Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation

Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra u...

Full description

Saved in:
Bibliographic Details
Published inRapid communications in mass spectrometry Vol. 39; no. S1; pp. e9120 - n/a
Main Authors Liu, Youzhong, De Vijlder, Thomas, Bittremieux, Wout, Laukens, Kris, Heyndrickx, Wouter
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text
ISSN0951-4198
1097-0231
1097-0231
DOI10.1002/rcm.9120

Cover

Abstract Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
AbstractList Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Recent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.RATIONALEStructure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation.Recent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.ARCHITECTURESRecent early-stage DL frameworks mostly follow a "two-step approach" that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor-specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher-order information from spectra and structure data. For instance, encoding spectra with subtrees and pre-calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search.In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.CONCLUSIONSIn principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
Author Bittremieux, Wout
Laukens, Kris
De Vijlder, Thomas
Liu, Youzhong
Heyndrickx, Wouter
Author_xml – sequence: 1
  givenname: Youzhong
  orcidid: 0000-0002-1449-3841
  surname: Liu
  fullname: Liu, Youzhong
  email: yliu186@its.jnj.com
  organization: Janssen Research & Development
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0002-8692-425X
  surname: De Vijlder
  fullname: De Vijlder, Thomas
  organization: Janssen Research & Development
– sequence: 3
  givenname: Wout
  surname: Bittremieux
  fullname: Bittremieux, Wout
  organization: University of California San Diego, La Jolla
– sequence: 4
  givenname: Kris
  orcidid: 0000-0002-8217-2564
  surname: Laukens
  fullname: Laukens, Kris
  organization: University of Antwerp
– sequence: 5
  givenname: Wouter
  surname: Heyndrickx
  fullname: Heyndrickx, Wouter
  organization: Janssen Research & Development
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33955607$$D View this record in MEDLINE/PubMed
BookMark eNp90c1qVDEUB_AgFTutgk8gATft4k5Pkvu5lEGr0EGwug6Z3HPrLfm45oMyC8FH8Bl9kt6ZqV0IdpXNLyf_888JOXLeISGvGSwZAL8I2i47xuEZWTDomgK4YEdkAV3FipJ17TE5ifEWgLGKwwtyLERXVTU0C_JzlUNAl6hyPR1yygFpjzhRgyq40d1QZW58GNN3G-ngA00zREutipHGCXUK3mIKW3q2vr5YX5__-fV7oyL2NFplDLXeoM4GaUwh6_14NFmPvUqjdy_J80GZiK8ezlPy7cP7r6uPxdXny0-rd1eFFq2Aom576EsYNqzZMBADK4eqrLUWbMBmJhzalmtWt7VoqoFrACxF1zQ9lKLXgotTcn6Ym92ktndzMDmF0aqwlQzkrkI5Vyh3Fc727GCn4H9kjEnaMWo0Rjn0OUpecV5zqMtupm__obc-BzdvIgXncybWip1686DyxmL_-PLfT5jB8gB08DEGHKQe076fFNRonoj4eOGJbYoDvRsNbv_r5JfVeu_vASWstWE
CitedBy_id crossref_primary_10_1007_s11306_022_01947_y
crossref_primary_10_1134_S1061934824020126
crossref_primary_10_1021_acsestwater_3c00616
crossref_primary_10_1002_bmc_5511
crossref_primary_10_3390_biom11121793
crossref_primary_10_1016_j_chroma_2021_462492
crossref_primary_10_1007_s11306_022_01963_y
crossref_primary_10_1002_bmc_5573
crossref_primary_10_1016_j_xcrp_2022_100978
crossref_primary_10_31857_S0044450224020029
crossref_primary_10_1007_s11831_023_09936_7
crossref_primary_10_1021_acs_analchem_4c02426
crossref_primary_10_1021_acs_est_4c10498
crossref_primary_10_1002_rcm_9304
crossref_primary_10_1021_acsmeasuresciau_3c00060
crossref_primary_10_1021_acs_analchem_4c03608
crossref_primary_10_1186_s13321_024_00858_5
crossref_primary_10_1186_s13321_021_00558_4
crossref_primary_10_1128_msystems_00726_21
Cites_doi 10.3390/metabo9080160
10.1007/s11306-020-01726-7
10.1021/acs.analchem.0c01450
10.1016/S0003-2670(01)00910-2
10.1021/ci990313h
10.1038/s41598-019-42777-8
10.1021/ci060155b
10.1371/journal.pcbi.1008724
10.1371/journal.pone.0226770
10.1186/s13321-016-0116-8
10.1007/978-3-540-45167-9_41
10.1007/s10115-013-0676-0
10.1093/nar/gkz1019
10.3389/fenvs.2015.00080
10.1021/acs.analchem.8b05405
10.1002/mas.21551
10.1088/2632-2153/aba947
10.1093/bioinformatics/btw246
10.1002/rcm.6340
10.1021/cr3004339
10.3390/metabo3030517
10.1093/nar/gkn194
10.1039/D0CP00305K
10.1186/s13321-020-00428-5
10.1093/nar/gky1033
10.1186/s13321-020-00445-4
10.1021/acscentsci.7b00512
10.1145/3219819.3219980
10.1016/j.trac.2019.01.002
10.1039/C8FD00235E
10.1039/D0SC03115A
10.1002/mas.21489
10.1038/nbt.3597
10.1038/s41587-019-0224-x
10.1186/s13321-016-0148-0
10.1039/C6RA25007F
10.1021/acscentsci.7b00572
10.1016/j.trac.2019.115686
10.1093/bib/bby066
10.1021/acs.jcim.8b00803
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2020.2990375
10.1021/ci100050t
10.1111/j.2517-6161.1996.tb02080.x
10.1080/17460441.2018.1542428
10.1016/j.drudis.2018.01.039
10.3390/metabo9040072
10.1007/s11306-010-0198-7
10.1145/2939672.2939754
10.1093/bioinformatics/bty252
10.1073/pnas.1509788112
10.1002/mas.21535
10.1002/jms.1777
10.1021/acs.jcim.7b00087
10.1109/IJCNN.2019.8852155
10.1039/C8SC04175J
10.1080/13543776.2018.1475560
10.1006/abio.2001.5513
10.1016/j.aca.2017.12.034
10.1038/s41587-020-0740-8
10.1039/C8SC00148K
10.1021/acs.jcim.7b00146
10.1093/bioinformatics/btz319
10.1371/journal.pcbi.1006089
10.1016/j.ymeth.2014.08.005
10.1038/s42256-020-00234-6
10.1023/A:1007379606734
10.1016/j.trac.2015.04.002
10.1073/pnas.1608041113
10.1038/s41592-020-0942-5
10.1080/17460441.2018.1465407
10.1021/acsmedchemlett.0c00088
10.1093/bioinformatics/bts194
10.1186/s13321-016-0174-y
10.1186/s13321-019-0376-1
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
ADTOC
UNPAY
DOI 10.1002/rcm.9120
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
ProQuest Computer Science Collection
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0231
EndPage n/a
ExternalDocumentID 10.1002/rcm.9120
33955607
10_1002_rcm_9120
RCM9120
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZCG
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3830-68d0d40fb17b103f14f546cc31fe7c3820882c1686375f2c00e43977d043dc323
IEDL.DBID UNPAY
ISSN 0951-4198
1097-0231
IngestDate Wed Oct 01 16:16:35 EDT 2025
Fri Jul 11 07:06:45 EDT 2025
Sat Jul 12 02:33:28 EDT 2025
Sun May 11 01:41:25 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Wed Oct 29 21:09:17 EDT 2025
Fri May 09 09:30:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License 2021 John Wiley & Sons Ltd.
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3830-68d0d40fb17b103f14f546cc31fe7c3820882c1686375f2c00e43977d043dc323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8692-425X
0000-0002-8217-2564
0000-0002-1449-3841
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rcm.9120
PMID 33955607
PQID 3228821839
PQPubID 1016428
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_rcm_9120
proquest_miscellaneous_2522620649
proquest_journals_3228821839
pubmed_primary_33955607
crossref_citationtrail_10_1002_rcm_9120
crossref_primary_10_1002_rcm_9120
wiley_primary_10_1002_rcm_9120_RCM9120
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle RCM
PublicationTitle Rapid communications in mass spectrometry
PublicationTitleAlternate Rapid Commun Mass Spectrom
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 91
2013; 3
2015; 71
2019; 11
2019; 10
2019; 59
2008; 36
2020; 17
2016; 32
2020; 16
2020; 15
2020; 12
2020; 11
2016; 34
2019; 121
2020; 8
2018; 9
2020; 2
2018; 4
2020; 1
2019; 20
2017; 36
2017; 1037
2020; 92
2002; 301
2016; 113
2020; 48
2013; 113
2012; 28
2012; 26
2018; 34
2018; 37
2019; 112
2010; 6
2019; 9
2018; 28
2012
2019; 35
2019; 37
2009
2020; 39
2008
1997; 28
2003
2018; 23
2014; 41
1996; 58
2001; 446
2010; 45
2015; 69
2015; 28
2016; 3
2006; 46
2020
2015; 112
2021; 17
2017; 57
2019; 47
2000; 40
2019
2018
2017
2019; 218
2016
2015
2014
2020; 22
2013
2016; 8
2018; 14
2010; 50
2018; 13
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Duvenaud DK (e_1_2_10_70_1) 2015; 28
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Todeschini R (e_1_2_10_32_1) 2008
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
Hwang K (e_1_2_10_92_1) 2017
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 45
  start-page: 703
  issue: 7
  year: 2010
  end-page: 714
  article-title: MassBank: A public repository for sharing mass spectral data for life sciences
  publication-title: J Mass Spectrom
– volume: 218
  start-page: 284
  issue: 0
  year: 2019
  end-page: 302
  article-title: Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi‐automated annotation from MS/MS spectra
  publication-title: Faraday Discuss
– volume: 36
  start-page: 624
  issue: 5
  year: 2017
  end-page: 633
  article-title: Mining molecular structure databases: Identification of small molecules based on fragmentation mass spectrometry data
  publication-title: Mass Spectrom Rev
– volume: 59
  start-page: 914
  issue: 2
  year: 2019
  end-page: 923
  article-title: Identifying structure–property relationships through SMILES syntax analysis with self‐attention mechanism
  publication-title: J Chem Inf Model
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  end-page: 276
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 41
  start-page: 559
  issue: 3
  year: 2014
  end-page: 590
  article-title: EvoMiner: Frequent subtree mining in phylogenetic databases
  publication-title: Knowl Inf Syst
– volume: 13
  start-page: 579
  issue: 7
  year: 2018
  end-page: 582
  article-title: Advancing drug discovery via GPU‐based deep learning
  publication-title: Expert Opin Drug Discovery
– volume: 57
  start-page: 2490
  issue: 10
  year: 2017
  end-page: 2504
  article-title: Demystifying multitask deep neural networks for quantitative structure–activity relationships
  publication-title: J Chem Inf Model
– volume: 113
  start-page: 13738
  issue: 48
  year: 2016
  end-page: 13743
  article-title: Topic modeling for untargeted substructure exploration in metabolomics
  publication-title: Proc Natl Acad Sci
– volume: 3
  year: 2016
  article-title: DeepTox: Toxicity prediction using deep learning
  publication-title: Front Environ Sci
– start-page: 567
  year: 2003
  end-page: 580
– volume: 12
  issue: 1
  year: 2020
  article-title: Industry‐scale application and evaluation of deep learning for drug target prediction
  publication-title: J Chem
– volume: 37
  start-page: 607
  issue: 5
  year: 2018
  end-page: 629
  article-title: A tutorial in small molecule identification via electrospray ionization‐mass spectrometry: The practical art of structural elucidation
  publication-title: Mass Spectrom Rev
– volume: 37
  start-page: 1038
  issue: 9
  year: 2019
  end-page: 1040
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat Biotechnol
– start-page: 248
  year: 2009
  end-page: 255
– volume: 112
  start-page: 12580
  issue: 41
  year: 2015
  end-page: 12585
  article-title: Searching molecular structure databases with tandem mass spectra using CSI:FingerID
  publication-title: Proc Natl Acad Sci U S A
– year: 2018
– volume: 6
  start-page: 322
  issue: 2
  year: 2010
  end-page: 333
  article-title: Decision tree supported substructure prediction of metabolites from GC‐MS profiles
  publication-title: Metabolomics
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc B Methodol
– year: 2014
– volume: 34
  start-page: i323
  issue: 13
  year: 2018
  end-page: i332
  article-title: SIMPLE: Sparse interaction model over peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
  publication-title: Bioinformatics
– volume: 46
  start-page: 2423
  issue: 6
  year: 2006
  end-page: 2431
  article-title: Novel 2D fingerprints for ligand‐based virtual screening
  publication-title: J Chem Inf Model
– start-page: 1263
  year: 2017
  end-page: 1272
– volume: 301
  start-page: 298
  issue: 2
  year: 2002
  end-page: 307
  article-title: Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry
  publication-title: Anal Biochem
– volume: 92
  start-page: 8649
  issue: 13
  year: 2020
  end-page: 8653
  article-title: Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks
  publication-title: Anal Chem
– volume: 3
  start-page: 517
  issue: 3
  year: 2013
  end-page: 538
  article-title: The critical assessment of small molecule identification (CASMI): Challenges and solutions
  publication-title: Metabolites
– volume: 11
  start-page: 10378
  issue: 38
  year: 2020
  end-page: 10389
  article-title: Neuraldecipher – Reverse‐engineering extended‐connectivity fingerprints (ECFPs) to their molecular structures
  publication-title: Chem Sci
– volume: 14
  issue: 4
  year: 2018
  article-title: Propagating annotations of molecular networks using in silico fragmentation
  publication-title: PLoS Comput Biol
– volume: 9
  issue: 8
  year: 2019
  article-title: Improved small molecule identification through learning combinations of kernel regression models
  publication-title: Metabolites
– volume: 34
  start-page: 828
  issue: 8
  year: 2016
  end-page: 837
  article-title: Sharing and community curation of mass spectrometry data with GNPS
  publication-title: Nat Biotechnol
– volume: 69
  start-page: 52
  year: 2015
  end-page: 61
  article-title: Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics
  publication-title: Trends Anal Chem
– volume: 71
  start-page: 58
  year: 2015
  end-page: 63
  article-title: Molecular fingerprint similarity search in virtual screening
  publication-title: Methods
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  end-page: 1250
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
– year: 2008
– volume: 12
  start-page: 43
  issue: 1
  year: 2020
  article-title: One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome
  publication-title: J Chem
– volume: 7
  start-page: 2587
  issue: 5
  year: 2017
  end-page: 2593
  article-title: High‐throughput metabolomics enables biomarker discovery in prostate cancer
  publication-title: RSC Adv
– volume: 2
  start-page: 629
  issue: 10
  year: 2020
  end-page: 641
  article-title: Database‐independent molecular formula annotation using Gibbs sampling through ZODIAC
  publication-title: Nat Mach Intell
– volume: 39
  start-page: 462
  issue: 4
  year: 2020
  end-page: 471
  article-title: Systematic classification of unknown metabolites using high‐resolution fragmentation mass spectra
  publication-title: Nat Biotechnol
– volume: 28
  start-page: 2224
  year: 2015
  end-page: 2232
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Adv Neural Inf Process Syst
– volume: 36
  start-page: W481
  issue: suppl 2
  year: 2008
  end-page: W484
  article-title: MassTRIX: Mass translator into pathways
  publication-title: Nucleic Acids Res
– volume: 32
  start-page: i28
  issue: 12
  year: 2016
  end-page: i36
  article-title: Fast metabolite identification with input output kernel regression
  publication-title: Bioinformatics
– year: 2019
– year: 2015
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  end-page: 75
  article-title: Multitask learning
  publication-title: Mach Learn
– volume: 10
  start-page: 1692
  issue: 6
  year: 2019
  end-page: 1701
  article-title: Learning continuous and data‐driven molecular descriptors by translating equivalent chemical representations
  publication-title: Chem Sci
– volume: 28
  start-page: 467
  issue: 6
  year: 2018
  end-page: 476
  article-title: QSAR modelling: A therapeutic patent review 2010‐present
  publication-title: Expert Opin Ther Pat
– volume: 8
  start-page: 36
  issue: 1
  year: 2016
  article-title: Comparing structural fingerprints using a literature‐based similarity benchmark
  publication-title: J Chem
– volume: 8
  start-page: 78737
  year: 2020
  end-page: 78752
  article-title: Feature extraction methods in quantitative structure–activity relationship modeling: A comparative study
  publication-title: IEEE Access
– volume: 20
  start-page: 2028
  issue: 6
  year: 2019
  end-page: 2043
  article-title: Recent advances and prospects of computational methods for metabolite identification: A review with emphasis on machine learning approaches (2019)
  publication-title: Brief Bioinform
– volume: 26
  start-page: 2275
  issue: 19
  year: 2012
  end-page: 2286
  article-title: Fragmentation trees for the structural characterisation of metabolites
  publication-title: Rapid Commun Mass Spectrom
– volume: 121
  year: 2019
  article-title: Mass spectrometry‐based structure elucidation of small molecule impurities and degradation products in pharmaceutical development
  publication-title: TrAC Trends Anal Chem
– volume: 446
  start-page: 483
  issue: 1
  year: 2001
  end-page: 492
  article-title: Feature selection by genetic algorithms for mass spectral classifiers
  publication-title: Anal Chim Acta
– volume: 17
  issue: 2
  year: 2021
  article-title: Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships
  publication-title: PLoS Comput Biol
– volume: 1037
  start-page: 13
  issue: 2018
  year: 2017
  end-page: 27
  article-title: Dark matter in host‐microbiome metabolomics: Tackling the unknowns–a review
  publication-title: Anal Chim Acta
– volume: 13
  start-page: 1075
  issue: 12
  year: 2018
  end-page: 1089
  article-title: Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR)
  publication-title: Expert Opin Drug Discovery
– volume: 35
  start-page: i164
  issue: 14
  year: 2019
  end-page: i172
  article-title: ADAPTIVE: leArning DAta‐dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra
  publication-title: Bioinformatics
– volume: 15
  issue: 1
  year: 2020
  article-title: MESSAR: Automated recommendation of metabolite substructures from tandem mass spectra
  publication-title: PLoS ONE
– volume: 1
  issue: 4
  year: 2020
  article-title: Self‐referencing embedded strings (SELFIES): A 100% robust molecular string representation
  publication-title: Mach Learn: Sci Technol
– volume: 112
  start-page: 87
  year: 2019
  end-page: 101
  article-title: Recent applications of high resolution mass spectrometry for the characterization of plant natural products
  publication-title: TrAC Trends Anal Chem
– volume: 17
  start-page: 953
  issue: 10
  year: 2020
  end-page: 954
  article-title: METLIN MS 2 molecular standards database: A broad chemical and biological resource
  publication-title: Nat Methods
– volume: 8
  start-page: 5
  issue: 1
  year: 2016
  article-title: Fragmentation trees reloaded
  publication-title: J Chem
– volume: 113
  start-page: 8093
  issue: 10
  year: 2013
  end-page: 8103
  article-title: Descriptor selection methods in quantitative structure–activity relationship studies: A review study
  publication-title: Chem Rev
– year: 2012
– start-page: 855
  year: 2016
  end-page: 864
– volume: 4
  start-page: 120
  issue: 1
  year: 2018
  end-page: 131
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
– volume: 9
  start-page: 5441
  issue: 24
  year: 2018
  end-page: 5451
  article-title: Large‐scale comparison of machine learning methods for drug target prediction on ChEMBL
  publication-title: Chem Sci
– volume: 22
  start-page: 8373
  issue: 16
  year: 2020
  end-page: 8390
  article-title: Are 2D fingerprints still valuable for drug discovery?
  publication-title: Phys Chem Chem Phys
– volume: 11
  start-page: 1496
  issue: 8
  year: 2020
  end-page: 1505
  article-title: The advent of generative chemistry
  publication-title: ACS Med Chem Lett
– volume: 8
  start-page: 61
  issue: 1
  year: 2016
  article-title: ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy
  publication-title: J Chem
– volume: 40
  start-page: 117
  issue: 1
  year: 2000
  end-page: 125
  article-title: Pharmacophore fingerprinting. 2. Application to primary library design
  publication-title: J Chem Inf Comput Sci
– volume: 28
  start-page: 1705
  issue: 13
  year: 2012
  end-page: 1713
  article-title: In silico identification software (ISIS): A machine learning approach to tandem mass spectral identification of lipids
  publication-title: Bioinformatics
– volume: 9
  issue: 4
  year: 2019
  article-title: CFM‐ID 3.0: Significantly improved ESI‐MS/MS prediction and compound identification
  publication-title: Metabolites
– volume: 11
  start-page: 54
  issue: 1
  year: 2019
  article-title: Combining structural and bioactivity‐based fingerprints improves prediction performance and scaffold hopping capability
  publication-title: J Chem
– start-page: 1
  year: 2019
  end-page: 7
– year: 2020
– volume: 9
  start-page: 6453
  issue: 1
  year: 2019
  article-title: Revisiting fragmentation reactions of protonated α‐amino acids by high‐resolution electrospray ionization tandem mass spectrometry with collision‐induced dissociation
  publication-title: Sci Rep
– volume: 57
  start-page: 2068
  issue: 8
  year: 2017
  end-page: 2076
  article-title: Is multitask deep learning practical for Pharma?
  publication-title: J Chem Inf Model
– start-page: 1666
  year: 2018
  end-page: 1674
– volume: 91
  start-page: 5629
  issue: 9
  year: 2019
  end-page: 5637
  article-title: Deep MS/MS‐aided structural‐similarity scoring for unknown metabolite identification
  publication-title: Anal Chem
– volume: 47
  start-page: D1102
  issue: D1
  year: 2019
  end-page: D1109
  article-title: PubChem 2019 update: Improved access to chemical data
  publication-title: Nucleic Acids Res
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  end-page: 754
  article-title: Extended‐connectivity fingerprints
  publication-title: J Chem Inf Model
– year: 2017
– volume: 37
  start-page: 513
  issue: 4
  year: 2018
  end-page: 532
  article-title: Identification of small molecules using accurate mass MS/MS search
  publication-title: Mass Spectrom Rev
– volume: 48
  start-page: D440
  issue: D1
  year: 2020
  end-page: D444
  article-title: MetaboLights: A resource evolving in response to the needs of its scientific community
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 104
  issue: 10
  year: 2020
  article-title: MetFID: Artificial neural network‐based compound fingerprint prediction for metabolite annotation
  publication-title: Metabolomics
– year: 2013
– ident: e_1_2_10_59_1
  doi: 10.3390/metabo9080160
– ident: e_1_2_10_75_1
– ident: e_1_2_10_44_1
  doi: 10.1007/s11306-020-01726-7
– ident: e_1_2_10_43_1
  doi: 10.1021/acs.analchem.0c01450
– ident: e_1_2_10_29_1
  doi: 10.1016/S0003-2670(01)00910-2
– ident: e_1_2_10_36_1
  doi: 10.1021/ci990313h
– ident: e_1_2_10_48_1
  doi: 10.1038/s41598-019-42777-8
– ident: e_1_2_10_34_1
  doi: 10.1021/ci060155b
– ident: e_1_2_10_62_1
  doi: 10.1371/journal.pcbi.1008724
– ident: e_1_2_10_20_1
  doi: 10.1371/journal.pone.0226770
– ident: e_1_2_10_18_1
  doi: 10.1186/s13321-016-0116-8
– ident: e_1_2_10_47_1
  doi: 10.1007/978-3-540-45167-9_41
– ident: e_1_2_10_53_1
  doi: 10.1007/s10115-013-0676-0
– ident: e_1_2_10_12_1
  doi: 10.1093/nar/gkz1019
– volume-title: Handbook of Molecular Descriptors
  year: 2008
  ident: e_1_2_10_32_1
– ident: e_1_2_10_72_1
– ident: e_1_2_10_80_1
– ident: e_1_2_10_25_1
  doi: 10.3389/fenvs.2015.00080
– ident: e_1_2_10_64_1
  doi: 10.1021/acs.analchem.8b05405
– ident: e_1_2_10_2_1
  doi: 10.1002/mas.21551
– ident: e_1_2_10_39_1
– ident: e_1_2_10_91_1
  doi: 10.1088/2632-2153/aba947
– ident: e_1_2_10_58_1
  doi: 10.1093/bioinformatics/btw246
– ident: e_1_2_10_78_1
– ident: e_1_2_10_94_1
– ident: e_1_2_10_55_1
– ident: e_1_2_10_51_1
  doi: 10.1002/rcm.6340
– ident: e_1_2_10_31_1
  doi: 10.1021/cr3004339
– ident: e_1_2_10_100_1
  doi: 10.3390/metabo3030517
– ident: e_1_2_10_3_1
  doi: 10.1093/nar/gkn194
– ident: e_1_2_10_71_1
– ident: e_1_2_10_38_1
  doi: 10.1039/D0CP00305K
– ident: e_1_2_10_41_1
  doi: 10.1186/s13321-020-00428-5
– ident: e_1_2_10_17_1
  doi: 10.1093/nar/gky1033
– ident: e_1_2_10_49_1
  doi: 10.1186/s13321-020-00445-4
– ident: e_1_2_10_93_1
– ident: e_1_2_10_24_1
– ident: e_1_2_10_83_1
  doi: 10.1021/acscentsci.7b00512
– ident: e_1_2_10_56_1
  doi: 10.1145/3219819.3219980
– ident: e_1_2_10_65_1
– ident: e_1_2_10_6_1
  doi: 10.1016/j.trac.2019.01.002
– ident: e_1_2_10_22_1
  doi: 10.1039/C8FD00235E
– ident: e_1_2_10_89_1
  doi: 10.1039/D0SC03115A
– ident: e_1_2_10_13_1
  doi: 10.1002/mas.21489
– ident: e_1_2_10_90_1
– volume-title: Cloud Computing for Machine Learning and Cognitive Applications
  year: 2017
  ident: e_1_2_10_92_1
– ident: e_1_2_10_8_1
  doi: 10.1038/nbt.3597
– ident: e_1_2_10_87_1
  doi: 10.1038/s41587-019-0224-x
– volume: 28
  start-page: 2224
  year: 2015
  ident: e_1_2_10_70_1
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_10_50_1
  doi: 10.1186/s13321-016-0148-0
– ident: e_1_2_10_4_1
  doi: 10.1039/C6RA25007F
– ident: e_1_2_10_86_1
  doi: 10.1021/acscentsci.7b00572
– ident: e_1_2_10_5_1
  doi: 10.1016/j.trac.2019.115686
– ident: e_1_2_10_16_1
  doi: 10.1093/bib/bby066
– ident: e_1_2_10_76_1
  doi: 10.1021/acs.jcim.8b00803
– ident: e_1_2_10_99_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_10_69_1
  doi: 10.1109/ACCESS.2020.2990375
– ident: e_1_2_10_35_1
  doi: 10.1021/ci100050t
– ident: e_1_2_10_61_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_10_68_1
  doi: 10.1080/17460441.2018.1542428
– ident: e_1_2_10_42_1
  doi: 10.1016/j.drudis.2018.01.039
– ident: e_1_2_10_97_1
– ident: e_1_2_10_28_1
  doi: 10.3390/metabo9040072
– ident: e_1_2_10_30_1
  doi: 10.1007/s11306-010-0198-7
– ident: e_1_2_10_82_1
– ident: e_1_2_10_96_1
– ident: e_1_2_10_54_1
  doi: 10.1145/2939672.2939754
– ident: e_1_2_10_60_1
  doi: 10.1093/bioinformatics/bty252
– ident: e_1_2_10_23_1
  doi: 10.1073/pnas.1509788112
– ident: e_1_2_10_67_1
– ident: e_1_2_10_7_1
  doi: 10.1002/mas.21535
– ident: e_1_2_10_10_1
  doi: 10.1002/jms.1777
– ident: e_1_2_10_45_1
  doi: 10.1021/acs.jcim.7b00087
– ident: e_1_2_10_84_1
  doi: 10.1109/IJCNN.2019.8852155
– ident: e_1_2_10_88_1
  doi: 10.1039/C8SC04175J
– ident: e_1_2_10_33_1
  doi: 10.1080/13543776.2018.1475560
– ident: e_1_2_10_52_1
  doi: 10.1006/abio.2001.5513
– ident: e_1_2_10_14_1
  doi: 10.1016/j.aca.2017.12.034
– ident: e_1_2_10_101_1
  doi: 10.1038/s41587-020-0740-8
– ident: e_1_2_10_63_1
– ident: e_1_2_10_74_1
  doi: 10.1039/C8SC00148K
– ident: e_1_2_10_40_1
  doi: 10.1021/acs.jcim.7b00146
– ident: e_1_2_10_77_1
  doi: 10.1093/bioinformatics/btz319
– ident: e_1_2_10_15_1
  doi: 10.1371/journal.pcbi.1006089
– ident: e_1_2_10_85_1
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ymeth.2014.08.005
– ident: e_1_2_10_57_1
  doi: 10.1038/s42256-020-00234-6
– ident: e_1_2_10_79_1
– ident: e_1_2_10_46_1
  doi: 10.1023/A:1007379606734
– ident: e_1_2_10_9_1
  doi: 10.1016/j.trac.2015.04.002
– ident: e_1_2_10_19_1
  doi: 10.1073/pnas.1608041113
– ident: e_1_2_10_73_1
– ident: e_1_2_10_11_1
  doi: 10.1038/s41592-020-0942-5
– ident: e_1_2_10_26_1
  doi: 10.1080/17460441.2018.1465407
– ident: e_1_2_10_95_1
– ident: e_1_2_10_81_1
  doi: 10.1021/acsmedchemlett.0c00088
– ident: e_1_2_10_98_1
– ident: e_1_2_10_27_1
  doi: 10.1093/bioinformatics/bts194
– ident: e_1_2_10_21_1
  doi: 10.1186/s13321-016-0174-y
– ident: e_1_2_10_66_1
  doi: 10.1186/s13321-019-0376-1
SSID ssj0011520
Score 2.5617156
Snippet Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing...
Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of...
Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing...
SourceID unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e9120
SubjectTerms Artificial neural networks
Chemical fingerprinting
Coding
Deep learning
Graph theory
Machine learning
Mass spectrometry
Scientific imaging
Software
Spectra
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUhm0kWfSRpO-m0KKUk7cIz1mPs8bIMHULAXSQNBLIwtiSnobZniMeEFgr9hH5jv6T3WrbDJGkpWRnsK1mPK-tcWTqHkLcaQuNkIqUjmQocqSbCCVLXOCiSBHfAyeqli_CTd3gqj87GZ82uSjwLY_khugU3HBn19xoHeJyUoxvS0CuVDwPGMVxnwqujqeOOOQpwjmVkRBV5CYF1yzvr8lGbcHUmugMvN0mvKhbxt-s4y1aRaz31zB6T87bQdsfJ12G1TIbq-y0-x4fV6gl51CBS-sG60FOyZoot0pu2QnDb5EfD4UTjQlPLQUK1MQvaKE5c0Di7mF9dLr_kJQUMTHF1wuQ0B1xO65OcSIkAWdF34ckoPHn_--cvnDw1LXOoNc2tQq-hlssWszdZpS6t2tMOOZ19_Dw9dBrVBkdBtAux6ES7WrppwvyEuSJlMh1LTynBUuODCUdQr5g38YQ_TrlyXYOgyNeuFFoJLp6R9WJemBeExtCJkNwzRgGSCFQsIXNP6cRoZgBJ9slB24ORaijNUVkjiywZM4-gOSNszj7Z6ywXlsbjHptB6wRRM5DLCL53UFyEkZBF9xg6AP-rxIWZV2XEEcNywHZg89w6T_cSIYIxgEq_T9503vSPEuzXvvFXg-h4GuJ1938NX5INjoLF9Q7NAVmHfjSvAEUtk9f1ePkDAAYZXg
  priority: 102
  providerName: Wiley-Blackwell
Title Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcm.9120
https://www.ncbi.nlm.nih.gov/pubmed/33955607
https://www.proquest.com/docview/3228821839
https://www.proquest.com/docview/2522620649
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rcm.9120
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0231
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0231
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011520
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWq6aKwKLS8ppTKRYjHItP4kWSyrEZUFdJUVctIZWUltlMqksyoMyMEEhKfwDfyJdwbOxFtAaGuIiU3N058bZ9rx-cQ8sJAapwPpQwk02kg9VAEaRHaAEWS4AwEWTN1MT6KDyfy3Vl05ifccC-M44foJtywZTT9NTbwmSlcP-9X9_nepa4GKeOQsq_GEWDxHlmdHB3vf2j14yVL3V44pBwFJNOyz_5269Xx6AbIvEvWlvUs-_I5K8ur-LUZgA7uEdUW3f138mmwXOQD_fUaq-Pt3-0-WffYlO67YNogK7beJGujVhLuAfnm2ZxoVhvq2EiosXZGvfbEOc3K8-nlxeJjNaeAhinOU9iKVoDQabOnE8kRwBV9PT7dG5---fn9Bw6jhs4reHNaOa1eSx2rLbq35VJfON2nh2Ry8Pb96DDw-g2BhrwXstKhCY0Mi5wlOQtFwWQRyVhrwQqbgAlHeK9ZPIxFEhVch6FFeJSYUAqjBRePSK-e1vYJoVkEQEUWsbUaMEWqMwnOY21ya5gFTNknr9paVNqTm6PGRqkcLTNX8DkVfs4-2e0sZ47Q4w82220gKN-k5wp6PiguAkpw0V2GCsAVlqy20-VccUSzHFAe2Dx2AdQ9RIg0AniZ9MnzLqL-UYKXTXz81UCdjMZ43Pofb0_JHY6yxc1_mtukB3VonwGWWuQ7kEWc8B3fbH4BJfoe-g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qymJgUd50oIBBiMciM4ntSSZihUZUAzRd9CF1gWQltlMqksyoMyMEEhKf0G_sl3BvnASVlxCrSMm148d1fK5jnwPwxGBonI2l9GSgY0_qsfDi3LceiSThHXSyeuki2Q2nh_Lt0ehoDV62Z2EcP0S34EYjo_5e0wCnBenhD9bQU10O4oBjvH5JhhimECLa67ijEOk4TkbSkZcYWrfMsz4ftikvzkW_AMwr0FtV8_Tzp7QoLmLXevLZvgrv22K7PScfB6tlNtBffmJ0_M96XYONBpSyV86LrsOarW5Ab9Jqwd2Erw2NE0srwxwNCTPWzlkjOnHM0uJ4dnqy_FAuGMJgRgsUtmQlQnNWH-YkVgTMij1P9ofJ_ovzb2c0fxq2KLHarHQivZY5OlvK3hYrfeIEn27B4fbrg8nUa4QbPI0BL4ajY-Mb6edZEGWBL_JA5iMZai2C3EZowgnX6yAchyIa5Vz7viVcFBlfCqMFF7dhvZpVdhNYir2IyUNrNYKJWKcSMw-1yawJLILJPjxru1DphtWcxDUK5fiYucLmVNScfXjUWc4dk8dvbLZaL1DNWF4o_ORhcQlJYhbdY-wA-rWSVna2WihOMJYjvEObO857upcIEY8QV0Z9eNy5019K8LR2jj8aqL1JQte7_2r4EHrTg2RH7bzZfXcPLnPSL643bG7BOvapvY-gapk9qAfPd4sAHX8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD4sK7j64P0yumoU8fLQmTZJb_gksw7rZRbZdWEfhNAm6brYdoadGURB8Cf4G_0lntO0lfWG-FRoT9JcTprvpMn3Adw3GBrniZSeDHTqSZ0ILy1865FIEt5BJ2uWLqY70fa-fHEQHqzBk-4sjOOH6BfcaGQ032sa4HZuitEP1tBjXQ3TgGO8fkqGaUL7-bZ2e-4oRDqOk5F05CWG1h3zrM9HXcqTc9EvAPMsbKzqefbxQ1aWJ7FrM_lMzsPbrthuz8n74WqZD_Wnnxgd_7NeF-BcC0rZU-dFF2HN1pdgY9xpwV2Gzy2NE8tqwxwNCTPWzlkrOnHIsvJwdny0fFctGMJgRgsUtmIVQnPWHOYkVgTMij2a7o2me4-_fflK86dhiwqrzSon0muZo7Ol7G250kdO8OkK7E-evRlve61wg6cx4MVwNDG-kX6RB3Ee-KIIZBHKSGsRFDZGE064XgdREok4LLj2fUu4KDa-FEYLLq7Cej2r7XVgGfYiJo-s1QgmUp1JzDzSJrcmsAgmB_Cw60KlW1ZzEtcoleNj5gqbU1FzDuBubzl3TB6_sdnsvEC1Y3mh8JOHxSUkiVn0j7ED6NdKVtvZaqE4wViO8A5trjnv6V8iRBoirowHcK93p7-U4EHjHH80ULvjKV1v_KvhHTj9emuiXj3feXkTznCSL272a27COnapvYWYapnfbsbOdwweHQM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBVlski7aJu-Mk0a1FL6WHhiPWyPl2FoCIUJpelAuhK2JKchtmfIzFASCOQT8o35ktxryabpi9KVwb6-lqwr6eh1DiGvDQyN86GUgWQ6DaQeiiAtQhugSBLcgSBrpi7G-_HeRH48jA79hBuehXH8EN2EG9aMpr3GCj4zhWvn_eo-3z7V1SBlHIbsK3EEWLxHVib7n3a-tvrxkqXuLBxSjgKSadlnf3j1dn_0C8i8R1aX9Sw7-56V5W382nRAuw-IapPu9p2cDJaLfKDPf2J1_P-8PST3PTalOy6Y1sgdWz8iq6NWEu4xufBsTjSrDXVsJNRYO6Nee-KIZuXR9PR48a2aU0DDFOcpbEUrQOi0OdOJ5Ajgir4bH2yPD95fX15hN2rovIKc08pp9VrqWG3RvS2X-tjpPj0hk90PX0Z7gddvCDSMe2FUOjShkWGRsyRnoSiYLCIZay1YYRMw4QjvNYuHsUiiguswtAiPEhNKYbTg4inp1dParhOaRQBUZBFbqwFTpDqT4DzWJreGWcCUffK2LUWlPbk5amyUytEycwW_U-Hv7JOXneXMEXr8xmazDQTlq_RcQcsHyUVACS66x1AAuMKS1Xa6nCuOaJYDygObZy6Auo8IkUYAL5M-edVF1F9S8KaJjz8aqM-jMV6f_4u3DXKXo2xxs09zk_SgDO0LwFKLfMtXmBtx-x4R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+future+deep+learning+algorithms+for+tandem+mass+spectrometry+%28MS%2FMS%29-based+small+molecule+structure+elucidation&rft.jtitle=Rapid+communications+in+mass+spectrometry&rft.au=Liu%2C+Youzhong&rft.au=De+Vijlder%2C+Thomas&rft.au=Bittremieux%2C+Wout&rft.au=Laukens%2C+Kris&rft.date=2025-05-01&rft.eissn=1097-0231&rft.volume=39+Suppl+1&rft.spage=e9120&rft_id=info:doi/10.1002%2Frcm.9120&rft_id=info%3Apmid%2F33955607&rft.externalDocID=33955607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-4198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-4198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-4198&client=summon