High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy
Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 33 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202102291 |
Cover
Abstract | Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative.
1,10‐decanediol is introduced as an additive that can improve the crystalline of polymer and protect PM6 film from less erosion during the sequential deposition (SD) process. The strategy is applied to fabricate pseudo‐planar heterojunction (PPHJ) organic solar cells with ideal vertical phase separation through SD processing. The champion PPHJ device demonstrates a high efficiency (16.93%) and fill factor (77.45%). |
---|---|
AbstractList | Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6 + DDO/Y6 + CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. 1,10‐decanediol is introduced as an additive that can improve the crystalline of polymer and protect PM6 film from less erosion during the sequential deposition (SD) process. The strategy is applied to fabricate pseudo‐planar heterojunction (PPHJ) organic solar cells with ideal vertical phase separation through SD processing. The champion PPHJ device demonstrates a high efficiency (16.93%) and fill factor (77.45%). |
Author | Mao, Houdong Tan, Licheng Chen, Yiwang Xie, Zijun Zhang, Lifu Wang, Xinkang Hu, Lei Zhang, Youdi |
Author_xml | – sequence: 1 givenname: Xinkang surname: Wang fullname: Wang, Xinkang organization: Nanchang University – sequence: 2 givenname: Lifu surname: Zhang fullname: Zhang, Lifu organization: Nanchang University – sequence: 3 givenname: Lei surname: Hu fullname: Hu, Lei organization: Nanchang University – sequence: 4 givenname: Zijun surname: Xie fullname: Xie, Zijun organization: Jiangxi Normal University – sequence: 5 givenname: Houdong surname: Mao fullname: Mao, Houdong organization: Nanchang University – sequence: 6 givenname: Licheng surname: Tan fullname: Tan, Licheng organization: Nanchang University – sequence: 7 givenname: Youdi surname: Zhang fullname: Zhang, Youdi email: ydzhang2007@ncu.edu.cn organization: Nanchang University – sequence: 8 givenname: Yiwang orcidid: 0000-0003-4709-7623 surname: Chen fullname: Chen, Yiwang email: ywchen@ncu.edu.cn organization: Jiangxi Normal University |
BookMark | eNqFkE1LAzEQhoNUsK1ePQdE0ENrPrb7cay1tUKlhSp4W7LJpKZsszXZKnvzJ_gb_SVuqVQQxNMMzPvMzPu2UMMWFhA6paRLCWFXQulVlxFGCWMJPUBNGtKwwwmLG_uePh2hlvdLQmgU8aCJ3Ngsnj_fP4ZaG2nAygpf0LCb8PNLPPOwUUU9nOXCCofHUIIrlhsrS1NYPHULYY3E8yKvhwPIc4-HVmQ5KJxV-NrUTIX7SpnSvILH89KJEhbVMTrUIvdw8l3b6HE0fBiMO5Pp7d2gP-lIHnPaUWESZqrHKNUR5zqiEQeheZBJAUxKQXpccqGDAEDrTIWSBoSHShEZxVySmLfR2W7v2hUvG_Bluiw2ztYnU9YLaZwkhES1KtippCu8d6BTaUqxNVi_a_KUknSbbrpNN92nW2PdX9jamVVt-G8g2QFvJofqH3Xavxnd_7BfzPaRJQ |
CitedBy_id | crossref_primary_10_1038_s41467_023_41978_0 crossref_primary_10_1039_D1TC06096A crossref_primary_10_1039_D2MH00376G crossref_primary_10_1002_ange_202206311 crossref_primary_10_3390_en17112623 crossref_primary_10_3390_en17164022 crossref_primary_10_1002_aenm_202400013 crossref_primary_10_1002_solr_202200682 crossref_primary_10_1039_D3SE00703K crossref_primary_10_1039_D3TC03641C crossref_primary_10_1021_acsami_2c04997 crossref_primary_10_1021_acssuschemeng_2c05385 crossref_primary_10_1002_advs_202201876 crossref_primary_10_1002_solr_202200957 crossref_primary_10_1002_solr_202300136 crossref_primary_10_1002_aenm_202200044 crossref_primary_10_1002_aenm_202200165 crossref_primary_10_1002_smll_202104215 crossref_primary_10_1002_adfm_202205115 crossref_primary_10_1021_acsami_3c18894 crossref_primary_10_1002_solr_202100480 crossref_primary_10_1002_adma_202309379 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1039_D2TC00024E crossref_primary_10_1002_ange_202421953 crossref_primary_10_1063_5_0139457 crossref_primary_10_1002_adfm_202209152 crossref_primary_10_1038_s41578_023_00642_1 crossref_primary_10_1039_D3CC03827K crossref_primary_10_3390_molecules27196363 crossref_primary_10_1007_s11771_024_5839_5 crossref_primary_10_1016_j_cej_2022_138146 crossref_primary_10_1002_adma_202208279 crossref_primary_10_1002_adfm_202500975 crossref_primary_10_1002_adma_202208997 crossref_primary_10_1016_j_cej_2022_136368 crossref_primary_10_1002_solr_202200962 crossref_primary_10_1002_aenm_202203241 crossref_primary_10_1002_adma_202108749 crossref_primary_10_1021_acsaem_3c00068 crossref_primary_10_1002_anie_202213869 crossref_primary_10_1039_D3EE00090G crossref_primary_10_1016_j_wees_2024_04_001 crossref_primary_10_1002_marc_202400458 crossref_primary_10_1021_acsami_4c21699 crossref_primary_10_1039_D1TA08893A crossref_primary_10_1002_anie_202421953 crossref_primary_10_1039_D2TC02689A crossref_primary_10_1002_adfm_202409315 crossref_primary_10_1002_solr_202300228 crossref_primary_10_1039_D2TA02914F crossref_primary_10_1002_adfm_202109735 crossref_primary_10_1002_adma_202308909 crossref_primary_10_1039_D2TA04776D crossref_primary_10_1039_D5TC00056D crossref_primary_10_1002_solr_202200381 crossref_primary_10_1016_j_nanoen_2024_110133 crossref_primary_10_1021_acsami_1c17199 crossref_primary_10_1002_solr_202201076 crossref_primary_10_1007_s11426_022_1300_1 crossref_primary_10_1002_adfm_202206707 crossref_primary_10_1002_aenm_202203697 crossref_primary_10_1016_j_cej_2022_137621 crossref_primary_10_1039_D4TA04725G crossref_primary_10_1002_adma_202313105 crossref_primary_10_1002_advs_202414712 crossref_primary_10_1002_anie_202402831 crossref_primary_10_1039_D3TC02562D crossref_primary_10_1002_ange_202213869 crossref_primary_10_1002_adfm_202202103 crossref_primary_10_1002_smtd_202301803 crossref_primary_10_1016_j_surfin_2024_104686 crossref_primary_10_1039_D4EE01522C crossref_primary_10_1002_adfm_202208001 crossref_primary_10_1002_idm2_12129 crossref_primary_10_1002_ange_202402831 crossref_primary_10_1002_smll_202404734 crossref_primary_10_1002_anie_202206311 crossref_primary_10_3390_polym14102058 crossref_primary_10_1002_solr_202200076 crossref_primary_10_1002_aenm_202103371 crossref_primary_10_1016_j_cej_2022_139496 crossref_primary_10_1002_aenm_202402517 crossref_primary_10_1016_j_cej_2024_158635 crossref_primary_10_1002_adfm_202200478 crossref_primary_10_1002_pssa_202400654 crossref_primary_10_1039_D2EE02392J crossref_primary_10_1002_marc_202200345 crossref_primary_10_1002_adfm_202202011 crossref_primary_10_1002_adma_202308159 crossref_primary_10_1039_D4TA00594E |
Cites_doi | 10.1021/acsami.9b15753 10.1016/j.joule.2019.01.004 10.1038/nphoton.2012.11 10.1039/C9EE02531F 10.1002/adma.201904215 10.1002/aenm.201703147 10.1002/adom.201900152 10.1039/C9TA09799F 10.1038/natrevmats.2018.3 10.1002/adma.201305196 10.1021/acsami.0c02843 10.1002/adma.201903441 10.1016/j.joule.2020.07.028 10.1002/adma.201802499 10.1038/nature11476 10.1002/adma.201901872 10.1021/acsenergylett.0c00939 10.1002/adma.201504014 10.1038/ncomms4406 10.1063/1.96937 10.1002/adma.201502773 10.1002/smtd.202000687 10.1021/nl202320r 10.1016/j.scib.2020.01.001 10.1002/aenm.201300626 10.1016/j.joule.2019.12.004 10.1002/aelm.201600359 10.1002/adma.201707114 10.1016/j.nanoen.2020.104447 10.1039/C0CS00045K 10.1039/C8EE02560F 10.1021/acsenergylett.0c01927 10.1021/acsami.7b15113 10.1002/adfm.201909760 10.1039/C7TA00211D 10.1021/acs.chemmater.0c00459 10.1002/adfm.202000456 10.1021/acsami.9b16784 10.1002/advs.201900565 10.1002/adma.201808153 10.1016/S1369-7021(12)70019-6 10.1002/adfm.201604906 10.1016/j.joule.2019.09.010 10.1002/adma.201800613 10.1021/acsenergylett.9b01447 10.1039/C5TA09701K 10.1039/C9TA00164F 10.1002/aenm.202003141 10.1002/adma.201804657 10.1021/acsnano.8b00439 10.1038/s41467-020-16621-x 10.1002/aenm.202003390 10.1021/acs.chemrev.7b00535 10.1021/acsenergylett.0c02230 10.1038/ncomms6293 10.1002/aenm.201600414 10.1038/s41467-019-10351-5 10.1021/acsenergylett.9b02842 10.1002/smtd.202000418 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202102291 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202102291 ADFM202102291 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51763017 – fundername: National Natural Science Foundation of China funderid: 51673091; 51833004 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3831-d696bd5211f733f7173eaf34bcae2cca053c3af44eeffbd6c14036dd0c783c083 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:43:49 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 04:12:32 EDT 2025 Wed Jan 22 16:27:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3831-d696bd5211f733f7173eaf34bcae2cca053c3af44eeffbd6c14036dd0c783c083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4709-7623 |
PQID | 2561899007 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2561899007 crossref_citationtrail_10_1002_adfm_202102291 crossref_primary_10_1002_adfm_202102291 wiley_primary_10_1002_adfm_202102291_ADFM202102291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2019; 4 2019; 3 2019; 6 2019; 31 2019; 11 2017; 27 2019; 10 2019; 12 2011; 40 2014; 26 2011; 11 2020; 12 2020; 11 2012; 15 2020; 32 2012; 488 2016; 4 2016; 6 2020; 6 2018; 8 2020; 5 2018; 3 2020; 4 2014; 5 2015; 27 2014; 4 2016; 2 2021; 11 2020; 30 2018; 118 1986; 48 2020; 69 2018; 30 2020; 65 2012; 6 2018; 12 2016; 28 2018; 10 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3163 year: 2011 publication-title: Nano Lett. – volume: 12 start-page: 384 year: 2019 publication-title: Energy Environ. Sci. – volume: 7 start-page: 7437 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2004 year: 2020 publication-title: Joule – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 488 start-page: 304 year: 2012 publication-title: Nature – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 118 start-page: 3447 year: 2018 publication-title: Chem. Rev. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 5 start-page: 3637 year: 2020 publication-title: ACS Energy Lett. – volume: 40 start-page: 1185 year: 2011 publication-title: Chem. Soc. Rev. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 3 start-page: 3020 year: 2019 publication-title: Joule – volume: 5 start-page: 3406 year: 2014 publication-title: Nat. Commun. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 4 start-page: 2169 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 69 year: 2020 publication-title: Nano Energy – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 32 start-page: 3254 year: 2020 publication-title: Chem. Mater. – volume: 11 start-page: 2855 year: 2020 publication-title: Nat. Commun. – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 5 start-page: 2087 year: 2020 publication-title: ACS Energy Lett. – volume: 15 start-page: 36 year: 2012 publication-title: Mater. Today – volume: 12 start-page: 3225 year: 2019 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2466 year: 2019 publication-title: ACS Energy Lett. – volume: 4 start-page: 407 year: 2020 publication-title: Joule – volume: 5 start-page: 367 year: 2020 publication-title: ACS Energy Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 3068 year: 2014 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 5868 year: 2015 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 6 start-page: 9 year: 2020 publication-title: ACS Energy Lett. – volume: 10 start-page: 2515 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 3589 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 979 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 183 year: 1986 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 4440 year: 2018 publication-title: ACS Nano – volume: 28 start-page: 967 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_7_22_1 doi: 10.1021/acsami.9b15753 – ident: e_1_2_7_9_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_7_4_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_7_10_1 doi: 10.1039/C9EE02531F – ident: e_1_2_7_52_1 doi: 10.1002/adma.201904215 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.201703147 – ident: e_1_2_7_44_1 doi: 10.1002/adom.201900152 – ident: e_1_2_7_38_1 doi: 10.1039/C9TA09799F – ident: e_1_2_7_2_1 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201305196 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.0c02843 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201903441 – ident: e_1_2_7_57_1 doi: 10.1016/j.joule.2020.07.028 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201802499 – ident: e_1_2_7_5_1 doi: 10.1038/nature11476 – ident: e_1_2_7_53_1 doi: 10.1002/adma.201901872 – ident: e_1_2_7_47_1 doi: 10.1021/acsenergylett.0c00939 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201504014 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms4406 – ident: e_1_2_7_28_1 doi: 10.1063/1.96937 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201502773 – ident: e_1_2_7_39_1 doi: 10.1002/smtd.202000687 – ident: e_1_2_7_46_1 doi: 10.1021/nl202320r – ident: e_1_2_7_18_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.201300626 – ident: e_1_2_7_23_1 doi: 10.1016/j.joule.2019.12.004 – ident: e_1_2_7_45_1 doi: 10.1002/aelm.201600359 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201707114 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2020.104447 – ident: e_1_2_7_6_1 doi: 10.1039/C0CS00045K – ident: e_1_2_7_16_1 doi: 10.1039/C8EE02560F – ident: e_1_2_7_59_1 doi: 10.1021/acsenergylett.0c01927 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.7b15113 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201909760 – ident: e_1_2_7_43_1 doi: 10.1039/C7TA00211D – ident: e_1_2_7_55_1 doi: 10.1021/acs.chemmater.0c00459 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202000456 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.9b16784 – ident: e_1_2_7_40_1 doi: 10.1002/advs.201900565 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201808153 – ident: e_1_2_7_3_1 doi: 10.1016/S1369-7021(12)70019-6 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201604906 – ident: e_1_2_7_56_1 doi: 10.1016/j.joule.2019.09.010 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201800613 – ident: e_1_2_7_48_1 doi: 10.1021/acsenergylett.9b01447 – ident: e_1_2_7_15_1 doi: 10.1039/C5TA09701K – ident: e_1_2_7_35_1 doi: 10.1039/C9TA00164F – ident: e_1_2_7_54_1 doi: 10.1002/aenm.202003141 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201804657 – ident: e_1_2_7_41_1 doi: 10.1021/acsnano.8b00439 – ident: e_1_2_7_31_1 doi: 10.1038/s41467-020-16621-x – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202003390 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.7b00535 – ident: e_1_2_7_49_1 doi: 10.1021/acsenergylett.0c02230 – ident: e_1_2_7_37_1 doi: 10.1038/ncomms6293 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201600414 – ident: e_1_2_7_58_1 doi: 10.1038/s41467-019-10351-5 – ident: e_1_2_7_50_1 doi: 10.1021/acsenergylett.9b02842 – ident: e_1_2_7_33_1 doi: 10.1002/smtd.202000418 |
SSID | ssj0017734 |
Score | 2.6247983 |
Snippet | Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Additives binary additives bulk heterojunction morphology Charge efficiency Crystallites Efficiency Energy conversion efficiency Heterojunctions Materials science Morphology organic solar cells Phase distribution Phase separation Photoelectric effect Photoelectric emission Photovoltaic cells sequential deposition Solar cells Vertical distribution vertical phase separation Vertical separation |
Title | High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102291 https://www.proquest.com/docview/2561899007 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtxAkO7IhCQT6AgEPaOovTHEsXVUhFCKjUW-QtB6ha1LSHcuIReEaeBI-dpC0SQoJbojhR4vHyTzzzGaFzEQUhj4LEATiU49cD7nDlc0fbm7qEe65ikI3cu6Pdvn87CAZLWfyWD1H8cIOeYcZr6OCMp9UFNJTJBDLJjcti0teJRwGe33oo-FEkDO2yMiUQ4EUGObWx5lZXb1-dlRZSc1mwmhmns41Y_q420OSlMpvyinj7hnH8z8fsoK1MjuKGbT-7aE2N9tDmEqRwH00gFOTz_aNtYBOQqYmvCK1E3sU1vk_VTI71Rdj7iE1wF4Jrxs96rgR7Y5voKfAj-M-4qYbDFLdNspbEfI5vTC4wbkhpAphSnKFy5weo32k_NbtOtlODI7SHSxxJI8qlVgIkCT0vgZV9xRLP54IpV7cRbXnhscT3lUoSLqkASiCVsibCuie0CjxE66PxSB0hzDgg5gJOBNfioqYYc83Iw3w9bAfCLSEnt1QsMow57KYxjC2A2Y2hLuOiLkvosij_agEeP5Ys54aPs46cxloREu2SaiVVQq6x4C9PiRutTq84O_7LTSdoA45tmGEZrU8nM3Wqpc-Un5nm_QWA-fta |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YXagL30YUdRYadVFg-qRLREhVIEYhYdfMqwslYHgscOUn-I1-iXOnD8DEmOiy7UzTzp3HuXPvOYPQGfcdj_lOZIA4lGGXHWYwaTND2ds1CbNMSYGN3Gy5Qce-6zppNiFwYWJ9iGzDDUaGnq9hgMOGdHGmGkpFBFRy7bMAf31FB-kAFz1mClLE8-LAsksgxYt0U93GkllcrL-4Ls3A5jxk1WtOfROx9GvjVJOXwmTMCvztm5Djv35nC20kiBRX4i60jZZkfwetz-kU7qIhZIN8vn_UtN4EkDXxJXELvnV-hR9GciIG6iEcf0SHOID8msGzWi7B5DjmenL8BC40rspeb4Rrmq8lMJvia00HxhUhdA7TCCdqudM91KnX2tXASA5rMLhycokhXN9lQoEBEnmWFUFwX9LIshmn0lTdRBmfWzSybSmjiAmXg1CgK0SJe2WLKyC4j5b7g748QJgyUJlzGOFM4YuSpNTUkw-11cztcDOHjNRUIU-UzOFAjV4YazCbIbRlmLVlDl1k5V9jDY8fS-ZTy4fJWB6FChQS5ZUqMJVDpjbhL28JKzf1ZnZ1-JdKp2g1aDcbYeO2dX-E1uB-nPiWR8vj4UQeKyQ0Zie6r38BQr3_cw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAc2BGFAj6AgENKncWhxwKNylZVQKXeIq8HqFrUtIdy4hP4Rr4Ej5OGgoSQ4JjEjhKP7Xljz3tGaF9Ug5BXA-2AOJTjnwbc4crnjrE3dQn3XMWAjXzbpI22f9UJOlMs_lQfIl9wg5Fh52sY4M9Sn3yKhjKpgUluQxagr8_61PhKgEV3uYAUCcN0X5kSyPAinYlsY8U9-Vr_q1v6xJrTiNW6nGgJscnHppkmT-XRkJfFyzcdx__8zTJazPAorqUdaAXNqN4qWphSKVxDA8gFeX99q1u1CaBq4iNCy1Xv4Bi3EjWSffMQDj9iA9yA7Jr-o3GWYHCcMj0FvocAGp-rbjfBdcvWkpiP8ZklA-OalDaDKcGZVu54HbWj-sN5w8mOanCECXGJI2mVcmmgANGh52nY2ldMez4XTLmmkxjTC49p31dKay6pAJlAKmVFhKeeMDBwAxV6_Z7aRJhx0JgLOBHcoIuKYsy1Uw_zzbwdCLeInImlYpHpmMNxGt04VWB2Y2jLOG_LIjrMyz-nCh4_lixNDB9nIzmJDSQkJiY1UKqIXGvBX94S1y6i2_xq6y-V9tBc6yKKby6b19toHm6nKYclVBgORmrHwKAh37U9_QNBKf4n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+%2816.93%25%29+Pseudo%E2%80%90Planar+Heterojunction+Organic+Solar+Cells+Enabled+by+Binary+Additives+Strategy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Xinkang&rft.au=Zhang%2C+Lifu&rft.au=Hu%2C+Lei&rft.au=Xie%2C+Zijun&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102291&rft.externalDBID=10.1002%252Fadfm.202102291&rft.externalDocID=ADFM202102291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |