.1007/978‐1‐0716‐0978‐1_4 |
| SSID | ssj0008432 |
| Score | 2.424229 |
| Snippet | Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e5075 |
| SubjectTerms | Algorithms Animals Aorta Biomarkers Contrast agents Contrast media Deep Learning Furosemide Hypoxemia Image Processing, Computer-Assisted kidney Kidney - diagnostic imaging Kidney diseases kidney size Kidneys Machine learning Magnetic Resonance Imaging MRI Occlusion Organophosphorus Compounds parametric mapping Pathophysiology Performance measurement Rats Segmentation Triazoles |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEZQeECyvhYIMQnAKTRxn4_QGhaogbYUQK_UW-TGpVt1ml24DKr-eGechKh7ilEPGdpTx2J_t8fcBvEDUKCvjI0dgI1I0ZUSFylxE0DrXhdJVFnhmp4eTg5n6eJQddVmVfBem5YcYNtw4MsJ4zQFu7HrnF9JQe_qa6s-uwrWEYAz3bqk-DaOwVkGcjBCEjFKl4554NpY7fcnLU9Fv-HILNpt6ZS6-m8XiMnQNc8_-bbjVgUbxpvXyHbiC9Qg293qtthHcmHZH5CO4HnI63fouNO9atXnB9N6nrJzlxPTzB2FqLzziSnSKEce7YlZ_wzlfTBdnyC2xTvEybHqEXXfRqfkI41zD3BLiZO5rvBDr-Q8UXxvTZhwFJ9-D2f77L3sHUaeyEDlanWZRRRjIFdayGBn6Stq00LGfeBPLylLA5zZPrZQJulhZaws_qSaGgEOeeNQZYnofNupljQ9B6IzwQIJxmptCIS1kPFY2TrxKDNMWyjG86n946ToKclbCWJQtebIsyTUlu2YMzwbLVUu78Qeb7d5nZRd461IWWU6LPoIlVMXwmrzB5yCmxmVDNrpgzh0CMmN40Pp6aCTVMQFIRaWfD87_xxe8DL3irwbl4dspPx_9r-FjuCkJNbWpQduwcX7W4BNCPef2aejePwEcGP1f priority: 102 providerName: Wiley-Blackwell |
| Title | Dynamic parametric MRI and deep learning: Unveiling renal pathophysiology through accurate kidney size quantification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5075 https://www.ncbi.nlm.nih.gov/pubmed/38043545 https://www.proquest.com/docview/2957149415 https://www.proquest.com/docview/2897489613 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nbm.5075 |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1099-1492 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008432 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5inWDigUu5FY3JIARP6RLHaRLexsY0kFpNE5XGU-TLCarWpWVtQNuv5zh2IsZNiJfkIceX2Mf259v3AbxEzJCX0gSawEYgaMgIcpHogKB1muUiK5OGZ3Y8GR1NxYfT5NQvuNm7MI4foltwsy2j6a9tA1-a0vXzfnef71bqfEhpJBuwOUoIi_dgczo53vvkCPZ4EIvM0RHkeUBTAd6yz_4Q9Pp49AvIvA1bdbWUl9_kfH4dvzYD0OFdKNqsu3MnZ8N6rYb66idWx___t3twx2NTtuec6T7cwKoPW_utJFwfbo39TnwfbjZHR_XqAdQHTtSeWRbxcyvQpdn45D2TlWEGccm8MMXnN2xafcWZvf_OLtCmZOWQF83aSrO4z7xoEJNa15bCgp3NTIWXbDW7Qvallu5gU-NLD2F6-O7j_lHgxRwCTZPgJCgJaulcKat5hqbkKs6z0IyMDHmpqF9JVRorziPUoVBK5WZUjiThkzQymCWI8SPoVYsKnwDLEoIdEYZxKnOBNF8yWKowMiKSlh2RD-B1W6WF9kznVnBjXjiOZl5Q2Ra2bAfwvLNcOnaP39hst15R-Pa9KniepORQhH4oiu4z1YbdbpEVLmqyyXJL7UN4aQCPnTd1icRZSDhVUOgXnXv9JQevGmf5o0ExeTu276f_Ets29NYXNT4jLLVWO7DBxTE9D074jm883wHtyCGl |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlg4IFheCwUMQnAKTRwnceAEhWoL3RVCXam3yI9Jteo2u3QbUPn1jJ2HqHiIUw4Zx1HGE38ztr8P4DmiRF4qGxgCG4GgKSPIRWICgtaZzIUsE88zO5mm45n4eJgcbsCb7ixMww_RF9xcZPj_tQtwV5De_oU1VJ-8og6SS3BZpFHqMi8uPve_YSm8OhlBCB7EQoYd82zIt7uWF-ei3wDmdRjU1Uqdf1eLxUXs6ief3Ztwo0WN7G3j5luwgdUQBjudWNsQrk7aNfIhXPGbOs36NtTvG7l55vi9T5x0lmGTL3tMVZZZxBVrJSOOXrNZ9Q3n7mQ6O0XXkxMqXvqqhy-7s1bOhyljakcuwY7ntsJztp7_QPa1Vs2WI-_lOzDb_XCwMw5amYXAUHqaBCWBIJNr7dTI0JZcx7kMbWpVyEtNEZ_pLNacR2hCobXObVqmipBDFlmUCWJ8FzarZYX3gcmEAEGEYZypXCBlMhZLHUZWRMrxFvIRvOw-eGFaDnInhbEoGvZkXpBrCueaETztLVcN78YfbLY6nxVt5K0LnicZZX2ES-gR_W3yhlsIURUua7KRuSPdISQzgnuNr_tOYhkSghTU-lnv_H-8wQs_Kv5qUEzfTdz1wf8aPoHB-GCyX-zvTT89hGucIFSzT2gLNs9Oa3xEEOhMP_ZD_SfHxgDa |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2zwwKXcCgMMQvCULnGcxoEnWKk2oBWaVmkPSJEvJ6hal5a1AW2_nuPcYNyEeMpDjmPHPrY_28ffB_AUUSLPlPUMgQ1P0JThJSIyHkHrWCZCZlHJMzsa93cn4u1hdLgGL5u7MBU_RLvh5npGOV67Do4Lm23_wBqqj3uUQXQBLoookS6eb7D_nTtKilKdjCAE90Ih_YZ51ufbTcrzc9EvAPMKbBb5Qp1-VbPZeexaTj7Da_CxKXYVc3LUK1a6Z85-YnT8z_-6DldrUMpeVV50A9Yw78DmTqMF14GNUX0E34FLZcyoWd6EYlCp2TNHH37slLkMG-3vMZVbZhEXrFak-PSCTfIvOHUX39kJupycDvK83FQpd_VZrRbElDGF465gR1Ob4ylbTs-QfS5UFdFUOtEtmAzfHOzserWKg2do9Rt5GWEsk2jtxM7QZlyHifRt3yqfZ5oGlFjHoeY8QOMLrXVi-1lfETCJA4syQgxvw3o-z_EuMBkR3gjQD2OVCKSFksVM-4EVgXK0iLwLz5v2TE1Nce6UNmZpRc7MU6rb1NVtFx63louK1uM3NluNS6R1x16mPIliWlQS7KFPtK-pNdw5i8pxXpCNTBynDwGlLtypXKnNJJQ-AVRBqZ-0vvWXEjwrPeWPBun49cg97_2r4SPY-DAYpu_3xu_uw2VOAK2KQtqC9dVJgQ8IYK30w7IjfQOUcSDf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTjDxwKXAKBrIIARPKYlzNW9jMA2kVghRaTxFvpygal3arQ1o-_Ucx07EuAnxlIf4ktjn2J-P7e8DeIZYIK-kCTSBjSChKSMQSaoDgtZ5IZKiSlue2ck0O5wl74_SIx9ws3dhHD9EH3CzntGO19bBV6Zy47zf3ecva3UypjrSq7CVpYTFB7A1m37Y--wI9ngQJ4WjIxAioKUA79hnf8h6eT76BWTegO2mXsnzb3KxuIxf2wno4BaU3ae7cyfH42ajxvriJ1bH__-323DTY1O254zpDlzBegjb-50k3BCuT_xO_BCutUdH9fouNG-cqD2zLOInVqBLs8nHd0zWhhnEFfPCFF9esVn9Fef2_js7Q1uTlUNetrGVNrjPvGgQk1o3lsKCHc9NjedsPb9AdtpId7CptaV7MDt4-2n_MPBiDoGmRXAaVAS1tFDKap6hqbiKRRGazMiQV4rGlVzlseI8Qh0mSilhsiqThE_yyGCRIsb3YVAva3wArEgJdkQYxrkUCdJ6yWClwsgkkbTsiHwEL7ouLbVnOreCG4vScTTzktq2tG07gid9ypVj9_hNmt3OKkrv3-uSizQngyL0Q0X0r6k37HaLrHHZUJpCWGofwksj2HHW1FcSFyHh1IRyP-3N6y9f8Lw1lj8mKKevJ_b58F9K24XB5qzBR4SlNuqxd5jva8Mf5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+parametric+MRI+and+deep+learning%3A+Unveiling+renal+pathophysiology+through+accurate+kidney+size+quantification&rft.jtitle=NMR+in+biomedicine&rft.au=Klein%2C+Tobias&rft.au=Gladytz%2C+Thomas&rft.au=Millward%2C+Jason+M&rft.au=Cantow%2C+Kathleen&rft.date=2024-04-01&rft.eissn=1099-1492&rft.volume=37&rft.issue=4&rft.spage=e5075&rft_id=info:doi/10.1002%2Fnbm.5075&rft_id=info%3Apmid%2F38043545&rft.externalDocID=38043545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |