A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms
Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being te...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 25; no. 9; p. 1613 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.09.1998
|
| Subjects | |
| Online Access | Get more information |
| ISSN | 0094-2405 |
| DOI | 10.1118/1.598341 |
Cover
| Abstract | Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being tested clinically at the University of Chicago Hospitals. Our CAD scheme contains a large number of parameters such as filter weights, threshold levels, and region of interest (ROI) sizes. The choice of these parameter values determines the overall performance of the system and thus must be carefully set. Unfortunately, when the number of parameters becomes large, it is very difficult to obtain the optimal performance, especially when the values of the parameters are correlated with each other. In this study, we address the problem of identifying the optimal overall performance by developing an automated method for the determination of the parameter values that maximize the performance of a mammographic CAD scheme. Our method utilizes a genetic algorithm to search through the possible parameter values, and provides the set of parameters that minimize a cost function which measures the performance of the scheme. Using a database of 89 digitized mammograms, our method demonstrated that the sensitivity of our CAD scheme can be increased from 80% to 87% at a false positive rate of 1.0 per image. We estimate the average performance of our CAD scheme on unknown cases by performing jackknife tests; this was previously not feasible when the parameters of the CAD scheme were determined in a nonautomated manner. |
|---|---|
| AbstractList | Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being tested clinically at the University of Chicago Hospitals. Our CAD scheme contains a large number of parameters such as filter weights, threshold levels, and region of interest (ROI) sizes. The choice of these parameter values determines the overall performance of the system and thus must be carefully set. Unfortunately, when the number of parameters becomes large, it is very difficult to obtain the optimal performance, especially when the values of the parameters are correlated with each other. In this study, we address the problem of identifying the optimal overall performance by developing an automated method for the determination of the parameter values that maximize the performance of a mammographic CAD scheme. Our method utilizes a genetic algorithm to search through the possible parameter values, and provides the set of parameters that minimize a cost function which measures the performance of the scheme. Using a database of 89 digitized mammograms, our method demonstrated that the sensitivity of our CAD scheme can be increased from 80% to 87% at a false positive rate of 1.0 per image. We estimate the average performance of our CAD scheme on unknown cases by performing jackknife tests; this was previously not feasible when the parameters of the CAD scheme were determined in a nonautomated manner. |
| Author | Nishikawa, R M Anastasio, M A Yoshida, H Nagel, R Doi, K |
| Author_xml | – sequence: 1 givenname: M A surname: Anastasio fullname: Anastasio, M A organization: Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637, USA – sequence: 2 givenname: H surname: Yoshida fullname: Yoshida, H – sequence: 3 givenname: R surname: Nagel fullname: Nagel, R – sequence: 4 givenname: R M surname: Nishikawa fullname: Nishikawa, R M – sequence: 5 givenname: K surname: Doi fullname: Doi, K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9775365$$D View this record in MEDLINE/PubMed |
| BookMark | eNotUMtKAzEUzaJS2yr4A0J-YGoe88qyFF9QcKPrkkluZiKTZEjShf6Nf-pUuzpwnnDWaOGDB4TuKNlSStsHuq1Ey0u6QCtCRFmwklTXaJ3SJyGk5hVZoqVomorX1Qr97HAPHrJVWI59iDYPruhkAo0d5CFobELEYcrW2W_re5wHwBPEmXXSK8DBYIlVcNMpQyyk1XNSW9n7kGzCSQ3g4K9DQwaVbfDniBpPafafV6yKQclRWWOVPOsJW4-ddC70Ubp0g66MHBPcXnCDPp4e3_cvxeHt-XW_OxSKt5wWRle6roGDKFUjDOFtx4CIilGtWddwYWZOCUqU5Eqz0jSCybamwGjddS2wDbr_751OnQN9nKJ1Mn4dL1exXxFvbeQ |
| CitedBy_id | crossref_primary_10_1007_BF03168394 crossref_primary_10_1109_TMI_2010_2087389 crossref_primary_10_1111_j_1749_6632_2002_tb04890_x crossref_primary_10_1016_j_eswa_2018_01_028 crossref_primary_10_1109_5992_877391 crossref_primary_10_1109_TMI_2004_824153 crossref_primary_10_1118_1_598852 crossref_primary_10_1109_42_746726 crossref_primary_10_1016_S1076_6332_03_80187_3 crossref_primary_10_1053_j_sult_2004_07_003 crossref_primary_10_1016_j_eswa_2012_05_093 crossref_primary_10_1088_0031_9155_53_4_005 crossref_primary_10_1109_42_974921 crossref_primary_10_1118_1_1412240 crossref_primary_10_1118_1_1521119 crossref_primary_10_1148_radiology_214_3_r00mr22823 crossref_primary_10_1118_1_598895 crossref_primary_10_2174_2666255813999200915141534 crossref_primary_10_1118_1_3267037 crossref_primary_10_1016_j_artmed_2007_09_003 crossref_primary_10_1111_j_1749_6632_2002_tb04905_x crossref_primary_10_3390_universe10010011 crossref_primary_10_1142_S0129183101001523 crossref_primary_10_1118_1_1359250 crossref_primary_10_1016_S0933_3657_99_00047_0 crossref_primary_10_1118_1_1286720 crossref_primary_10_1109_42_796281 crossref_primary_10_1016_S0031_3203_03_00192_4 crossref_primary_10_1016_j_compmedimag_2007_02_009 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM |
| DOI | 10.1118/1.598341 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Physics |
| ExternalDocumentID | 9775365 |
| Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA 60187 – fundername: NCI NIH HHS grantid: CA 24806 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADMLS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CGR CS3 CUY CVF DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS ECM EIF EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI NPM O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW |
| ID | FETCH-LOGICAL-c3831-fd5d66e3e94c79f038b2e09521dd2b739ff03c910ca3cd24f792a861e216bb8e2 |
| ISSN | 0094-2405 |
| IngestDate | Wed Feb 19 01:15:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3831-fd5d66e3e94c79f038b2e09521dd2b739ff03c910ca3cd24f792a861e216bb8e2 |
| PMID | 9775365 |
| ParticipantIDs | pubmed_primary_9775365 |
| PublicationCentury | 1900 |
| PublicationDate | September 1998 |
| PublicationDateYYYYMMDD | 1998-09-01 |
| PublicationDate_xml | – month: 09 year: 1998 text: September 1998 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 1998 |
| SSID | ssj0006350 |
| Score | 1.7384104 |
| Snippet | Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having... |
| SourceID | pubmed |
| SourceType | Index Database |
| StartPage | 1613 |
| SubjectTerms | Algorithms Biophysical Phenomena Biophysics Breast Neoplasms - diagnostic imaging Calcinosis - diagnostic imaging Databases, Factual Diagnosis, Computer-Assisted Evaluation Studies as Topic False Negative Reactions False Positive Reactions Female Humans Mammography - statistics & numerical data Radiographic Image Enhancement - methods Sensitivity and Specificity |
| Title | A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/9775365 |
| Volume | 25 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6loKJeEBQq3toDN-QS7_qRPUYIVCEl4tBK5VStd2apRRxXSiqk_hv-BT-P2UdsJ2oRcLGiXcWxd76Mvx3PN8PYW1kgWmMgARibJIPSJgrof5UZqzFT46r0hedn8-LkLPt8np-PRr8GWUvX6-rY3NyqK_kfq9IY2dWpZP_Bst1JaYA-k33pSBam41_ZeOoaIKMvubr41tI2_7JJ3GMJYmNon0PYklNo6ptOFjVQCgRtZOzrkLhikeCCsS73rl69o30vNqEmOOAazYZbmsW1q67gfsVl85GRfV5fn5XeaFoCl_W1GlLfzSuhEEvxwV4nwNahNcggHkEjelX7EO6sD7V-bVeXNegtPcWcnOFiK-tx7kJq3_WPQIljqBd6lZ_aBDWio1aZe_GTDx11UEhHQKqB1yXWKu94HDiJQ3qcq4kM9bUGqLhqPCyIAOcy9Kv44-ROWe44s8f2ytK1DJm7KFFkAETigvQp3kQsekxX835zLQdsP55hZz_jec3pI_Ywbkj4NKDrMRvh8pA9mMWUi0O2_yXY6wn7OeURbnwHbjzAjRNUeA83TnDjA7jx1nLNt-HGO7jxADd_jg5u7isd3PgtcOP1kvdwe8rOPn08_XCSxA4fiZETmSYWcigKlKgyUyo7lpNKIJF-kQKIqpTK0pghRmu0NCAyWyqhJ0WKIi2qaoLiiN1btkt8xrgAoTOAMsUUiHXaSoCyKRrMiZUarZ-zo7DMF1ehjMtFXP8Xd028ZAc9NF-x-5a8Br4mCrqu3nh7_wbHzY6A |
| linkProvider | National Library of Medicine |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm-based+method+for+optimizing+the+performance+of+a+computer-aided+diagnosis+scheme+for+detection+of+clustered+microcalcifications+in+mammograms&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Anastasio%2C+M+A&rft.au=Yoshida%2C+H&rft.au=Nagel%2C+R&rft.au=Nishikawa%2C+R+M&rft.date=1998-09-01&rft.issn=0094-2405&rft.volume=25&rft.issue=9&rft.spage=1613&rft_id=info:doi/10.1118%2F1.598341&rft_id=info%3Apmid%2F9775365&rft_id=info%3Apmid%2F9775365&rft.externalDocID=9775365 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |