High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy

Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 33
Main Authors Wang, Xinkang, Zhang, Lifu, Hu, Lei, Xie, Zijun, Mao, Houdong, Tan, Licheng, Zhang, Youdi, Chen, Yiwang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202102291

Cover

Abstract Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. 1,10‐decanediol is introduced as an additive that can improve the crystalline of polymer and protect PM6 film from less erosion during the sequential deposition (SD) process. The strategy is applied to fabricate pseudo‐planar heterojunction (PPHJ) organic solar cells with ideal vertical phase separation through SD processing. The champion PPHJ device demonstrates a high efficiency (16.93%) and fill factor (77.45%).
AbstractList Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative.
Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6 + DDO/Y6 + CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative.
Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar cells (OSCs). Here, the above problem is improved by synergistically combining the sequential deposition (SD) method and the additive general strategy. By adding one additive 1,10‐decanediol (DDO) into PM6 and another 1‐chloronaphthalene (CN) into Y6, the molecule orientation of PM6 and the crystallite texture of the Y6 all become order. During the SD processing, a vertical phase separation OSCs device is formed where the donor enrichment at the anode and acceptor enrichment at the cathode. In comparison, the SD OSCs device with only CN additive still displays the bulk‐heterojunction morphology similar to PM6:Y6 blend film. The morphology with vertical phase distribution can not only inhibit charge recombination but also facilitate charge collection, finally enhancing the fill factor (FF) and photocurrent in binary additives SD‐type OSCs. As a result, the binary additives SD‐type OSCs with blend film PM6+DDO/Y6+CN exhibit a high FF of 77.45%, enabling a power conversion efficiency as high as 16.93%. This work reveals a simple but effective approach for boosting high‐efficiency OSCs with ideal morphologies and demonstrates that the additive is a promising processing alternative. 1,10‐decanediol is introduced as an additive that can improve the crystalline of polymer and protect PM6 film from less erosion during the sequential deposition (SD) process. The strategy is applied to fabricate pseudo‐planar heterojunction (PPHJ) organic solar cells with ideal vertical phase separation through SD processing. The champion PPHJ device demonstrates a high efficiency (16.93%) and fill factor (77.45%).
Author Mao, Houdong
Tan, Licheng
Chen, Yiwang
Xie, Zijun
Zhang, Lifu
Wang, Xinkang
Hu, Lei
Zhang, Youdi
Author_xml – sequence: 1
  givenname: Xinkang
  surname: Wang
  fullname: Wang, Xinkang
  organization: Nanchang University
– sequence: 2
  givenname: Lifu
  surname: Zhang
  fullname: Zhang, Lifu
  organization: Nanchang University
– sequence: 3
  givenname: Lei
  surname: Hu
  fullname: Hu, Lei
  organization: Nanchang University
– sequence: 4
  givenname: Zijun
  surname: Xie
  fullname: Xie, Zijun
  organization: Jiangxi Normal University
– sequence: 5
  givenname: Houdong
  surname: Mao
  fullname: Mao, Houdong
  organization: Nanchang University
– sequence: 6
  givenname: Licheng
  surname: Tan
  fullname: Tan, Licheng
  organization: Nanchang University
– sequence: 7
  givenname: Youdi
  surname: Zhang
  fullname: Zhang, Youdi
  email: ydzhang2007@ncu.edu.cn
  organization: Nanchang University
– sequence: 8
  givenname: Yiwang
  orcidid: 0000-0003-4709-7623
  surname: Chen
  fullname: Chen, Yiwang
  email: ywchen@ncu.edu.cn
  organization: Jiangxi Normal University
BookMark eNqFkE1LAzEQhoNUsK1ePQdE0ENrPrb7cay1tUKlhSp4W7LJpKZsszXZKnvzJ_gb_SVuqVQQxNMMzPvMzPu2UMMWFhA6paRLCWFXQulVlxFGCWMJPUBNGtKwwwmLG_uePh2hlvdLQmgU8aCJ3Ngsnj_fP4ZaG2nAygpf0LCb8PNLPPOwUUU9nOXCCofHUIIrlhsrS1NYPHULYY3E8yKvhwPIc4-HVmQ5KJxV-NrUTIX7SpnSvILH89KJEhbVMTrUIvdw8l3b6HE0fBiMO5Pp7d2gP-lIHnPaUWESZqrHKNUR5zqiEQeheZBJAUxKQXpccqGDAEDrTIWSBoSHShEZxVySmLfR2W7v2hUvG_Bluiw2ztYnU9YLaZwkhES1KtippCu8d6BTaUqxNVi_a_KUknSbbrpNN92nW2PdX9jamVVt-G8g2QFvJofqH3Xavxnd_7BfzPaRJQ
CitedBy_id crossref_primary_10_1038_s41467_023_41978_0
crossref_primary_10_1039_D1TC06096A
crossref_primary_10_1039_D2MH00376G
crossref_primary_10_1002_ange_202206311
crossref_primary_10_3390_en17112623
crossref_primary_10_3390_en17164022
crossref_primary_10_1002_aenm_202400013
crossref_primary_10_1002_solr_202200682
crossref_primary_10_1039_D3SE00703K
crossref_primary_10_1039_D3TC03641C
crossref_primary_10_1021_acsami_2c04997
crossref_primary_10_1021_acssuschemeng_2c05385
crossref_primary_10_1002_advs_202201876
crossref_primary_10_1002_solr_202200957
crossref_primary_10_1002_solr_202300136
crossref_primary_10_1002_aenm_202200044
crossref_primary_10_1002_aenm_202200165
crossref_primary_10_1002_smll_202104215
crossref_primary_10_1002_adfm_202205115
crossref_primary_10_1021_acsami_3c18894
crossref_primary_10_1002_solr_202100480
crossref_primary_10_1002_adma_202309379
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1039_D2TC00024E
crossref_primary_10_1002_ange_202421953
crossref_primary_10_1063_5_0139457
crossref_primary_10_1002_adfm_202209152
crossref_primary_10_1038_s41578_023_00642_1
crossref_primary_10_1039_D3CC03827K
crossref_primary_10_3390_molecules27196363
crossref_primary_10_1007_s11771_024_5839_5
crossref_primary_10_1016_j_cej_2022_138146
crossref_primary_10_1002_adma_202208279
crossref_primary_10_1002_adfm_202500975
crossref_primary_10_1002_adma_202208997
crossref_primary_10_1016_j_cej_2022_136368
crossref_primary_10_1002_solr_202200962
crossref_primary_10_1002_aenm_202203241
crossref_primary_10_1002_adma_202108749
crossref_primary_10_1021_acsaem_3c00068
crossref_primary_10_1002_anie_202213869
crossref_primary_10_1039_D3EE00090G
crossref_primary_10_1016_j_wees_2024_04_001
crossref_primary_10_1002_marc_202400458
crossref_primary_10_1021_acsami_4c21699
crossref_primary_10_1039_D1TA08893A
crossref_primary_10_1002_anie_202421953
crossref_primary_10_1039_D2TC02689A
crossref_primary_10_1002_adfm_202409315
crossref_primary_10_1002_solr_202300228
crossref_primary_10_1039_D2TA02914F
crossref_primary_10_1002_adfm_202109735
crossref_primary_10_1002_adma_202308909
crossref_primary_10_1039_D2TA04776D
crossref_primary_10_1039_D5TC00056D
crossref_primary_10_1002_solr_202200381
crossref_primary_10_1016_j_nanoen_2024_110133
crossref_primary_10_1021_acsami_1c17199
crossref_primary_10_1002_solr_202201076
crossref_primary_10_1007_s11426_022_1300_1
crossref_primary_10_1002_adfm_202206707
crossref_primary_10_1002_aenm_202203697
crossref_primary_10_1016_j_cej_2022_137621
crossref_primary_10_1039_D4TA04725G
crossref_primary_10_1002_adma_202313105
crossref_primary_10_1002_advs_202414712
crossref_primary_10_1002_anie_202402831
crossref_primary_10_1039_D3TC02562D
crossref_primary_10_1002_ange_202213869
crossref_primary_10_1002_adfm_202202103
crossref_primary_10_1002_smtd_202301803
crossref_primary_10_1016_j_surfin_2024_104686
crossref_primary_10_1039_D4EE01522C
crossref_primary_10_1002_adfm_202208001
crossref_primary_10_1002_idm2_12129
crossref_primary_10_1002_ange_202402831
crossref_primary_10_1002_smll_202404734
crossref_primary_10_1002_anie_202206311
crossref_primary_10_3390_polym14102058
crossref_primary_10_1002_solr_202200076
crossref_primary_10_1002_aenm_202103371
crossref_primary_10_1016_j_cej_2022_139496
crossref_primary_10_1002_aenm_202402517
crossref_primary_10_1016_j_cej_2024_158635
crossref_primary_10_1002_adfm_202200478
crossref_primary_10_1002_pssa_202400654
crossref_primary_10_1039_D2EE02392J
crossref_primary_10_1002_marc_202200345
crossref_primary_10_1002_adfm_202202011
crossref_primary_10_1002_adma_202308159
crossref_primary_10_1039_D4TA00594E
Cites_doi 10.1021/acsami.9b15753
10.1016/j.joule.2019.01.004
10.1038/nphoton.2012.11
10.1039/C9EE02531F
10.1002/adma.201904215
10.1002/aenm.201703147
10.1002/adom.201900152
10.1039/C9TA09799F
10.1038/natrevmats.2018.3
10.1002/adma.201305196
10.1021/acsami.0c02843
10.1002/adma.201903441
10.1016/j.joule.2020.07.028
10.1002/adma.201802499
10.1038/nature11476
10.1002/adma.201901872
10.1021/acsenergylett.0c00939
10.1002/adma.201504014
10.1038/ncomms4406
10.1063/1.96937
10.1002/adma.201502773
10.1002/smtd.202000687
10.1021/nl202320r
10.1016/j.scib.2020.01.001
10.1002/aenm.201300626
10.1016/j.joule.2019.12.004
10.1002/aelm.201600359
10.1002/adma.201707114
10.1016/j.nanoen.2020.104447
10.1039/C0CS00045K
10.1039/C8EE02560F
10.1021/acsenergylett.0c01927
10.1021/acsami.7b15113
10.1002/adfm.201909760
10.1039/C7TA00211D
10.1021/acs.chemmater.0c00459
10.1002/adfm.202000456
10.1021/acsami.9b16784
10.1002/advs.201900565
10.1002/adma.201808153
10.1016/S1369-7021(12)70019-6
10.1002/adfm.201604906
10.1016/j.joule.2019.09.010
10.1002/adma.201800613
10.1021/acsenergylett.9b01447
10.1039/C5TA09701K
10.1039/C9TA00164F
10.1002/aenm.202003141
10.1002/adma.201804657
10.1021/acsnano.8b00439
10.1038/s41467-020-16621-x
10.1002/aenm.202003390
10.1021/acs.chemrev.7b00535
10.1021/acsenergylett.0c02230
10.1038/ncomms6293
10.1002/aenm.201600414
10.1038/s41467-019-10351-5
10.1021/acsenergylett.9b02842
10.1002/smtd.202000418
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202102291
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202102291
ADFM202102291
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51763017
– fundername: National Natural Science Foundation of China
  funderid: 51673091; 51833004
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3831-d696bd5211f733f7173eaf34bcae2cca053c3af44eeffbd6c14036dd0c783c083
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:43:49 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 04:12:32 EDT 2025
Wed Jan 22 16:27:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3831-d696bd5211f733f7173eaf34bcae2cca053c3af44eeffbd6c14036dd0c783c083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4709-7623
PQID 2561899007
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2561899007
crossref_citationtrail_10_1002_adfm_202102291
crossref_primary_10_1002_adfm_202102291
wiley_primary_10_1002_adfm_202102291_ADFM202102291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2019; 4
2019; 3
2019; 6
2019; 31
2019; 11
2017; 27
2019; 10
2019; 12
2011; 40
2014; 26
2011; 11
2020; 12
2020; 11
2012; 15
2020; 32
2012; 488
2016; 4
2016; 6
2020; 6
2018; 8
2020; 5
2018; 3
2020; 4
2014; 5
2015; 27
2014; 4
2016; 2
2021; 11
2020; 30
2018; 118
1986; 48
2020; 69
2018; 30
2020; 65
2012; 6
2018; 12
2016; 28
2018; 10
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3163
  year: 2011
  publication-title: Nano Lett.
– volume: 12
  start-page: 384
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 7437
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2004
  year: 2020
  publication-title: Joule
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 488
  start-page: 304
  year: 2012
  publication-title: Nature
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 118
  start-page: 3447
  year: 2018
  publication-title: Chem. Rev.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3637
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 40
  start-page: 1185
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 3
  start-page: 3020
  year: 2019
  publication-title: Joule
– volume: 5
  start-page: 3406
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 4
  start-page: 2169
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 69
  year: 2020
  publication-title: Nano Energy
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 32
  start-page: 3254
  year: 2020
  publication-title: Chem. Mater.
– volume: 11
  start-page: 2855
  year: 2020
  publication-title: Nat. Commun.
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 5
  start-page: 2087
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 36
  year: 2012
  publication-title: Mater. Today
– volume: 12
  start-page: 3225
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2466
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 407
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 367
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 3068
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5868
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 6
  start-page: 9
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 2515
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3589
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 979
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 183
  year: 1986
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 4440
  year: 2018
  publication-title: ACS Nano
– volume: 28
  start-page: 967
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_7_22_1
  doi: 10.1021/acsami.9b15753
– ident: e_1_2_7_9_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_7_4_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_7_10_1
  doi: 10.1039/C9EE02531F
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201904215
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.201703147
– ident: e_1_2_7_44_1
  doi: 10.1002/adom.201900152
– ident: e_1_2_7_38_1
  doi: 10.1039/C9TA09799F
– ident: e_1_2_7_2_1
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201305196
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.0c02843
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201903441
– ident: e_1_2_7_57_1
  doi: 10.1016/j.joule.2020.07.028
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201802499
– ident: e_1_2_7_5_1
  doi: 10.1038/nature11476
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201901872
– ident: e_1_2_7_47_1
  doi: 10.1021/acsenergylett.0c00939
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201504014
– ident: e_1_2_7_29_1
  doi: 10.1038/ncomms4406
– ident: e_1_2_7_28_1
  doi: 10.1063/1.96937
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201502773
– ident: e_1_2_7_39_1
  doi: 10.1002/smtd.202000687
– ident: e_1_2_7_46_1
  doi: 10.1021/nl202320r
– ident: e_1_2_7_18_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.201300626
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joule.2019.12.004
– ident: e_1_2_7_45_1
  doi: 10.1002/aelm.201600359
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201707114
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2020.104447
– ident: e_1_2_7_6_1
  doi: 10.1039/C0CS00045K
– ident: e_1_2_7_16_1
  doi: 10.1039/C8EE02560F
– ident: e_1_2_7_59_1
  doi: 10.1021/acsenergylett.0c01927
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.7b15113
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201909760
– ident: e_1_2_7_43_1
  doi: 10.1039/C7TA00211D
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.chemmater.0c00459
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202000456
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.9b16784
– ident: e_1_2_7_40_1
  doi: 10.1002/advs.201900565
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201808153
– ident: e_1_2_7_3_1
  doi: 10.1016/S1369-7021(12)70019-6
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201604906
– ident: e_1_2_7_56_1
  doi: 10.1016/j.joule.2019.09.010
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201800613
– ident: e_1_2_7_48_1
  doi: 10.1021/acsenergylett.9b01447
– ident: e_1_2_7_15_1
  doi: 10.1039/C5TA09701K
– ident: e_1_2_7_35_1
  doi: 10.1039/C9TA00164F
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.202003141
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201804657
– ident: e_1_2_7_41_1
  doi: 10.1021/acsnano.8b00439
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-020-16621-x
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202003390
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.7b00535
– ident: e_1_2_7_49_1
  doi: 10.1021/acsenergylett.0c02230
– ident: e_1_2_7_37_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201600414
– ident: e_1_2_7_58_1
  doi: 10.1038/s41467-019-10351-5
– ident: e_1_2_7_50_1
  doi: 10.1021/acsenergylett.9b02842
– ident: e_1_2_7_33_1
  doi: 10.1002/smtd.202000418
SSID ssj0017734
Score 2.6247983
Snippet Acquiring precision adjustable morphology of the blend films to improve the efficiency of charge separation and collection is a constant goal of organic solar...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Additives
binary additives
bulk heterojunction morphology
Charge efficiency
Crystallites
Efficiency
Energy conversion efficiency
Heterojunctions
Materials science
Morphology
organic solar cells
Phase distribution
Phase separation
Photoelectric effect
Photoelectric emission
Photovoltaic cells
sequential deposition
Solar cells
Vertical distribution
vertical phase separation
Vertical separation
Title High‐Efficiency (16.93%) Pseudo‐Planar Heterojunction Organic Solar Cells Enabled by Binary Additives Strategy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102291
https://www.proquest.com/docview/2561899007
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtxAkO7IhCQT6AgEPaOovTHEsXVUhFCKjUW-QtB6ha1LSHcuIReEaeBI-dpC0SQoJbojhR4vHyTzzzGaFzEQUhj4LEATiU49cD7nDlc0fbm7qEe65ikI3cu6Pdvn87CAZLWfyWD1H8cIOeYcZr6OCMp9UFNJTJBDLJjcti0teJRwGe33oo-FEkDO2yMiUQ4EUGObWx5lZXb1-dlRZSc1mwmhmns41Y_q420OSlMpvyinj7hnH8z8fsoK1MjuKGbT-7aE2N9tDmEqRwH00gFOTz_aNtYBOQqYmvCK1E3sU1vk_VTI71Rdj7iE1wF4Jrxs96rgR7Y5voKfAj-M-4qYbDFLdNspbEfI5vTC4wbkhpAphSnKFy5weo32k_NbtOtlODI7SHSxxJI8qlVgIkCT0vgZV9xRLP54IpV7cRbXnhscT3lUoSLqkASiCVsibCuie0CjxE66PxSB0hzDgg5gJOBNfioqYYc83Iw3w9bAfCLSEnt1QsMow57KYxjC2A2Y2hLuOiLkvosij_agEeP5Ys54aPs46cxloREu2SaiVVQq6x4C9PiRutTq84O_7LTSdoA45tmGEZrU8nM3Wqpc-Un5nm_QWA-fta
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YXagL30YUdRYadVFg-qRLREhVIEYhYdfMqwslYHgscOUn-I1-iXOnD8DEmOiy7UzTzp3HuXPvOYPQGfcdj_lOZIA4lGGXHWYwaTND2ds1CbNMSYGN3Gy5Qce-6zppNiFwYWJ9iGzDDUaGnq9hgMOGdHGmGkpFBFRy7bMAf31FB-kAFz1mClLE8-LAsksgxYt0U93GkllcrL-4Ls3A5jxk1WtOfROx9GvjVJOXwmTMCvztm5Djv35nC20kiBRX4i60jZZkfwetz-kU7qIhZIN8vn_UtN4EkDXxJXELvnV-hR9GciIG6iEcf0SHOID8msGzWi7B5DjmenL8BC40rspeb4Rrmq8lMJvia00HxhUhdA7TCCdqudM91KnX2tXASA5rMLhycokhXN9lQoEBEnmWFUFwX9LIshmn0lTdRBmfWzSybSmjiAmXg1CgK0SJe2WLKyC4j5b7g748QJgyUJlzGOFM4YuSpNTUkw-11cztcDOHjNRUIU-UzOFAjV4YazCbIbRlmLVlDl1k5V9jDY8fS-ZTy4fJWB6FChQS5ZUqMJVDpjbhL28JKzf1ZnZ1-JdKp2g1aDcbYeO2dX-E1uB-nPiWR8vj4UQeKyQ0Zie6r38BQr3_cw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAc2BGFAj6AgENKncWhxwKNylZVQKXeIq8HqFrUtIdy4hP4Rr4Ej5OGgoSQ4JjEjhKP7Xljz3tGaF9Ug5BXA-2AOJTjnwbc4crnjrE3dQn3XMWAjXzbpI22f9UJOlMs_lQfIl9wg5Fh52sY4M9Sn3yKhjKpgUluQxagr8_61PhKgEV3uYAUCcN0X5kSyPAinYlsY8U9-Vr_q1v6xJrTiNW6nGgJscnHppkmT-XRkJfFyzcdx__8zTJazPAorqUdaAXNqN4qWphSKVxDA8gFeX99q1u1CaBq4iNCy1Xv4Bi3EjWSffMQDj9iA9yA7Jr-o3GWYHCcMj0FvocAGp-rbjfBdcvWkpiP8ZklA-OalDaDKcGZVu54HbWj-sN5w8mOanCECXGJI2mVcmmgANGh52nY2ldMez4XTLmmkxjTC49p31dKay6pAJlAKmVFhKeeMDBwAxV6_Z7aRJhx0JgLOBHcoIuKYsy1Uw_zzbwdCLeInImlYpHpmMNxGt04VWB2Y2jLOG_LIjrMyz-nCh4_lixNDB9nIzmJDSQkJiY1UKqIXGvBX94S1y6i2_xq6y-V9tBc6yKKby6b19toHm6nKYclVBgORmrHwKAh37U9_QNBKf4n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+%2816.93%25%29+Pseudo%E2%80%90Planar+Heterojunction+Organic+Solar+Cells+Enabled+by+Binary+Additives+Strategy&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Xinkang&rft.au=Zhang%2C+Lifu&rft.au=Hu%2C+Lei&rft.au=Xie%2C+Zijun&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102291&rft.externalDBID=10.1002%252Fadfm.202102291&rft.externalDocID=ADFM202102291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon