A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms

Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being te...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 25; no. 9; p. 1613
Main Authors Anastasio, M A, Yoshida, H, Nagel, R, Nishikawa, R M, Doi, K
Format Journal Article
LanguageEnglish
Published United States 01.09.1998
Subjects
Online AccessGet more information
ISSN0094-2405
DOI10.1118/1.598341

Cover

Abstract Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being tested clinically at the University of Chicago Hospitals. Our CAD scheme contains a large number of parameters such as filter weights, threshold levels, and region of interest (ROI) sizes. The choice of these parameter values determines the overall performance of the system and thus must be carefully set. Unfortunately, when the number of parameters becomes large, it is very difficult to obtain the optimal performance, especially when the values of the parameters are correlated with each other. In this study, we address the problem of identifying the optimal overall performance by developing an automated method for the determination of the parameter values that maximize the performance of a mammographic CAD scheme. Our method utilizes a genetic algorithm to search through the possible parameter values, and provides the set of parameters that minimize a cost function which measures the performance of the scheme. Using a database of 89 digitized mammograms, our method demonstrated that the sensitivity of our CAD scheme can be increased from 80% to 87% at a false positive rate of 1.0 per image. We estimate the average performance of our CAD scheme on unknown cases by performing jackknife tests; this was previously not feasible when the parameters of the CAD scheme were determined in a nonautomated manner.
AbstractList Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having a second reader. Our laboratory has developed a CAD scheme for detecting clustered microcalcifications in digital mammograms that is being tested clinically at the University of Chicago Hospitals. Our CAD scheme contains a large number of parameters such as filter weights, threshold levels, and region of interest (ROI) sizes. The choice of these parameter values determines the overall performance of the system and thus must be carefully set. Unfortunately, when the number of parameters becomes large, it is very difficult to obtain the optimal performance, especially when the values of the parameters are correlated with each other. In this study, we address the problem of identifying the optimal overall performance by developing an automated method for the determination of the parameter values that maximize the performance of a mammographic CAD scheme. Our method utilizes a genetic algorithm to search through the possible parameter values, and provides the set of parameters that minimize a cost function which measures the performance of the scheme. Using a database of 89 digitized mammograms, our method demonstrated that the sensitivity of our CAD scheme can be increased from 80% to 87% at a false positive rate of 1.0 per image. We estimate the average performance of our CAD scheme on unknown cases by performing jackknife tests; this was previously not feasible when the parameters of the CAD scheme were determined in a nonautomated manner.
Author Nishikawa, R M
Anastasio, M A
Yoshida, H
Nagel, R
Doi, K
Author_xml – sequence: 1
  givenname: M A
  surname: Anastasio
  fullname: Anastasio, M A
  organization: Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637, USA
– sequence: 2
  givenname: H
  surname: Yoshida
  fullname: Yoshida, H
– sequence: 3
  givenname: R
  surname: Nagel
  fullname: Nagel, R
– sequence: 4
  givenname: R M
  surname: Nishikawa
  fullname: Nishikawa, R M
– sequence: 5
  givenname: K
  surname: Doi
  fullname: Doi, K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9775365$$D View this record in MEDLINE/PubMed
BookMark eNotUMtKAzEUzaJS2yr4A0J-YGoe88qyFF9QcKPrkkluZiKTZEjShf6Nf-pUuzpwnnDWaOGDB4TuKNlSStsHuq1Ey0u6QCtCRFmwklTXaJ3SJyGk5hVZoqVomorX1Qr97HAPHrJVWI59iDYPruhkAo0d5CFobELEYcrW2W_re5wHwBPEmXXSK8DBYIlVcNMpQyyk1XNSW9n7kGzCSQ3g4K9DQwaVbfDniBpPafafV6yKQclRWWOVPOsJW4-ddC70Ubp0g66MHBPcXnCDPp4e3_cvxeHt-XW_OxSKt5wWRle6roGDKFUjDOFtx4CIilGtWddwYWZOCUqU5Eqz0jSCybamwGjddS2wDbr_751OnQN9nKJ1Mn4dL1exXxFvbeQ
CitedBy_id crossref_primary_10_1007_BF03168394
crossref_primary_10_1109_TMI_2010_2087389
crossref_primary_10_1111_j_1749_6632_2002_tb04890_x
crossref_primary_10_1016_j_eswa_2018_01_028
crossref_primary_10_1109_5992_877391
crossref_primary_10_1109_TMI_2004_824153
crossref_primary_10_1118_1_598852
crossref_primary_10_1109_42_746726
crossref_primary_10_1016_S1076_6332_03_80187_3
crossref_primary_10_1053_j_sult_2004_07_003
crossref_primary_10_1016_j_eswa_2012_05_093
crossref_primary_10_1088_0031_9155_53_4_005
crossref_primary_10_1109_42_974921
crossref_primary_10_1118_1_1412240
crossref_primary_10_1118_1_1521119
crossref_primary_10_1148_radiology_214_3_r00mr22823
crossref_primary_10_1118_1_598895
crossref_primary_10_2174_2666255813999200915141534
crossref_primary_10_1118_1_3267037
crossref_primary_10_1016_j_artmed_2007_09_003
crossref_primary_10_1111_j_1749_6632_2002_tb04905_x
crossref_primary_10_3390_universe10010011
crossref_primary_10_1142_S0129183101001523
crossref_primary_10_1118_1_1359250
crossref_primary_10_1016_S0933_3657_99_00047_0
crossref_primary_10_1118_1_1286720
crossref_primary_10_1109_42_796281
crossref_primary_10_1016_S0031_3203_03_00192_4
crossref_primary_10_1016_j_compmedimag_2007_02_009
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1118/1.598341
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Physics
ExternalDocumentID 9775365
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA 60187
– fundername: NCI NIH HHS
  grantid: CA 24806
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CGR
CS3
CUY
CVF
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECM
EIF
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
NPM
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
ID FETCH-LOGICAL-c3831-fd5d66e3e94c79f038b2e09521dd2b739ff03c910ca3cd24f792a861e216bb8e2
ISSN 0094-2405
IngestDate Wed Feb 19 01:15:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3831-fd5d66e3e94c79f038b2e09521dd2b739ff03c910ca3cd24f792a861e216bb8e2
PMID 9775365
ParticipantIDs pubmed_primary_9775365
PublicationCentury 1900
PublicationDate September 1998
PublicationDateYYYYMMDD 1998-09-01
PublicationDate_xml – month: 09
  year: 1998
  text: September 1998
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 1998
SSID ssj0006350
Score 1.7384104
Snippet Computer-aided diagnosis (CAD) schemes have the potential of substantially increasing diagnostic accuracy in mammography by providing the advantages of having...
SourceID pubmed
SourceType Index Database
StartPage 1613
SubjectTerms Algorithms
Biophysical Phenomena
Biophysics
Breast Neoplasms - diagnostic imaging
Calcinosis - diagnostic imaging
Databases, Factual
Diagnosis, Computer-Assisted
Evaluation Studies as Topic
False Negative Reactions
False Positive Reactions
Female
Humans
Mammography - statistics & numerical data
Radiographic Image Enhancement - methods
Sensitivity and Specificity
Title A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms
URI https://www.ncbi.nlm.nih.gov/pubmed/9775365
Volume 25
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6loKJeEBQq3toDN-QS7_qRPUYIVCEl4tBK5VStd2apRRxXSiqk_hv-BT-P2UdsJ2oRcLGiXcWxd76Mvx3PN8PYW1kgWmMgARibJIPSJgrof5UZqzFT46r0hedn8-LkLPt8np-PRr8GWUvX6-rY3NyqK_kfq9IY2dWpZP_Bst1JaYA-k33pSBam41_ZeOoaIKMvubr41tI2_7JJ3GMJYmNon0PYklNo6ptOFjVQCgRtZOzrkLhikeCCsS73rl69o30vNqEmOOAazYZbmsW1q67gfsVl85GRfV5fn5XeaFoCl_W1GlLfzSuhEEvxwV4nwNahNcggHkEjelX7EO6sD7V-bVeXNegtPcWcnOFiK-tx7kJq3_WPQIljqBd6lZ_aBDWio1aZe_GTDx11UEhHQKqB1yXWKu94HDiJQ3qcq4kM9bUGqLhqPCyIAOcy9Kv44-ROWe44s8f2ytK1DJm7KFFkAETigvQp3kQsekxX835zLQdsP55hZz_jec3pI_Ywbkj4NKDrMRvh8pA9mMWUi0O2_yXY6wn7OeURbnwHbjzAjRNUeA83TnDjA7jx1nLNt-HGO7jxADd_jg5u7isd3PgtcOP1kvdwe8rOPn08_XCSxA4fiZETmSYWcigKlKgyUyo7lpNKIJF-kQKIqpTK0pghRmu0NCAyWyqhJ0WKIi2qaoLiiN1btkt8xrgAoTOAMsUUiHXaSoCyKRrMiZUarZ-zo7DMF1ehjMtFXP8Xd028ZAc9NF-x-5a8Br4mCrqu3nh7_wbHzY6A
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm-based+method+for+optimizing+the+performance+of+a+computer-aided+diagnosis+scheme+for+detection+of+clustered+microcalcifications+in+mammograms&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Anastasio%2C+M+A&rft.au=Yoshida%2C+H&rft.au=Nagel%2C+R&rft.au=Nishikawa%2C+R+M&rft.date=1998-09-01&rft.issn=0094-2405&rft.volume=25&rft.issue=9&rft.spage=1613&rft_id=info:doi/10.1118%2F1.598341&rft_id=info%3Apmid%2F9775365&rft_id=info%3Apmid%2F9775365&rft.externalDocID=9775365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon