Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation
Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra u...
Saved in:
| Published in | Rapid communications in mass spectrometry Vol. 39; no. S1; pp. e9120 - n/a |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-4198 1097-0231 1097-0231 |
| DOI | 10.1002/rcm.9120 |
Cover
| Abstract | Rationale
Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.
Architectures
Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.
Conclusions
In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks. |
|---|---|
| AbstractList | Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.
Recent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.
In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks. Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks. Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.RATIONALEStructure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.Recent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.ARCHITECTURESRecent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.CONCLUSIONSIn principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks. Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks. |
| Author | Bittremieux, Wout Laukens, Kris De Vijlder, Thomas Liu, Youzhong Heyndrickx, Wouter |
| Author_xml | – sequence: 1 givenname: Youzhong orcidid: 0000-0002-1449-3841 surname: Liu fullname: Liu, Youzhong email: yliu186@its.jnj.com organization: Janssen Research & Development – sequence: 2 givenname: Thomas orcidid: 0000-0002-8692-425X surname: De Vijlder fullname: De Vijlder, Thomas organization: Janssen Research & Development – sequence: 3 givenname: Wout surname: Bittremieux fullname: Bittremieux, Wout organization: University of California San Diego, La Jolla – sequence: 4 givenname: Kris orcidid: 0000-0002-8217-2564 surname: Laukens fullname: Laukens, Kris organization: University of Antwerp – sequence: 5 givenname: Wouter surname: Heyndrickx fullname: Heyndrickx, Wouter organization: Janssen Research & Development |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33955607$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1qVDEUB_AgFTutgk8gATft4k5Pkvu5lEGr0EGwug6Z3HPrLfm45oMyC8FH8Bl9kt6ZqV0IdpXNLyf_888JOXLeISGvGSwZAL8I2i47xuEZWTDomgK4YEdkAV3FipJ17TE5ifEWgLGKwwtyLERXVTU0C_JzlUNAl6hyPR1yygFpjzhRgyq40d1QZW58GNN3G-ngA00zREutipHGCXUK3mIKW3q2vr5YX5__-fV7oyL2NFplDLXeoM4GaUwh6_14NFmPvUqjdy_J80GZiK8ezlPy7cP7r6uPxdXny0-rd1eFFq2Aom576EsYNqzZMBADK4eqrLUWbMBmJhzalmtWt7VoqoFrACxF1zQ9lKLXgotTcn6Ym92ktndzMDmF0aqwlQzkrkI5Vyh3Fc727GCn4H9kjEnaMWo0Rjn0OUpecV5zqMtupm__obc-BzdvIgXncybWip1686DyxmL_-PLfT5jB8gB08DEGHKQe076fFNRonoj4eOGJbYoDvRsNbv_r5JfVeu_vASWstWE |
| CitedBy_id | crossref_primary_10_1007_s11306_022_01947_y crossref_primary_10_1134_S1061934824020126 crossref_primary_10_1021_acsestwater_3c00616 crossref_primary_10_1002_bmc_5511 crossref_primary_10_3390_biom11121793 crossref_primary_10_1016_j_chroma_2021_462492 crossref_primary_10_1007_s11306_022_01963_y crossref_primary_10_1002_bmc_5573 crossref_primary_10_1016_j_xcrp_2022_100978 crossref_primary_10_31857_S0044450224020029 crossref_primary_10_1007_s11831_023_09936_7 crossref_primary_10_1021_acs_analchem_4c02426 crossref_primary_10_1021_acs_est_4c10498 crossref_primary_10_1002_rcm_9304 crossref_primary_10_1021_acsmeasuresciau_3c00060 crossref_primary_10_1021_acs_analchem_4c03608 crossref_primary_10_1186_s13321_024_00858_5 crossref_primary_10_1186_s13321_021_00558_4 crossref_primary_10_1128_msystems_00726_21 |
| Cites_doi | 10.3390/metabo9080160 10.1007/s11306-020-01726-7 10.1021/acs.analchem.0c01450 10.1016/S0003-2670(01)00910-2 10.1021/ci990313h 10.1038/s41598-019-42777-8 10.1021/ci060155b 10.1371/journal.pcbi.1008724 10.1371/journal.pone.0226770 10.1186/s13321-016-0116-8 10.1007/978-3-540-45167-9_41 10.1007/s10115-013-0676-0 10.1093/nar/gkz1019 10.3389/fenvs.2015.00080 10.1021/acs.analchem.8b05405 10.1002/mas.21551 10.1088/2632-2153/aba947 10.1093/bioinformatics/btw246 10.1002/rcm.6340 10.1021/cr3004339 10.3390/metabo3030517 10.1093/nar/gkn194 10.1039/D0CP00305K 10.1186/s13321-020-00428-5 10.1093/nar/gky1033 10.1186/s13321-020-00445-4 10.1021/acscentsci.7b00512 10.1145/3219819.3219980 10.1016/j.trac.2019.01.002 10.1039/C8FD00235E 10.1039/D0SC03115A 10.1002/mas.21489 10.1038/nbt.3597 10.1038/s41587-019-0224-x 10.1186/s13321-016-0148-0 10.1039/C6RA25007F 10.1021/acscentsci.7b00572 10.1016/j.trac.2019.115686 10.1093/bib/bby066 10.1021/acs.jcim.8b00803 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2020.2990375 10.1021/ci100050t 10.1111/j.2517-6161.1996.tb02080.x 10.1080/17460441.2018.1542428 10.1016/j.drudis.2018.01.039 10.3390/metabo9040072 10.1007/s11306-010-0198-7 10.1145/2939672.2939754 10.1093/bioinformatics/bty252 10.1073/pnas.1509788112 10.1002/mas.21535 10.1002/jms.1777 10.1021/acs.jcim.7b00087 10.1109/IJCNN.2019.8852155 10.1039/C8SC04175J 10.1080/13543776.2018.1475560 10.1006/abio.2001.5513 10.1016/j.aca.2017.12.034 10.1038/s41587-020-0740-8 10.1039/C8SC00148K 10.1021/acs.jcim.7b00146 10.1093/bioinformatics/btz319 10.1371/journal.pcbi.1006089 10.1016/j.ymeth.2014.08.005 10.1038/s42256-020-00234-6 10.1023/A:1007379606734 10.1016/j.trac.2015.04.002 10.1073/pnas.1608041113 10.1038/s41592-020-0942-5 10.1080/17460441.2018.1465407 10.1021/acsmedchemlett.0c00088 10.1093/bioinformatics/bts194 10.1186/s13321-016-0174-y 10.1186/s13321-019-0376-1 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd 2021 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 JQ2 L7M 7X8 ADTOC UNPAY |
| DOI | 10.1002/rcm.9120 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database ProQuest Computer Science Collection Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1097-0231 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/rcm.9120 33955607 10_1002_rcm_9120 RCM9120 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 ZCG ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY AIQQE CITATION NPM 7SR 7U5 8BQ 8FD JG9 JQ2 L7M 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3830-68d0d40fb17b103f14f546cc31fe7c3820882c1686375f2c00e43977d043dc323 |
| IEDL.DBID | UNPAY |
| ISSN | 0951-4198 1097-0231 |
| IngestDate | Wed Oct 01 16:16:35 EDT 2025 Fri Jul 11 07:06:45 EDT 2025 Sat Jul 12 02:33:28 EDT 2025 Sun May 11 01:41:25 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Wed Oct 29 21:09:17 EDT 2025 Fri May 09 09:30:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S1 |
| Language | English |
| License | 2021 John Wiley & Sons Ltd. public-domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3830-68d0d40fb17b103f14f546cc31fe7c3820882c1686375f2c00e43977d043dc323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8692-425X 0000-0002-8217-2564 0000-0002-1449-3841 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rcm.9120 |
| PMID | 33955607 |
| PQID | 3228821839 |
| PQPubID | 1016428 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1002_rcm_9120 proquest_miscellaneous_2522620649 proquest_journals_3228821839 pubmed_primary_33955607 crossref_citationtrail_10_1002_rcm_9120 crossref_primary_10_1002_rcm_9120 wiley_primary_10_1002_rcm_9120_RCM9120 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Bognor Regis |
| PublicationSubtitle | RCM |
| PublicationTitle | Rapid communications in mass spectrometry |
| PublicationTitleAlternate | Rapid Commun Mass Spectrom |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2019; 91 2013; 3 2015; 71 2019; 11 2019; 10 2019; 59 2008; 36 2020; 17 2016; 32 2020; 16 2020; 15 2020; 12 2020; 11 2016; 34 2019; 121 2020; 8 2018; 9 2020; 2 2018; 4 2020; 1 2019; 20 2017; 36 2017; 1037 2020; 92 2002; 301 2016; 113 2020; 48 2013; 113 2012; 28 2012; 26 2018; 34 2018; 37 2019; 112 2010; 6 2019; 9 2018; 28 2012 2019; 35 2019; 37 2009 2020; 39 2008 1997; 28 2003 2018; 23 2014; 41 1996; 58 2001; 446 2010; 45 2015; 69 2015; 28 2016; 3 2006; 46 2020 2015; 112 2021; 17 2017; 57 2019; 47 2000; 40 2019 2018 2017 2019; 218 2016 2015 2014 2020; 22 2013 2016; 8 2018; 14 2010; 50 2018; 13 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 Duvenaud DK (e_1_2_10_70_1) 2015; 28 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Todeschini R (e_1_2_10_32_1) 2008 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 Hwang K (e_1_2_10_92_1) 2017 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 45 start-page: 703 issue: 7 year: 2010 end-page: 714 article-title: MassBank: A public repository for sharing mass spectral data for life sciences publication-title: J Mass Spectrom – volume: 218 start-page: 284 issue: 0 year: 2019 end-page: 302 article-title: Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi‐automated annotation from MS/MS spectra publication-title: Faraday Discuss – volume: 36 start-page: 624 issue: 5 year: 2017 end-page: 633 article-title: Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data publication-title: Mass Spectrom Rev – volume: 59 start-page: 914 issue: 2 year: 2019 end-page: 923 article-title: Identifying structure–property relationships through SMILES syntax analysis with self‐attention mechanism publication-title: J Chem Inf Model – volume: 4 start-page: 268 issue: 2 year: 2018 end-page: 276 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Cent Sci – volume: 41 start-page: 559 issue: 3 year: 2014 end-page: 590 article-title: EvoMiner: Frequent subtree mining in phylogenetic databases publication-title: Knowl Inf Syst – volume: 13 start-page: 579 issue: 7 year: 2018 end-page: 582 article-title: Advancing drug discovery via GPU‐based deep learning publication-title: Expert Opin Drug Discovery – volume: 57 start-page: 2490 issue: 10 year: 2017 end-page: 2504 article-title: Demystifying multitask deep neural networks for quantitative structure–activity relationships publication-title: J Chem Inf Model – volume: 113 start-page: 13738 issue: 48 year: 2016 end-page: 13743 article-title: Topic modeling for untargeted substructure exploration in metabolomics publication-title: Proc Natl Acad Sci – volume: 3 year: 2016 article-title: DeepTox: Toxicity prediction using deep learning publication-title: Front Environ Sci – start-page: 567 year: 2003 end-page: 580 – volume: 12 issue: 1 year: 2020 article-title: Industry‐scale application and evaluation of deep learning for drug target prediction publication-title: J Chem – volume: 37 start-page: 607 issue: 5 year: 2018 end-page: 629 article-title: A tutorial in small molecule identification via electrospray ionization‐mass spectrometry: The practical art of structural elucidation publication-title: Mass Spectrom Rev – volume: 37 start-page: 1038 issue: 9 year: 2019 end-page: 1040 article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors publication-title: Nat Biotechnol – start-page: 248 year: 2009 end-page: 255 – volume: 112 start-page: 12580 issue: 41 year: 2015 end-page: 12585 article-title: Searching molecular structure databases with tandem mass spectra using CSI:FingerID publication-title: Proc Natl Acad Sci U S A – year: 2018 – volume: 6 start-page: 322 issue: 2 year: 2010 end-page: 333 article-title: Decision tree supported substructure prediction of metabolites from GC‐MS profiles publication-title: Metabolomics – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc B Methodol – year: 2014 – volume: 34 start-page: i323 issue: 13 year: 2018 end-page: i332 article-title: SIMPLE: Sparse interaction model over peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra publication-title: Bioinformatics – volume: 46 start-page: 2423 issue: 6 year: 2006 end-page: 2431 article-title: Novel 2D fingerprints for ligand‐based virtual screening publication-title: J Chem Inf Model – start-page: 1263 year: 2017 end-page: 1272 – volume: 301 start-page: 298 issue: 2 year: 2002 end-page: 307 article-title: Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry publication-title: Anal Biochem – volume: 92 start-page: 8649 issue: 13 year: 2020 end-page: 8653 article-title: Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks publication-title: Anal Chem – volume: 3 start-page: 517 issue: 3 year: 2013 end-page: 538 article-title: The critical assessment of small molecule identification (CASMI): Challenges and solutions publication-title: Metabolites – volume: 11 start-page: 10378 issue: 38 year: 2020 end-page: 10389 article-title: Neuraldecipher – Reverse‐engineering extended‐connectivity fingerprints (ECFPs) to their molecular structures publication-title: Chem Sci – volume: 14 issue: 4 year: 2018 article-title: Propagating annotations of molecular networks using in silico fragmentation publication-title: PLoS Comput Biol – volume: 9 issue: 8 year: 2019 article-title: Improved small molecule identification through learning combinations of kernel regression models publication-title: Metabolites – volume: 34 start-page: 828 issue: 8 year: 2016 end-page: 837 article-title: Sharing and community curation of mass spectrometry data with GNPS publication-title: Nat Biotechnol – volume: 69 start-page: 52 year: 2015 end-page: 61 article-title: Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics publication-title: Trends Anal Chem – volume: 71 start-page: 58 year: 2015 end-page: 63 article-title: Molecular fingerprint similarity search in virtual screening publication-title: Methods – volume: 23 start-page: 1241 issue: 6 year: 2018 end-page: 1250 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today – year: 2008 – volume: 12 start-page: 43 issue: 1 year: 2020 article-title: One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome publication-title: J Chem – volume: 7 start-page: 2587 issue: 5 year: 2017 end-page: 2593 article-title: High‐throughput metabolomics enables biomarker discovery in prostate cancer publication-title: RSC Adv – volume: 2 start-page: 629 issue: 10 year: 2020 end-page: 641 article-title: Database‐independent molecular formula annotation using Gibbs sampling through ZODIAC publication-title: Nat Mach Intell – volume: 39 start-page: 462 issue: 4 year: 2020 end-page: 471 article-title: Systematic classification of unknown metabolites using high‐resolution fragmentation mass spectra publication-title: Nat Biotechnol – volume: 28 start-page: 2224 year: 2015 end-page: 2232 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Adv Neural Inf Process Syst – volume: 36 start-page: W481 issue: suppl 2 year: 2008 end-page: W484 article-title: MassTRIX: Mass translator into pathways publication-title: Nucleic Acids Res – volume: 32 start-page: i28 issue: 12 year: 2016 end-page: i36 article-title: Fast metabolite identification with input output kernel regression publication-title: Bioinformatics – year: 2019 – year: 2015 – volume: 28 start-page: 41 issue: 1 year: 1997 end-page: 75 article-title: Multitask learning publication-title: Mach Learn – volume: 10 start-page: 1692 issue: 6 year: 2019 end-page: 1701 article-title: Learning continuous and data‐driven molecular descriptors by translating equivalent chemical representations publication-title: Chem Sci – volume: 28 start-page: 467 issue: 6 year: 2018 end-page: 476 article-title: QSAR modelling: A therapeutic patent review 2010‐present publication-title: Expert Opin Ther Pat – volume: 8 start-page: 36 issue: 1 year: 2016 article-title: Comparing structural fingerprints using a literature‐based similarity benchmark publication-title: J Chem – volume: 8 start-page: 78737 year: 2020 end-page: 78752 article-title: Feature extraction methods in quantitative structure–activity relationship modeling: A comparative study publication-title: IEEE Access – volume: 20 start-page: 2028 issue: 6 year: 2019 end-page: 2043 article-title: Recent advances and prospects of computational methods for metabolite identification: A review with emphasis on machine learning approaches (2019) publication-title: Brief Bioinform – volume: 26 start-page: 2275 issue: 19 year: 2012 end-page: 2286 article-title: Fragmentation trees for the structural characterisation of metabolites publication-title: Rapid Commun Mass Spectrom – volume: 121 year: 2019 article-title: Mass spectrometry‐based structure elucidation of small molecule impurities and degradation products in pharmaceutical development publication-title: TrAC Trends Anal Chem – volume: 446 start-page: 483 issue: 1 year: 2001 end-page: 492 article-title: Feature selection by genetic algorithms for mass spectral classifiers publication-title: Anal Chim Acta – volume: 17 issue: 2 year: 2021 article-title: Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships publication-title: PLoS Comput Biol – volume: 1037 start-page: 13 issue: 2018 year: 2017 end-page: 27 article-title: Dark matter in host‐microbiome metabolomics: Tackling the unknowns–a review publication-title: Anal Chim Acta – volume: 13 start-page: 1075 issue: 12 year: 2018 end-page: 1089 article-title: Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR) publication-title: Expert Opin Drug Discovery – volume: 35 start-page: i164 issue: 14 year: 2019 end-page: i172 article-title: ADAPTIVE: leArning DAta‐dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra publication-title: Bioinformatics – volume: 15 issue: 1 year: 2020 article-title: MESSAR: Automated recommendation of metabolite substructures from tandem mass spectra publication-title: PLoS ONE – volume: 1 issue: 4 year: 2020 article-title: Self‐referencing embedded strings (SELFIES): A 100% robust molecular string representation publication-title: Mach Learn: Sci Technol – volume: 112 start-page: 87 year: 2019 end-page: 101 article-title: Recent applications of high resolution mass spectrometry for the characterization of plant natural products publication-title: TrAC Trends Anal Chem – volume: 17 start-page: 953 issue: 10 year: 2020 end-page: 954 article-title: METLIN MS 2 molecular standards database: A broad chemical and biological resource publication-title: Nat Methods – volume: 8 start-page: 5 issue: 1 year: 2016 article-title: Fragmentation trees reloaded publication-title: J Chem – volume: 113 start-page: 8093 issue: 10 year: 2013 end-page: 8103 article-title: Descriptor selection methods in quantitative structure–activity relationship studies: A review study publication-title: Chem Rev – year: 2012 – start-page: 855 year: 2016 end-page: 864 – volume: 4 start-page: 120 issue: 1 year: 2018 end-page: 131 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci – volume: 9 start-page: 5441 issue: 24 year: 2018 end-page: 5451 article-title: Large‐scale comparison of machine learning methods for drug target prediction on ChEMBL publication-title: Chem Sci – volume: 22 start-page: 8373 issue: 16 year: 2020 end-page: 8390 article-title: Are 2D fingerprints still valuable for drug discovery? publication-title: Phys Chem Chem Phys – volume: 11 start-page: 1496 issue: 8 year: 2020 end-page: 1505 article-title: The advent of generative chemistry publication-title: ACS Med Chem Lett – volume: 8 start-page: 61 issue: 1 year: 2016 article-title: ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy publication-title: J Chem – volume: 40 start-page: 117 issue: 1 year: 2000 end-page: 125 article-title: Pharmacophore fingerprinting. 2. Application to primary library design publication-title: J Chem Inf Comput Sci – volume: 28 start-page: 1705 issue: 13 year: 2012 end-page: 1713 article-title: In silico identification software (ISIS): A machine learning approach to tandem mass spectral identification of lipids publication-title: Bioinformatics – volume: 9 issue: 4 year: 2019 article-title: CFM‐ID 3.0: Significantly improved ESI‐MS/MS prediction and compound identification publication-title: Metabolites – volume: 11 start-page: 54 issue: 1 year: 2019 article-title: Combining structural and bioactivity‐based fingerprints improves prediction performance and scaffold hopping capability publication-title: J Chem – start-page: 1 year: 2019 end-page: 7 – year: 2020 – volume: 9 start-page: 6453 issue: 1 year: 2019 article-title: Revisiting fragmentation reactions of protonated α‐amino acids by high‐resolution electrospray ionization tandem mass spectrometry with collision‐induced dissociation publication-title: Sci Rep – volume: 57 start-page: 2068 issue: 8 year: 2017 end-page: 2076 article-title: Is multitask deep learning practical for Pharma? publication-title: J Chem Inf Model – start-page: 1666 year: 2018 end-page: 1674 – volume: 91 start-page: 5629 issue: 9 year: 2019 end-page: 5637 article-title: Deep MS/MS‐aided structural‐similarity scoring for unknown metabolite identification publication-title: Anal Chem – volume: 47 start-page: D1102 issue: D1 year: 2019 end-page: D1109 article-title: PubChem 2019 update: Improved access to chemical data publication-title: Nucleic Acids Res – volume: 50 start-page: 742 issue: 5 year: 2010 end-page: 754 article-title: Extended‐connectivity fingerprints publication-title: J Chem Inf Model – year: 2017 – volume: 37 start-page: 513 issue: 4 year: 2018 end-page: 532 article-title: Identification of small molecules using accurate mass MS/MS search publication-title: Mass Spectrom Rev – volume: 48 start-page: D440 issue: D1 year: 2020 end-page: D444 article-title: MetaboLights: A resource evolving in response to the needs of its scientific community publication-title: Nucleic Acids Res – volume: 16 start-page: 104 issue: 10 year: 2020 article-title: MetFID: Artificial neural network‐based compound fingerprint prediction for metabolite annotation publication-title: Metabolomics – year: 2013 – ident: e_1_2_10_59_1 doi: 10.3390/metabo9080160 – ident: e_1_2_10_75_1 – ident: e_1_2_10_44_1 doi: 10.1007/s11306-020-01726-7 – ident: e_1_2_10_43_1 doi: 10.1021/acs.analchem.0c01450 – ident: e_1_2_10_29_1 doi: 10.1016/S0003-2670(01)00910-2 – ident: e_1_2_10_36_1 doi: 10.1021/ci990313h – ident: e_1_2_10_48_1 doi: 10.1038/s41598-019-42777-8 – ident: e_1_2_10_34_1 doi: 10.1021/ci060155b – ident: e_1_2_10_62_1 doi: 10.1371/journal.pcbi.1008724 – ident: e_1_2_10_20_1 doi: 10.1371/journal.pone.0226770 – ident: e_1_2_10_18_1 doi: 10.1186/s13321-016-0116-8 – ident: e_1_2_10_47_1 doi: 10.1007/978-3-540-45167-9_41 – ident: e_1_2_10_53_1 doi: 10.1007/s10115-013-0676-0 – ident: e_1_2_10_12_1 doi: 10.1093/nar/gkz1019 – volume-title: Handbook of Molecular Descriptors year: 2008 ident: e_1_2_10_32_1 – ident: e_1_2_10_72_1 – ident: e_1_2_10_80_1 – ident: e_1_2_10_25_1 doi: 10.3389/fenvs.2015.00080 – ident: e_1_2_10_64_1 doi: 10.1021/acs.analchem.8b05405 – ident: e_1_2_10_2_1 doi: 10.1002/mas.21551 – ident: e_1_2_10_39_1 – ident: e_1_2_10_91_1 doi: 10.1088/2632-2153/aba947 – ident: e_1_2_10_58_1 doi: 10.1093/bioinformatics/btw246 – ident: e_1_2_10_78_1 – ident: e_1_2_10_94_1 – ident: e_1_2_10_55_1 – ident: e_1_2_10_51_1 doi: 10.1002/rcm.6340 – ident: e_1_2_10_31_1 doi: 10.1021/cr3004339 – ident: e_1_2_10_100_1 doi: 10.3390/metabo3030517 – ident: e_1_2_10_3_1 doi: 10.1093/nar/gkn194 – ident: e_1_2_10_71_1 – ident: e_1_2_10_38_1 doi: 10.1039/D0CP00305K – ident: e_1_2_10_41_1 doi: 10.1186/s13321-020-00428-5 – ident: e_1_2_10_17_1 doi: 10.1093/nar/gky1033 – ident: e_1_2_10_49_1 doi: 10.1186/s13321-020-00445-4 – ident: e_1_2_10_93_1 – ident: e_1_2_10_24_1 – ident: e_1_2_10_83_1 doi: 10.1021/acscentsci.7b00512 – ident: e_1_2_10_56_1 doi: 10.1145/3219819.3219980 – ident: e_1_2_10_65_1 – ident: e_1_2_10_6_1 doi: 10.1016/j.trac.2019.01.002 – ident: e_1_2_10_22_1 doi: 10.1039/C8FD00235E – ident: e_1_2_10_89_1 doi: 10.1039/D0SC03115A – ident: e_1_2_10_13_1 doi: 10.1002/mas.21489 – ident: e_1_2_10_90_1 – volume-title: Cloud Computing for Machine Learning and Cognitive Applications year: 2017 ident: e_1_2_10_92_1 – ident: e_1_2_10_8_1 doi: 10.1038/nbt.3597 – ident: e_1_2_10_87_1 doi: 10.1038/s41587-019-0224-x – volume: 28 start-page: 2224 year: 2015 ident: e_1_2_10_70_1 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Adv Neural Inf Process Syst – ident: e_1_2_10_50_1 doi: 10.1186/s13321-016-0148-0 – ident: e_1_2_10_4_1 doi: 10.1039/C6RA25007F – ident: e_1_2_10_86_1 doi: 10.1021/acscentsci.7b00572 – ident: e_1_2_10_5_1 doi: 10.1016/j.trac.2019.115686 – ident: e_1_2_10_16_1 doi: 10.1093/bib/bby066 – ident: e_1_2_10_76_1 doi: 10.1021/acs.jcim.8b00803 – ident: e_1_2_10_99_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_10_69_1 doi: 10.1109/ACCESS.2020.2990375 – ident: e_1_2_10_35_1 doi: 10.1021/ci100050t – ident: e_1_2_10_61_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_10_68_1 doi: 10.1080/17460441.2018.1542428 – ident: e_1_2_10_42_1 doi: 10.1016/j.drudis.2018.01.039 – ident: e_1_2_10_97_1 – ident: e_1_2_10_28_1 doi: 10.3390/metabo9040072 – ident: e_1_2_10_30_1 doi: 10.1007/s11306-010-0198-7 – ident: e_1_2_10_82_1 – ident: e_1_2_10_96_1 – ident: e_1_2_10_54_1 doi: 10.1145/2939672.2939754 – ident: e_1_2_10_60_1 doi: 10.1093/bioinformatics/bty252 – ident: e_1_2_10_23_1 doi: 10.1073/pnas.1509788112 – ident: e_1_2_10_67_1 – ident: e_1_2_10_7_1 doi: 10.1002/mas.21535 – ident: e_1_2_10_10_1 doi: 10.1002/jms.1777 – ident: e_1_2_10_45_1 doi: 10.1021/acs.jcim.7b00087 – ident: e_1_2_10_84_1 doi: 10.1109/IJCNN.2019.8852155 – ident: e_1_2_10_88_1 doi: 10.1039/C8SC04175J – ident: e_1_2_10_33_1 doi: 10.1080/13543776.2018.1475560 – ident: e_1_2_10_52_1 doi: 10.1006/abio.2001.5513 – ident: e_1_2_10_14_1 doi: 10.1016/j.aca.2017.12.034 – ident: e_1_2_10_101_1 doi: 10.1038/s41587-020-0740-8 – ident: e_1_2_10_63_1 – ident: e_1_2_10_74_1 doi: 10.1039/C8SC00148K – ident: e_1_2_10_40_1 doi: 10.1021/acs.jcim.7b00146 – ident: e_1_2_10_77_1 doi: 10.1093/bioinformatics/btz319 – ident: e_1_2_10_15_1 doi: 10.1371/journal.pcbi.1006089 – ident: e_1_2_10_85_1 – ident: e_1_2_10_37_1 doi: 10.1016/j.ymeth.2014.08.005 – ident: e_1_2_10_57_1 doi: 10.1038/s42256-020-00234-6 – ident: e_1_2_10_79_1 – ident: e_1_2_10_46_1 doi: 10.1023/A:1007379606734 – ident: e_1_2_10_9_1 doi: 10.1016/j.trac.2015.04.002 – ident: e_1_2_10_19_1 doi: 10.1073/pnas.1608041113 – ident: e_1_2_10_73_1 – ident: e_1_2_10_11_1 doi: 10.1038/s41592-020-0942-5 – ident: e_1_2_10_26_1 doi: 10.1080/17460441.2018.1465407 – ident: e_1_2_10_95_1 – ident: e_1_2_10_81_1 doi: 10.1021/acsmedchemlett.0c00088 – ident: e_1_2_10_98_1 – ident: e_1_2_10_27_1 doi: 10.1093/bioinformatics/bts194 – ident: e_1_2_10_21_1 doi: 10.1186/s13321-016-0174-y – ident: e_1_2_10_66_1 doi: 10.1186/s13321-019-0376-1 |
| SSID | ssj0011520 |
| Score | 2.5617156 |
| Snippet | Rationale
Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing... Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of... Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing... |
| SourceID | unpaywall proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e9120 |
| SubjectTerms | Artificial neural networks Chemical fingerprinting Coding Deep learning Graph theory Machine learning Mass spectrometry Scientific imaging Software Spectra |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUhm0kWfSRpO-m0KKUk7cIz1mPs8bIMHULAXSQNBLIwtiSnobZniMeEFgr9hH5jv6T3WrbDJGkpWRnsK1mPK-tcWTqHkLcaQuNkIqUjmQocqSbCCVLXOCiSBHfAyeqli_CTd3gqj87GZ82uSjwLY_khugU3HBn19xoHeJyUoxvS0CuVDwPGMVxnwqujqeOOOQpwjmVkRBV5CYF1yzvr8lGbcHUmugMvN0mvKhbxt-s4y1aRaz31zB6T87bQdsfJ12G1TIbq-y0-x4fV6gl51CBS-sG60FOyZoot0pu2QnDb5EfD4UTjQlPLQUK1MQvaKE5c0Di7mF9dLr_kJQUMTHF1wuQ0B1xO65OcSIkAWdF34ckoPHn_--cvnDw1LXOoNc2tQq-hlssWszdZpS6t2tMOOZ19_Dw9dBrVBkdBtAux6ES7WrppwvyEuSJlMh1LTynBUuODCUdQr5g38YQ_TrlyXYOgyNeuFFoJLp6R9WJemBeExtCJkNwzRgGSCFQsIXNP6cRoZgBJ9slB24ORaijNUVkjiywZM4-gOSNszj7Z6ywXlsbjHptB6wRRM5DLCL53UFyEkZBF9xg6AP-rxIWZV2XEEcNywHZg89w6T_cSIYIxgEq_T9503vSPEuzXvvFXg-h4GuJ1938NX5INjoLF9Q7NAVmHfjSvAEUtk9f1ePkDAAYZXg priority: 102 providerName: Wiley-Blackwell |
| Title | Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.9120 https://www.ncbi.nlm.nih.gov/pubmed/33955607 https://www.proquest.com/docview/3228821839 https://www.proquest.com/docview/2522620649 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rcm.9120 |
| UnpaywallVersion | publishedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0231 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0231 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011520 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWq6aKwKLS8ppTKRYjHItP4kWSyrEZUFdJUVctIZWUltlMqksyoMyMEEhKfwDfyJdwbOxFtAaGuIiU3N058bZ9rx-cQ8sJAapwPpQwk02kg9VAEaRHaAEWS4AwEWTN1MT6KDyfy3Vl05ifccC-M44foJtywZTT9NTbwmSlcP-9X9_nepa4GKeOQsq_GEWDxHlmdHB3vf2j14yVL3V44pBwFJNOyz_5269Xx6AbIvEvWlvUs-_I5K8ur-LUZgA7uEdUW3f138mmwXOQD_fUaq-Pt3-0-WffYlO67YNogK7beJGujVhLuAfnm2ZxoVhvq2EiosXZGvfbEOc3K8-nlxeJjNaeAhinOU9iKVoDQabOnE8kRwBV9PT7dG5---fn9Bw6jhs4reHNaOa1eSx2rLbq35VJfON2nh2Ry8Pb96DDw-g2BhrwXstKhCY0Mi5wlOQtFwWQRyVhrwQqbgAlHeK9ZPIxFEhVch6FFeJSYUAqjBRePSK-e1vYJoVkEQEUWsbUaMEWqMwnOY21ya5gFTNknr9paVNqTm6PGRqkcLTNX8DkVfs4-2e0sZ47Q4w82220gKN-k5wp6PiguAkpw0V2GCsAVlqy20-VccUSzHFAe2Dx2AdQ9RIg0AniZ9MnzLqL-UYKXTXz81UCdjMZ43Pofb0_JHY6yxc1_mtukB3VonwGWWuQ7kEWc8B3fbH4BJfoe-g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qymJgUd50oIBBiMciM4ntSSZihUZUAzRd9CF1gWQltlMqksyoMyMEEhKf0G_sl3BvnASVlxCrSMm148d1fK5jnwPwxGBonI2l9GSgY0_qsfDi3LceiSThHXSyeuki2Q2nh_Lt0ehoDV62Z2EcP0S34EYjo_5e0wCnBenhD9bQU10O4oBjvH5JhhimECLa67ijEOk4TkbSkZcYWrfMsz4ftikvzkW_AMwr0FtV8_Tzp7QoLmLXevLZvgrv22K7PScfB6tlNtBffmJ0_M96XYONBpSyV86LrsOarW5Ab9Jqwd2Erw2NE0srwxwNCTPWzlkjOnHM0uJ4dnqy_FAuGMJgRgsUtmQlQnNWH-YkVgTMij1P9ofJ_ovzb2c0fxq2KLHarHQivZY5OlvK3hYrfeIEn27B4fbrg8nUa4QbPI0BL4ajY-Mb6edZEGWBL_JA5iMZai2C3EZowgnX6yAchyIa5Vz7viVcFBlfCqMFF7dhvZpVdhNYir2IyUNrNYKJWKcSMw-1yawJLILJPjxru1DphtWcxDUK5fiYucLmVNScfXjUWc4dk8dvbLZaL1DNWF4o_ORhcQlJYhbdY-wA-rWSVna2WihOMJYjvEObO857upcIEY8QV0Z9eNy5019K8LR2jj8aqL1JQte7_2r4EHrTg2RH7bzZfXcPLnPSL643bG7BOvapvY-gapk9qAfPd4sAHX8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD4sK7j64P0yumoU8fLQmTZJb_gksw7rZRbZdWEfhNAm6brYdoadGURB8Cf4G_0lntO0lfWG-FRoT9JcTprvpMn3Adw3GBrniZSeDHTqSZ0ILy1865FIEt5BJ2uWLqY70fa-fHEQHqzBk-4sjOOH6BfcaGQ032sa4HZuitEP1tBjXQ3TgGO8fkqGaUL7-bZ2e-4oRDqOk5F05CWG1h3zrM9HXcqTc9EvAPMsbKzqefbxQ1aWJ7FrM_lMzsPbrthuz8n74WqZD_Wnnxgd_7NeF-BcC0rZU-dFF2HN1pdgY9xpwV2Gzy2NE8tqwxwNCTPWzlkrOnHIsvJwdny0fFctGMJgRgsUtmIVQnPWHOYkVgTMij2a7o2me4-_fflK86dhiwqrzSon0muZo7Ol7G250kdO8OkK7E-evRlve61wg6cx4MVwNDG-kX6RB3Ee-KIIZBHKSGsRFDZGE064XgdREok4LLj2fUu4KDa-FEYLLq7Cej2r7XVgGfYiJo-s1QgmUp1JzDzSJrcmsAgmB_Cw60KlW1ZzEtcoleNj5gqbU1FzDuBubzl3TB6_sdnsvEC1Y3mh8JOHxSUkiVn0j7ED6NdKVtvZaqE4wViO8A5trjnv6V8iRBoirowHcK93p7-U4EHjHH80ULvjKV1v_KvhHTj9emuiXj3feXkTznCSL272a27COnapvYWYapnfbsbOdwweHQM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBVlski7aJu-Mk0a1FL6WHhiPWyPl2FoCIUJpelAuhK2JKchtmfIzFASCOQT8o35ktxryabpi9KVwb6-lqwr6eh1DiGvDQyN86GUgWQ6DaQeiiAtQhugSBLcgSBrpi7G-_HeRH48jA79hBuehXH8EN2EG9aMpr3GCj4zhWvn_eo-3z7V1SBlHIbsK3EEWLxHVib7n3a-tvrxkqXuLBxSjgKSadlnf3j1dn_0C8i8R1aX9Sw7-56V5W382nRAuw-IapPu9p2cDJaLfKDPf2J1_P-8PST3PTalOy6Y1sgdWz8iq6NWEu4xufBsTjSrDXVsJNRYO6Nee-KIZuXR9PR48a2aU0DDFOcpbEUrQOi0OdOJ5Ajgir4bH2yPD95fX15hN2rovIKc08pp9VrqWG3RvS2X-tjpPj0hk90PX0Z7gddvCDSMe2FUOjShkWGRsyRnoSiYLCIZay1YYRMw4QjvNYuHsUiiguswtAiPEhNKYbTg4inp1dParhOaRQBUZBFbqwFTpDqT4DzWJreGWcCUffK2LUWlPbk5amyUytEycwW_U-Hv7JOXneXMEXr8xmazDQTlq_RcQcsHyUVACS66x1AAuMKS1Xa6nCuOaJYDygObZy6Auo8IkUYAL5M-edVF1F9S8KaJjz8aqM-jMV6f_4u3DXKXo2xxs09zk_SgDO0LwFKLfMtXmBtx-x4R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+future+deep+learning+algorithms+for+tandem+mass+spectrometry+%28MS%2FMS%29-based+small+molecule+structure+elucidation&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Liu%2C+Youzhong&rft.au=De+Vijlder%2C+Thomas&rft.au=Bittremieux%2C+Wout&rft.au=Laukens%2C+Kris&rft.date=2025-05-01&rft.eissn=1097-0231&rft.volume=39+Suppl+1&rft.spage=e9120&rft_id=info:doi/10.1002%2Frcm.9120&rft_id=info%3Apmid%2F33955607&rft.externalDocID=33955607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon |