Current status of machine prognostics in condition-based maintenance: a review

Condition-based maintenance (CBM) is a decision-making strategy based on real-time diagnosis of impending failures and prognosis of future equipment health. It is a proactive process that requires the development of a predictive model that can trigger the alarm for corresponding maintenance. Prognos...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 50; no. 1-4; pp. 297 - 313
Main Authors Peng, Ying, Dong, Ming, Zuo, Ming Jian
Format Journal Article
LanguageEnglish
Published London Springer-Verlag 01.09.2010
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-009-2482-0

Cover

Abstract Condition-based maintenance (CBM) is a decision-making strategy based on real-time diagnosis of impending failures and prognosis of future equipment health. It is a proactive process that requires the development of a predictive model that can trigger the alarm for corresponding maintenance. Prognostic methodologies for CBM have only recently been introduced into the technical literature and become such a focus in the field of maintenance research and development. There are many research and development on a variety of technologies and algorithms that can be regarded as the steps toward prognostic maintenance. They are needed in order to support decision making and manage operational reliability. In this paper, recent literature that focuses on the machine prognostics has been reviewed. Generally, prognostic models can be classified into four categories: physical model, knowledge-based model, data-driven model, and combination model. Various techniques and algorithms have been developed depending on what models they usually adopt. Based on the review of some typical approaches and new introduced methods, advantages and disadvantages of these methodologies are discussed. From the literature review, some increasing trends appeared in the research field of machine prognostics are summarized. Furthermore, the future research directions have been explored.
AbstractList Condition-based maintenance (CBM) is a decision-making strategy based on real-time diagnosis of impending failures and prognosis of future equipment health. It is a proactive process that requires the development of a predictive model that can trigger the alarm for corresponding maintenance. Prognostic methodologies for CBM have only recently been introduced into the technical literature and become such a focus in the field of maintenance research and development. There are many research and development on a variety of technologies and algorithms that can be regarded as the steps toward prognostic maintenance. They are needed in order to support decision making and manage operational reliability. In this paper, recent literature that focuses on the machine prognostics has been reviewed. Generally, prognostic models can be classified into four categories: physical model, knowledge-based model, data-driven model, and combination model. Various techniques and algorithms have been developed depending on what models they usually adopt. Based on the review of some typical approaches and new introduced methods, advantages and disadvantages of these methodologies are discussed. From the literature review, some increasing trends appeared in the research field of machine prognostics are summarized. Furthermore, the future research directions have been explored.
Author Zuo, Ming Jian
Peng, Ying
Dong, Ming
Author_xml – sequence: 1
  givenname: Ying
  surname: Peng
  fullname: Peng, Ying
  organization: Antai College of Economics & Management, Shanghai Jiao Tong University
– sequence: 2
  givenname: Ming
  surname: Dong
  fullname: Dong, Ming
  email: mdong@sjtu.edu.cn
  organization: Antai College of Economics & Management, Shanghai Jiao Tong University
– sequence: 3
  givenname: Ming Jian
  surname: Zuo
  fullname: Zuo, Ming Jian
  organization: Department of Mechanical Engineering, University of Alberta
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz9HJJrvJepPiFxS96Dlk06SmtNmaZBX_vZEVBEFPc3mfmXeeGZqEPliETimcUwBxkQCoAALQkorLisABmlLOGGFA6wmaQtVIwkQjj9AspU1JN7SRU_SwGGK0IeOUdR4S7h3eafPig8X72K9Dn7I3CfuATR9WPvs-kE4nuyoxH7INOhh7iTWO9s3b92N06PQ22ZPvOUfPN9dPizuyfLy9X1wtiWGyysTxtpUMzKqm0BghqZZ13fG2Y4JD01pKHa0ZE50w2gJ3VNdOlsaOtsxRbtgcnY17S8nXwaasNv0QQzmpqqqpeC1Y25QUHVMm9ilF69Q--p2OH4qC-tKmRm2qaFNf2hQURvxijC9qyt85ar_9l6xGMpUrYW3jT6e_oU_r8oJB
CitedBy_id crossref_primary_10_1016_j_ifacol_2015_09_620
crossref_primary_10_1016_j_ymssp_2011_09_029
crossref_primary_10_1109_TR_2015_2487578
crossref_primary_10_1109_TR_2024_3359212
crossref_primary_10_1007_s10479_017_2745_3
crossref_primary_10_1016_j_engfailanal_2013_10_006
crossref_primary_10_1155_2016_8705796
crossref_primary_10_1016_j_cie_2020_106322
crossref_primary_10_1007_s10618_017_0538_6
crossref_primary_10_1016_j_jmsy_2020_03_003
crossref_primary_10_1080_08982112_2021_1977950
crossref_primary_10_1080_08982112_2019_1686641
crossref_primary_10_1016_j_ejor_2010_11_018
crossref_primary_10_1109_TNNLS_2020_2977132
crossref_primary_10_1007_s10845_015_1066_0
crossref_primary_10_1016_j_cirpj_2021_09_003
crossref_primary_10_1109_ACCESS_2024_3391823
crossref_primary_10_1016_j_ress_2018_04_005
crossref_primary_10_1016_j_ymssp_2021_108385
crossref_primary_10_1155_2015_561238
crossref_primary_10_1016_j_ifacol_2018_09_577
crossref_primary_10_1016_j_jii_2024_100667
crossref_primary_10_1016_j_jmsy_2022_07_016
crossref_primary_10_1088_1742_6596_1910_1_012045
crossref_primary_10_3390_su142013642
crossref_primary_10_1109_ACCESS_2018_2871859
crossref_primary_10_1109_JSYST_2022_3205179
crossref_primary_10_1016_j_cie_2024_110850
crossref_primary_10_4028_www_scientific_net_AMM_303_306_1350
crossref_primary_10_1016_j_procs_2022_09_167
crossref_primary_10_1016_j_compind_2014_10_004
crossref_primary_10_1016_j_ress_2018_04_015
crossref_primary_10_1016_j_mfglet_2021_05_009
crossref_primary_10_1177_1748006X211035623
crossref_primary_10_1016_j_isatra_2019_03_026
crossref_primary_10_1016_j_eswa_2017_05_079
crossref_primary_10_1007_s10845_017_1377_4
crossref_primary_10_1007_s13198_021_01123_w
crossref_primary_10_1016_j_conengprac_2018_04_011
crossref_primary_10_1007_s13198_013_0195_0
crossref_primary_10_1109_TSMC_2024_3359851
crossref_primary_10_3389_fenrg_2024_1359849
crossref_primary_10_1515_msr_2017_0026
crossref_primary_10_1016_j_ymssp_2022_109820
crossref_primary_10_1109_ACCESS_2022_3205352
crossref_primary_10_1016_j_procir_2022_05_056
crossref_primary_10_1088_0957_0233_26_6_065604
crossref_primary_10_1007_s10845_016_1244_8
crossref_primary_10_1007_s10845_016_1221_2
crossref_primary_10_1016_j_ifacol_2018_09_306
crossref_primary_10_1007_s00170_024_14645_x
crossref_primary_10_1080_17508975_2021_1922336
crossref_primary_10_1016_j_cirpj_2022_11_004
crossref_primary_10_1007_s10845_013_0787_1
crossref_primary_10_1016_j_ifacol_2021_08_005
crossref_primary_10_3390_electronics12204267
crossref_primary_10_1109_ACCESS_2020_2969816
crossref_primary_10_1007_s00170_015_7981_6
crossref_primary_10_1007_s10845_022_01929_w
crossref_primary_10_1016_j_ymssp_2019_106266
crossref_primary_10_1080_08982112_2013_819436
crossref_primary_10_14489_vkit_2021_08_pp_029_037
crossref_primary_10_1007_s00170_022_09978_4
crossref_primary_10_1016_j_renene_2017_05_020
crossref_primary_10_1016_j_asoc_2022_109765
crossref_primary_10_1016_j_ifacol_2020_12_2435
crossref_primary_10_1016_j_ymssp_2024_111163
crossref_primary_10_1109_ACCESS_2020_3014147
crossref_primary_10_3390_math10142398
crossref_primary_10_3390_s23010012
crossref_primary_10_21595_jve_2021_22100
crossref_primary_10_1080_16843703_2019_1584956
crossref_primary_10_1080_0951192X_2020_1829062
crossref_primary_10_1007_s00170_018_2874_0
crossref_primary_10_1007_s12599_019_00596_1
crossref_primary_10_1115_1_4040407
crossref_primary_10_1016_j_ress_2016_08_009
crossref_primary_10_1016_j_artint_2023_103945
crossref_primary_10_21595_marc_2024_24232
crossref_primary_10_1109_ACCESS_2023_3259221
crossref_primary_10_1016_j_arcontrol_2020_08_002
crossref_primary_10_1016_j_promfg_2020_10_212
crossref_primary_10_1108_IMDS_03_2015_0071
crossref_primary_10_1080_01430750_2022_2056917
crossref_primary_10_1080_08982112_2020_1754428
crossref_primary_10_1109_ACCESS_2020_2997368
crossref_primary_10_1016_j_cirpj_2024_02_003
crossref_primary_10_1016_j_ijpe_2017_08_009
crossref_primary_10_1049_iet_smt_2017_0005
crossref_primary_10_1109_TASE_2024_3350032
crossref_primary_10_1007_s10845_017_1351_1
crossref_primary_10_1109_TAI_2022_3197680
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1080_20464177_2024_2318844
crossref_primary_10_1002_inst_12283
crossref_primary_10_3390_s22166222
crossref_primary_10_1061_JSWBAY_0000945
crossref_primary_10_1016_j_ress_2021_107864
crossref_primary_10_1177_1687814020919207
crossref_primary_10_3390_app15031638
crossref_primary_10_1007_s00170_021_08047_6
crossref_primary_10_1016_j_ejor_2018_01_039
crossref_primary_10_1007_s13198_021_01564_3
crossref_primary_10_1061_JPCFEV_CFENG_4764
crossref_primary_10_1049_iet_cps_2019_0063
crossref_primary_10_1007_s10845_024_02398_z
crossref_primary_10_1590_0101_7438_2022_042nspe1_00264770
crossref_primary_10_1007_s00170_022_09930_6
crossref_primary_10_1016_j_ymssp_2022_109326
crossref_primary_10_1007_s10845_022_02002_2
crossref_primary_10_1016_j_rser_2017_06_002
crossref_primary_10_9765_KSCOE_2019_31_3_158
crossref_primary_10_5293_IJFMS_2012_5_4_143
crossref_primary_10_1007_s00170_023_11930_z
crossref_primary_10_1177_09544054211064682
crossref_primary_10_1115_1_4032680
crossref_primary_10_5772_59023
crossref_primary_10_1016_j_jmsy_2020_01_005
crossref_primary_10_1007_s00170_023_12679_1
crossref_primary_10_1016_j_procir_2019_02_098
crossref_primary_10_1016_j_advengsoft_2023_103461
crossref_primary_10_21595_jve_2017_17864
crossref_primary_10_1016_j_cie_2012_02_002
crossref_primary_10_1080_24725854_2016_1263771
crossref_primary_10_1016_j_ress_2014_10_009
crossref_primary_10_1016_j_ymssp_2017_01_050
crossref_primary_10_1109_TR_2018_2825470
crossref_primary_10_1016_j_asoc_2019_105650
crossref_primary_10_1016_j_ress_2020_107123
crossref_primary_10_1109_TIM_2019_2958581
crossref_primary_10_1016_j_aei_2019_03_003
crossref_primary_10_1016_j_ymssp_2018_02_027
crossref_primary_10_1002_qre_3447
crossref_primary_10_3390_machines10090794
crossref_primary_10_1016_j_ress_2016_11_022
crossref_primary_10_5050_KSNVE_2024_34_5_512
crossref_primary_10_1109_JSEN_2023_3323476
crossref_primary_10_3390_app8060916
crossref_primary_10_1016_j_oceaneng_2017_11_017
crossref_primary_10_1016_j_matpr_2021_04_177
crossref_primary_10_1007_s42452_022_05063_3
crossref_primary_10_1016_j_measurement_2024_116202
crossref_primary_10_3390_machines6020017
crossref_primary_10_1080_00207543_2025_2453107
crossref_primary_10_1007_s00170_019_04563_8
crossref_primary_10_1016_j_aei_2023_102316
crossref_primary_10_3390_s21227655
crossref_primary_10_1061__ASCE_EE_1943_7870_0001972
crossref_primary_10_4173_mic_2017_3_4
crossref_primary_10_3390_app13031938
crossref_primary_10_1109_TR_2018_2829771
crossref_primary_10_1177_0954406217734885
crossref_primary_10_1108_SASBE_04_2021_0064
crossref_primary_10_1177_1748006X16683321
crossref_primary_10_1016_j_oceaneng_2017_12_002
crossref_primary_10_1088_1361_6501_ad9e12
crossref_primary_10_3390_app11167322
crossref_primary_10_1007_s00170_018_2093_8
crossref_primary_10_3103_S1068798X21120133
crossref_primary_10_1016_j_engappai_2015_02_009
crossref_primary_10_48175_IJARSCT_15539
crossref_primary_10_1109_ACCESS_2019_2917891
crossref_primary_10_1016_j_arcontrol_2022_04_001
crossref_primary_10_1061_JPSEA2_PSENG_1515
crossref_primary_10_1016_j_cirpj_2015_05_004
crossref_primary_10_3390_en14092484
crossref_primary_10_1016_j_procir_2019_01_098
crossref_primary_10_1016_j_procir_2022_02_131
crossref_primary_10_3390_app10062106
crossref_primary_10_3390_s24030824
crossref_primary_10_3390_app10217883
crossref_primary_10_7469_JKSQM_2015_43_4_573
crossref_primary_10_1016_j_renene_2019_06_103
crossref_primary_10_1016_j_oceaneng_2018_07_004
crossref_primary_10_1177_1475090214540874
crossref_primary_10_1108_JQME_10_2019_0101
crossref_primary_10_1365_s40702_017_0378_2
crossref_primary_10_35940_ijrte_E5145_019521
crossref_primary_10_1016_j_heliyon_2023_e20055
crossref_primary_10_1016_j_ijpe_2020_107837
crossref_primary_10_1007_s12206_014_1107_1
crossref_primary_10_1016_j_jcde_2014_12_006
crossref_primary_10_1155_2014_758785
crossref_primary_10_3390_aerospace9120839
crossref_primary_10_1016_j_jmsy_2015_03_005
crossref_primary_10_1016_j_ress_2024_110544
crossref_primary_10_1016_j_oceaneng_2019_01_054
crossref_primary_10_1007_s42524_022_0206_4
crossref_primary_10_7315_CADCAM_2015_401
crossref_primary_10_1007_s10845_014_0933_4
crossref_primary_10_1016_j_asoc_2020_106628
crossref_primary_10_1108_IJQRM_07_2020_0221
crossref_primary_10_1016_j_compind_2016_12_008
crossref_primary_10_3390_en18071616
crossref_primary_10_1016_j_jmapro_2017_04_014
crossref_primary_10_1109_TR_2014_2337073
crossref_primary_10_55452_1998_6688_2024_21_2_10_18
crossref_primary_10_1108_BPMJ_12_2012_0135
crossref_primary_10_1007_s11740_020_00955_y
crossref_primary_10_1016_j_cirp_2015_05_011
crossref_primary_10_1016_j_jclepro_2016_10_185
crossref_primary_10_1016_j_procs_2022_12_360
crossref_primary_10_1007_s11831_019_09339_7
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1109_TNNLS_2017_2751612
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1080_0740817X_2012_690930
crossref_primary_10_1109_TIM_2024_3502814
crossref_primary_10_1007_s11134_019_09627_w
crossref_primary_10_1016_j_ifacol_2016_11_039
crossref_primary_10_1007_s12652_018_0794_3
crossref_primary_10_1177_0957650919883718
crossref_primary_10_1016_j_procs_2024_01_020
crossref_primary_10_1108_JQME_08_2016_0032
crossref_primary_10_1002_qre_2538
crossref_primary_10_1007_s41688_020_00040_4
crossref_primary_10_1016_j_procir_2022_09_051
crossref_primary_10_1007_s40092_015_0132_8
crossref_primary_10_1007_s10845_016_1228_8
crossref_primary_10_1016_j_procir_2014_07_128
crossref_primary_10_3390_pr13030666
crossref_primary_10_1007_s10845_021_01750_x
crossref_primary_10_1002_stc_2914
crossref_primary_10_1016_j_cie_2021_107369
crossref_primary_10_1177_1077546317702030
crossref_primary_10_1007_s00170_020_05202_3
crossref_primary_10_3390_su14052992
crossref_primary_10_1007_s10845_021_01740_z
crossref_primary_10_1109_TIM_2022_3190062
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1016_j_jmsy_2017_07_002
crossref_primary_10_1080_0951192X_2019_1667033
crossref_primary_10_1016_j_jmsy_2021_02_007
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_1016_j_applthermaleng_2020_116229
crossref_primary_10_1002_we_2352
crossref_primary_10_3390_pr8091155
crossref_primary_10_1109_TASE_2018_2844204
crossref_primary_10_1016_j_ejor_2016_02_027
crossref_primary_10_1080_0305215X_2020_1823381
crossref_primary_10_1155_2015_356916
crossref_primary_10_1016_j_compind_2018_07_002
crossref_primary_10_1016_j_ress_2019_106674
crossref_primary_10_1177_1748006X20918787
crossref_primary_10_1109_TR_2012_2194174
crossref_primary_10_1016_j_ijpe_2017_07_014
crossref_primary_10_3390_app12020688
crossref_primary_10_1016_j_cja_2019_03_039
crossref_primary_10_1155_2020_2908568
crossref_primary_10_1016_j_engappai_2024_108340
crossref_primary_10_1016_j_ifacol_2020_12_116
crossref_primary_10_1016_j_engappai_2024_109552
crossref_primary_10_1016_j_ress_2021_107676
crossref_primary_10_1016_j_jprocont_2016_10_003
crossref_primary_10_1016_j_ssci_2021_105529
crossref_primary_10_1109_ACCESS_2019_2935470
crossref_primary_10_1109_ACCESS_2021_3051583
crossref_primary_10_55905_cuadv16n11_091
crossref_primary_10_1109_TSMC_2013_2290772
crossref_primary_10_1016_j_jprocont_2015_08_010
crossref_primary_10_1016_j_promfg_2020_05_137
crossref_primary_10_1016_j_oceaneng_2022_110750
crossref_primary_10_1002_qre_2947
crossref_primary_10_1016_j_measurement_2019_107097
crossref_primary_10_1007_s12206_011_0902_1
crossref_primary_10_1080_24725854_2018_1532135
crossref_primary_10_3390_s19030532
crossref_primary_10_2478_fman_2018_0022
crossref_primary_10_1109_ACCESS_2019_2960310
crossref_primary_10_3233_SW_233481
crossref_primary_10_3390_su12166421
crossref_primary_10_1016_j_ymssp_2016_06_006
crossref_primary_10_3390_s21196440
crossref_primary_10_1007_s00170_019_04078_2
crossref_primary_10_15675_gepros_3007
crossref_primary_10_18775_jibrm_1849_8558_2015_54_3004
crossref_primary_10_1016_j_ifacol_2016_07_325
crossref_primary_10_3390_su10113970
crossref_primary_10_1007_s11071_020_05832_y
crossref_primary_10_1016_j_ymssp_2020_106681
crossref_primary_10_1016_j_measurement_2020_108002
crossref_primary_10_1080_00207543_2017_1346843
crossref_primary_10_3390_en10111913
crossref_primary_10_1007_s11668_016_0111_4
crossref_primary_10_1016_j_asoc_2019_105622
crossref_primary_10_1007_s40948_018_0086_6
crossref_primary_10_1177_0954408919862720
crossref_primary_10_3390_pr10112173
crossref_primary_10_1007_s00170_013_5064_0
crossref_primary_10_31818_JKNST_2023_12_6_4_479
crossref_primary_10_1016_j_ymssp_2021_108524
crossref_primary_10_3390_app112311516
crossref_primary_10_1016_j_jmsy_2017_09_003
crossref_primary_10_1016_j_ress_2014_06_005
crossref_primary_10_4028_www_scientific_net_AMR_1039_155
crossref_primary_10_1088_1361_6501_aa8396
crossref_primary_10_1016_j_engfailanal_2017_04_015
crossref_primary_10_1007_s00170_023_12158_7
crossref_primary_10_1016_j_ifacol_2019_11_170
crossref_primary_10_1016_j_ifacol_2018_08_370
crossref_primary_10_1109_ACCESS_2020_2967436
crossref_primary_10_1016_j_measurement_2018_10_089
crossref_primary_10_1016_j_eswa_2021_116091
crossref_primary_10_3390_machines12120833
crossref_primary_10_1016_j_ifacol_2019_10_005
crossref_primary_10_2139_ssrn_4118114
crossref_primary_10_1007_s00170_019_04094_2
crossref_primary_10_1016_j_asoc_2018_05_015
crossref_primary_10_3390_s21041470
crossref_primary_10_3390_math11081801
crossref_primary_10_1155_2013_983595
crossref_primary_10_1007_s10845_016_1222_1
crossref_primary_10_1007_s00170_012_4261_6
crossref_primary_10_1007_s42524_021_0174_0
crossref_primary_10_1007_s00170_023_12020_w
crossref_primary_10_3390_app11093780
crossref_primary_10_3390_sym17030377
crossref_primary_10_1007_s10845_016_1268_0
crossref_primary_10_1038_s41598_023_42751_5
crossref_primary_10_1016_j_promfg_2020_01_121
crossref_primary_10_1109_TIM_2025_3545540
crossref_primary_10_1016_j_ymssp_2015_04_039
crossref_primary_10_1080_08982112_2020_1766692
crossref_primary_10_1080_15732479_2018_1547769
crossref_primary_10_1109_TR_2015_2418294
crossref_primary_10_2514_1_J059250
crossref_primary_10_1016_j_ifacol_2020_11_031
crossref_primary_10_1016_j_measurement_2025_117283
crossref_primary_10_1177_16878132241272157
crossref_primary_10_1007_s00170_017_0916_7
crossref_primary_10_1016_j_cie_2024_110469
crossref_primary_10_3390_en15020504
crossref_primary_10_1109_ACCESS_2019_2942371
crossref_primary_10_70315_uloap_ulirs_2024_0102003
crossref_primary_10_1109_TIM_2021_3054000
crossref_primary_10_1002_adsu_202400575
crossref_primary_10_1016_j_aei_2020_101139
crossref_primary_10_1007_s00170_013_5065_z
crossref_primary_10_1007_s10845_015_1179_5
crossref_primary_10_1007_s10845_021_01739_6
crossref_primary_10_1016_j_ress_2022_108643
crossref_primary_10_1093_comjnl_bxv126
crossref_primary_10_1109_ACCESS_2024_3454548
crossref_primary_10_1007_s00170_017_1268_z
crossref_primary_10_1007_s11573_017_0889_x
crossref_primary_10_1016_j_ifacol_2018_08_346
crossref_primary_10_1115_1_4048787
crossref_primary_10_2478_mspe_2020_0029
crossref_primary_10_1016_j_aei_2020_101226
crossref_primary_10_1016_j_ymssp_2015_02_008
crossref_primary_10_1108_IJQRM_07_2021_0216
crossref_primary_10_1016_j_promfg_2020_02_131
crossref_primary_10_1016_j_cor_2017_03_003
crossref_primary_10_1080_15732479_2016_1149871
crossref_primary_10_1016_j_promfg_2020_10_033
crossref_primary_10_3390_en17051010
crossref_primary_10_1007_s10845_018_1428_5
crossref_primary_10_1016_j_ifacol_2023_10_1539
crossref_primary_10_1016_j_wear_2016_05_017
crossref_primary_10_1016_j_jobe_2020_101221
crossref_primary_10_1016_j_dsp_2014_08_006
crossref_primary_10_3390_machines12110762
crossref_primary_10_1177_1550147718755290
crossref_primary_10_3182_20120531_2_NO_4020_00019
crossref_primary_10_1007_s12206_013_0114_y
crossref_primary_10_1016_j_ymssp_2015_02_016
crossref_primary_10_1016_j_procir_2018_08_318
crossref_primary_10_1016_j_promfg_2020_10_045
crossref_primary_10_1177_14759217221116041
crossref_primary_10_3390_app12168081
crossref_primary_10_1016_j_jmsy_2023_02_018
crossref_primary_10_1016_j_jmsy_2024_04_026
crossref_primary_10_1109_ACCESS_2017_2774261
crossref_primary_10_1109_TIM_2010_2078296
crossref_primary_10_1016_j_ssci_2013_10_020
crossref_primary_10_1016_j_ress_2023_109708
crossref_primary_10_1016_j_jmsy_2018_03_002
crossref_primary_10_1007_s12206_020_2208_7
crossref_primary_10_1177_0954408917691072
crossref_primary_10_3390_s24113454
crossref_primary_10_3390_s21041044
crossref_primary_10_1007_s10845_020_01578_x
crossref_primary_10_1016_j_cie_2023_109033
crossref_primary_10_1016_j_ymssp_2016_05_041
crossref_primary_10_1016_j_isatra_2020_03_007
crossref_primary_10_1016_j_ymssp_2018_08_039
crossref_primary_10_1109_ACCESS_2021_3059244
crossref_primary_10_1177_0954409714525145
crossref_primary_10_1016_j_jprocont_2021_12_009
crossref_primary_10_1177_1475921720972926
crossref_primary_10_1109_TR_2016_2645840
crossref_primary_10_1016_j_chemolab_2023_104809
crossref_primary_10_1007_s00291_015_0405_z
crossref_primary_10_3390_infrastructures2040020
crossref_primary_10_1016_j_ress_2021_108140
crossref_primary_10_1109_ACCESS_2019_2923791
crossref_primary_10_1109_TIA_2017_2669195
crossref_primary_10_3390_en15196909
crossref_primary_10_1177_17568293221150171
Cites_doi 10.1109/AERO.2001.931316
10.1109/MIM.2008.4579269
10.1016/0951-8320(94)90010-8
10.1007/s11771-008-0130-8
10.1109/SOLI.2008.4686408
10.1115/IMECE2005-82657
10.1016/S0967-0661(02)00141-7
10.1109/AERO.2000.877920
10.1109/AUTEST.2005.1609172
10.1504/IJMPT.2004.003920
10.1109/AERO.2004.1368172
10.1002/aic.690400809
10.1080/07408170590929018
10.1006/mssp.2002.1483
10.1016/j.csda.2007.07.003
10.1093/imaman/13.1.3
10.1093/imaman/dpi029
10.21236/ADA408968
10.1007/s00170-005-0111-0
10.1117/12.717514
10.1007/s12204-008-0318-y
10.1109/ISAP.1996.501092
10.1007/s00170-005-0114-x
10.1016/j.ces.2003.09.012
10.1109/AERO.2000.877892
10.1115/1.2815585
10.1080/10789669.2005.10391123
10.1109/23.467727
10.1007/s00170-004-2131-6
10.1007/s001700170173
10.1007/978-3-642-76626-8_14
10.1007/s001700170135
10.1016/S0098-1354(03)00151-0
10.1007/978-3-642-97610-0
10.1109/PES.2005.1489277
10.1080/07408170701730818
10.1080/07408170600847168
10.1006/mssp.1998.0183
10.1109/NAFIPS.2005.1548498
10.2514/6.2008-1837
10.1017/S0890060401154089
10.1080/00207540412331327727
10.1016/j.ymssp.2006.10.001
10.1109/AERO.2007.352872
10.1109/ICMLC.2004.1380389
10.1016/S0888-3270(03)00079-7
10.1115/DETC2005-84095
10.1117/12.475502
10.1016/j.fss.2007.07.004
10.1109/78.91145
10.1109/ACC.2005.1470385
10.1109/72.279188
10.1117/12.152553
10.1002/asmb.693
10.1006/mssp.1996.0064
10.1109/87.508893
10.1109/ROBOT.2003.1241660
10.1016/j.energy.2004.03.031
10.1109/AERO.2004.1368175
10.1109/TASE.2007.910302
10.1109/INDIN.2006.275836
10.1016/j.ymssp.2005.09.012
10.1016/j.ejor.2006.01.041
10.1006/mssp.2000.1309
10.1080/09537280412331309208
10.3901/JME.2007.10.137
10.1115/1.2795761
ContentType Journal Article
Copyright Springer-Verlag London Limited 2009
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2009). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London Limited 2009
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2009). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00170-009-2482-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 313
ExternalDocumentID 10_1007_s00170_009_2482_0
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c382t-f499830cd5106c781a855b49b374069e11f15337b7cae04f1a5f8161f193f14c3
IEDL.DBID AGYKE
ISSN 0268-3768
IngestDate Fri Jul 25 11:02:22 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Wed Oct 01 04:21:05 EDT 2025
Fri Feb 21 02:31:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Condition-based maintenance
Prognostics
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-f499830cd5106c781a855b49b374069e11f15337b7cae04f1a5f8161f193f14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262457396
PQPubID 2044010
PageCount 17
ParticipantIDs proquest_journals_2262457396
crossref_primary_10_1007_s00170_009_2482_0
crossref_citationtrail_10_1007_s00170_009_2482_0
springer_journals_10_1007_s00170_009_2482_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2010
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References KothamasuRHuangSHVerDuinWHSystem health monitoring and prognostics—a review of current paradigms and practicesInt J Adv Manuf Technol2006281012102410.1007/s00170-004-2131-6
DengJLIntroduction to grey system theoryJ Grey Syst1989111240701.90057
LiYBillingtonSZhangCKurfessTDanylukSLiangSAdaptive prognostics for rolling element bearing conditionMech Sys Signal Process19991310311310.1006/mssp.1998.0183
Lloyd GM, Hasselman T, Paez T (2005) A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates. Eng/Tech Management, Safety Eng and Risk Analysis, Tech and Soc, Eng Bus Management, Health and Safety 2005, pp 97–106
Chen MY (1990) Uncertainty analysis and grey modeling. Proceedings of the 1st International Symposium on Uncertainty Modeling Analysis, pp 469–473
HuangRQXiLFResidual life predictions for ball bearing based on neural networksChinese Journal of Mechanical Engineering2007431013714310.3901/JME.2007.10.137
BebbingtonMLaiCDZitikisRReduction in mean residual life in the presence of a constant competing riskAppl Stoch Models Bus Ind200824151631164.9000710.1002/asmb.6932422811
GertsbakhIBModels of preventive maintenance1977AmsterdamNorth-Holland0349.90055
Goh KM, Tjahj B, Baines T, Subramaniam S (2006) A review of research in manufacturing prognostics. 2006 IEEE Int Conf on Ind, 16–18 Aug. 2006, Singapore (Singapore), vol 16–18, pp 417–422
HeQHHeXYZhuJXFault detection of excavator’s hydraulic system based on dynamic principal component analysisJ Cent South Univ Technol20081570070510.1007/s11771-008-0130-8
ChinnamRBBaruahPA neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systemsInt J Mater Prod Technol20042016617910.1504/IJMPT.2004.003920
QiuJZhangCSethBBLiangSYDamage mechanics approach for bearing lifetime prognosticsMech Sys Signal Process20021681782910.1006/mssp.2002.1483
Schwabacher M, Goebel K (2005) A survey of artificial intelligence for prognostics. AAAI Fall Symposium—Tech Rep, pp 107–114
Liu Y, Li SQ (2007) Decision support for maintenance management using Bayesian networks. Int Conf on Wireless Communications, Networking and Mobile Computing, art. no. 4341175, 5708–5711
CoxDRRegression models and life-tablesJ R Stat Soc1972134187220
CamciFProcess monitoring, diagnostics and prognostics using support vector machines and hidden Markov models2005DetroitGraduate School of Wanye State University
LeeJMYooCKChoiSWVanrolleghemPANonlinear process monitoring using kernel principal component analysisChem Eng Sci20045922323410.1016/j.ces.2003.09.012
Przytula KW, Choi A (2007) Reasoning framework for diagnosis and prognosis. Proceedings of 2007 IEEE Aerospace Conf, 3–10 Mar 2007, Big Sky, MT (USA), art. no. 4161649
BanjevicDJardineAKSCalculation of reliability function and remaining useful life for a Markov failure time processIMA J Manag Math20061721151301137.9043810.1093/imaman/dpi0292216398
LiZGZhouSChoubeySSievenpiperCFailure event prediction using the Cox proportional hazard model driven by frequent failure signaturesIIE Trans20073930331510.1080/07408170600847168
Butler KL (1996) An expert system based framework for an incipient failure detection and predictive maintenance system. Proceedings of the Int Conf on Intelligent Sys Applications to Power Sys, ISAP, 28 Jan–2 Feb 1996, Orlando, FL (USA), pp 321–326
Tu Y (1995) Decision support system for equipment diagnosis and maintenance management: an artificial intelligent approach. Research Proposal, City University of Hong Kong, HK
Satish B, Sarma NDR (2005) A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. IEEE Power Eng Soc General Meeting, 12–16 Jun 2005, San Francisco, CA (USA), vol 3, pp 2291–2294
YamRCMTsePWLiLTuPIntelligent predictive decision support system for condition-based maintenanceInt J Adv Manuf Technol20011738339110.1007/s001700170173
DongMYangZBDynamic Bayesian network based prognosis in machining processesJ Shanghai Jiaotong Univ (Sci)200813331832210.1007/s12204-008-0318-y
Khawaja T, Vachtsevanos G, Wu B (2005) Reasoning about uncertainty in prognosis: a confidence prediction neural network approach. Annual Conf of the North American Fuzzy Inf Proc Society—NAFIPS, 26–28 Jun 2005, Detroit, MI (USA), vol 2005, pp 7–12
DongMHeDBanerjeePKellerJEquipment health diagnosis and prognosis using hidden semi-Markov modelsInt J Adv Manuf Technol20063073874910.1007/s00170-005-0111-0
YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProd Plan Control20041579680110.1080/09537280412331309208
Dong YL, Gu YJ, Yang K, Zhang WK (2004) A combining condition prediction model and its application in power plant. Proceedings of the Int Conf on Machine Learning and Cybernetics, 26–29 Aug 2004, Shanghai (China), vol 6, pp 3474–3478
JardineAKSDamingLDraganBA review on machinery diagnostics and prognostics implementing condition-based maintenanceMech Sys Signal Process2006201483151010.1016/j.ymssp.2005.09.012
ShettyPMylaraswamyDEkambaramTA hybrid prognostic model formulation and health estimation of auxiliary power unitsJ Eng Gas Turbine Power2008130202160110.1115/1.2795761
Byington CS, Watson M, Edwards D (2004) Data-driven neural network methodology to remaining life predictions for aircraft actuator components. Proceedings of the IEEE Aerospace Conf, 6–13 Mar 2004, Big Sky, MT (USA), vol 6, pp 3581–3589
Mohanty S, Chattopadhyay A, Peralta P, Das S, Willhauck C (2008) Fatigue life prediction using multivariate Gaussian process. Collection of Tech Papers AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf, 7–10 Apr 2008, Schaumburg, IL (USA), art. no. 2008-1837
Engel SJ, Gilmartin BJ, Bongort K, Hess A (2000) Prognostics, the real issues involved with predicting life remaining. Proceedings of the IEEE Aerospace Conf, 18–25 Mar. 2000, Big Sky, MT (USA), vol 6, pp 457–469
DongMHeDHidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosisEur J Oper Res200717838588781163.9078410.1016/j.ejor.2006.01.041
Jamsa-JounelaSLVermasvuoriMEndenPHaavistoSA process monitoring system based on the Kohonen self-organizing mapsControl Eng Pract200311839210.1016/S0967-0661(02)00141-7
CempelCNatkeHGTabaszewskiMA passive diagnostic experiment with ergodic propertiesMech Sys Signal Process19971110711710.1006/mssp.1996.0064
Sheppard JW, Kaufman MA (2005) Bayesian diagnosis and prognosis using instrument uncertainty. Proceedings of AUTOTESTCON, 26–29 Sep 2005, Orlando, FL (USA), vol 2005, pp 417–423
WangWA model to predict the residual life of rolling element bearings given monitored condition information to dateIMA J Manag Math2002133161022.9101610.1093/imaman/13.1.31993123
FalaschiALafacePDe MoriRContinuously variable transition probability HMM for speech recognitionSpeech recognition and understanding1992BerlinSpringer125130
LuoJBixbyAPattipatiKLiuQKawamotoMChigusaSAn interacting multiple model approach to model-based prognosticsSyst Man Cybern20031189194
KohonenTSelf-organizing maps1995BerlinSpringer
Gu J, Bilal M, Pecht M (2008) Grey prediction method used in failure prognostics for electronics. http://www.prognostics.umd.edu/PHM_Website_new/PHM_grey_prediction.pdf
FrelicotCA fuzzy-based prognostic adaptive system. RAIRO-APII-JESAJ Eur Sys Autom1996302–3281299
LeeJMYooCKLeeIBOn-line batch process monitoring using a consecutively updated multiway principal component analysis modelComput Chem Eng2003271903191210.1016/S0098-1354(03)00151-0
KumarDKlefsjoBProportional hazards model: a reviewReliab Eng Sys Saf19944417718810.1016/0951-8320(94)90010-8
WangWQGolnaraghiMFIsmailFPrognosis of machine health condition using neuro-fuzzy systemsMech Sys Signal Process20041881383110.1016/S0888-3270(03)00079-7
Kwan C, Zhang X, Xu R, Haynes L (2003) A novel approach to fault diagnostics and prognostics. Proceedings of the 2003 IEEE Int Conf on Robotics and Automation, 14–19 Sep 2003, Taipei (Taiwan), vol 1, pp 604–609
GebraeelNZLawleyMALiRRyanJKResidual-life distributions from component degradation signals: a Bayesian approachIIE Trans20053754355710.1080/07408170590929018
TsoukalasLHUhrigREFuzzy and neural approaches in engineering1997New YorkWiley
DongMHeDA segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodologyMech Sys Signal Process20072152248226610.1016/j.ymssp.2006.10.001
KatipamulaSBrambleyMRMethods for fault detection, diagnostics, and prognostics for building systems—a review, part IHVAC&R Res2005111325
BiagettiTSciubbaEAutomatic diagnostics and prognostics of energy conversion processes via knowledge based systemsEnergy20042912–152553257210.1016/j.energy.2004.03.031
Garga AK, McClintic KT, Campbell RL, Yang CC, Lebold MS, Hay TA, Byington CS (2001) Hybrid reasoning for prognostic learning in CBM systems. Proceedings of the IEEE Aerospace Conf, 10–17 Mar 2001, Big Sky, MT (USA), vol 6, pp 2957–2969
GuHYTsengCYLeeLSIsolated-utterance speech recognition using hidden Markov models with bounded state durationIEEE Trans Signal Process19913981743175110.1109/78.91145
Xue GX, Xiao LC, Bie MH, Lu SW (2005) Fault prediction of boilers with fuzzy mathematics and RBF neural network. Proceedings of Int Conf on Communications, Circuits and Sys, 27–30 May 2005, Hong Kong (China), vol 2, pp 1012–1016
Shao Q, Shao C, Feng CJ (2008) Identification of non-stationary time series based on SVM-HMM method. Proceedings of 2008 IEEE Int Conf on Service Operations and Logistics, and Informatics, 12–15 Oct 2008, Beijing, China, vol 1, pp 293–298
KothamasuRHuangSHAdaptive Mamdani fuzzy model for condition-based maintenanceFuzzy Sets Syst20071582715273310.1016/j.fss.2007.07.0042413513
David JM, Krivine JP (1987) Three artificial intelligence issues in fault diagnosis: declarative programming, expert systems, and model-based reasoning. Proceedings of the Sec Euro Workshop on Fault Diagnostics, Reliability and Related Knowledge Based Approaches, vol 6–8, pp 190–196
BunksCMcCarthyDA
P Shetty (2482_CR84) 2008; 130
M Dong (2482_CR60) 2007; 21
M Bebbington (2482_CR62) 2008; 24
M Dong (2482_CR51) 2008; 13
M Dong (2482_CR59) 2007; 178
J Qiu (2482_CR20) 2002; 16
LL Ku (2482_CR70) 2006; 27
G Yu (2482_CR41) 2006; 30
S Zhang (2482_CR37) 1997; 119
2482_CR71
2482_CR79
S Katipamula (2482_CR5) 2005; 11
2482_CR75
SL Jamsa-Jounela (2482_CR46) 2003; 11
D Kumar (2482_CR61) 1994; 44
2482_CR4
AKS Jardine (2482_CR6) 2006; 20
2482_CR8
2482_CR39
C Bunks (2482_CR52) 2000; 14
2482_CR7
JT Connor (2482_CR36) 1994; 5
WQ Wang (2482_CR77) 2004; 18
R Kothamasu (2482_CR81) 2007; 158
D Banjevic (2482_CR32) 2006; 17
P Nomikos (2482_CR74) 2004; 40
W Wang (2482_CR30) 2002; 13
C Cempel (2482_CR19) 1997; 11
J Yan (2482_CR31) 2004; 15
2482_CR24
2482_CR69
2482_CR21
F Camci (2482_CR55) 2005
2482_CR65
2482_CR22
2482_CR66
2482_CR23
HY Gu (2482_CR56) 1991; 39
ZG Li (2482_CR67) 2007; 39
PYL Tu (2482_CR2) 2001; 17
2482_CR28
Y Li (2482_CR12) 1999; 13
P Wang (2482_CR42) 2001; 15
K Holmberg (2482_CR1) 2004
T Biagetti (2482_CR25) 2004; 29
L Victor (2482_CR63) 2008; 52
SS Choi (2482_CR26) 1995; 42
2482_CR50
R Kothamasu (2482_CR9) 2006; 28
A Falaschi (2482_CR57) 1992
2482_CR13
2482_CR14
2482_CR15
2482_CR53
IB Gertsbakh (2482_CR3) 1977
2482_CR10
2482_CR11
P Baruah (2482_CR54) 2003; 43
2482_CR18
J Luo (2482_CR16) 2003; 1
JM Lee (2482_CR73) 2004; 59
RQ Huang (2482_CR47) 2007; 43
M Dong (2482_CR58) 2006; 30
JM Lee (2482_CR76) 2003; 27
QH He (2482_CR72) 2008; 15
2482_CR82
2482_CR83
2482_CR40
K Goebel (2482_CR33) 2005; 11
2482_CR85
T Kohonen (2482_CR45) 1995
AH Elwany (2482_CR87) 2008; 40
2482_CR80
A Ray (2482_CR29) 1996; 4
NZ Gebraeel (2482_CR43) 2008; 5
2482_CR48
LH Tsoukalas (2482_CR35) 1997
2482_CR49
2482_CR86
GJ Kacprzynski (2482_CR17) 2004; 56
RCM Yam (2482_CR38) 2001; 17
2482_CR44
RB Chinnam (2482_CR78) 2004; 20
NZ Gebraeel (2482_CR34) 2005; 37
DR Cox (2482_CR64) 1972; 134
JL Deng (2482_CR68) 1989; 1
C Frelicot (2482_CR27) 1996; 30
References_xml – reference: LeeJMYooCKLeeIBOn-line batch process monitoring using a consecutively updated multiway principal component analysis modelComput Chem Eng2003271903191210.1016/S0098-1354(03)00151-0
– reference: Kacprzynski GJ, Gumina M, Roemer MJ, Caguiat DE (2001) A prognostic modeling approach for predicting recurring maintenance for shipboard propulsion systems. Proceedings of ASME Turbo Expo, 4–7 June 2001, New Orleans, LA (USA), P884310
– reference: CempelCNatkeHGTabaszewskiMA passive diagnostic experiment with ergodic propertiesMech Sys Signal Process19971110711710.1006/mssp.1996.0064
– reference: GoebelKSahaBSaxenaAPrognostics in battery health managementIEEE Instrum Meas Mag2005114334010.1109/MIM.2008.4579269
– reference: JardineAKSDamingLDraganBA review on machinery diagnostics and prognostics implementing condition-based maintenanceMech Sys Signal Process2006201483151010.1016/j.ymssp.2005.09.012
– reference: Goh KM, Tjahj B, Baines T, Subramaniam S (2006) A review of research in manufacturing prognostics. 2006 IEEE Int Conf on Ind, 16–18 Aug. 2006, Singapore (Singapore), vol 16–18, pp 417–422
– reference: BebbingtonMLaiCDZitikisRReduction in mean residual life in the presence of a constant competing riskAppl Stoch Models Bus Ind200824151631164.9000710.1002/asmb.6932422811
– reference: FrelicotCA fuzzy-based prognostic adaptive system. RAIRO-APII-JESAJ Eur Sys Autom1996302–3281299
– reference: HeQHHeXYZhuJXFault detection of excavator’s hydraulic system based on dynamic principal component analysisJ Cent South Univ Technol20081570070510.1007/s11771-008-0130-8
– reference: LiYBillingtonSZhangCKurfessTDanylukSLiangSAdaptive prognostics for rolling element bearing conditionMech Sys Signal Process19991310311310.1006/mssp.1998.0183
– reference: KothamasuRHuangSHAdaptive Mamdani fuzzy model for condition-based maintenanceFuzzy Sets Syst20071582715273310.1016/j.fss.2007.07.0042413513
– reference: VictorLRiquelmeMBalakrishnanNSanhuezaALifetime analysis based on the generalized Birnbaum–Saunders distributionComput Stat Data Anal200852207920970556462110.1016/j.csda.2007.07.003
– reference: HolmbergKKomonenKOedewaldPPeltonenMReimanTRouhiainenVTervoJHeinoPSafety and reliability technology review. Res Rep BTUO43-0312092004EspooVTT Industrial Systems
– reference: GebraeelNZLawleyMAA neural network degradation model for computing and updating residual life distributionsIEEE Trans Autom Sci Eng20085138740110.1109/TASE.2007.910302
– reference: Lloyd GM, Hasselman T, Paez T (2005) A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates. Eng/Tech Management, Safety Eng and Risk Analysis, Tech and Soc, Eng Bus Management, Health and Safety 2005, pp 97–106
– reference: Gu J, Bilal M, Pecht M (2008) Grey prediction method used in failure prognostics for electronics. http://www.prognostics.umd.edu/PHM_Website_new/PHM_grey_prediction.pdf
– reference: Tu Y (1995) Decision support system for equipment diagnosis and maintenance management: an artificial intelligent approach. Research Proposal, City University of Hong Kong, HK
– reference: Dong YL, Gu YJ, Yang K, Zhang WK (2004) A combining condition prediction model and its application in power plant. Proceedings of the Int Conf on Machine Learning and Cybernetics, 26–29 Aug 2004, Shanghai (China), vol 6, pp 3474–3478
– reference: BunksCMcCarthyDAl-AniTCondition-based maintenance of machines using hidden Markov modelsMech Sys Signal Process200014459761210.1006/mssp.2000.1309
– reference: NomikosPMacGregorJFMonitoring batch processes using multi-way principal component analysisAIChE J2004401361137510.1002/aic.690400809
– reference: BanjevicDJardineAKSCalculation of reliability function and remaining useful life for a Markov failure time processIMA J Manag Math20061721151301137.9043810.1093/imaman/dpi0292216398
– reference: DongMYangZBDynamic Bayesian network based prognosis in machining processesJ Shanghai Jiaotong Univ (Sci)200813331832210.1007/s12204-008-0318-y
– reference: ShettyPMylaraswamyDEkambaramTA hybrid prognostic model formulation and health estimation of auxiliary power unitsJ Eng Gas Turbine Power2008130202160110.1115/1.2795761
– reference: ConnorJTMatinemRDAtlasLERecurrent neutral networks and robust time series predictionIEEE Trans Neural Netw1994524025410.1109/72.279188
– reference: Lembessis E, Antonopoulos G, King RE, Halatsis C, Torres J (1989) ‘CASSANDRA’: an on-line expert system for fault prognosis. Proceedings of the 5th CIM Euro Conf, 1989, pp 371–377
– reference: WangWQGolnaraghiMFIsmailFPrognosis of machine health condition using neuro-fuzzy systemsMech Sys Signal Process20041881383110.1016/S0888-3270(03)00079-7
– reference: KuLLHuangTCSequential monitoring of manufacturing processes: an application of grey forecasting modelsInt J Adv Manuf Technol2006275–654354610.1007/s00170-004-2198-0
– reference: Chen MY (1990) Uncertainty analysis and grey modeling. Proceedings of the 1st International Symposium on Uncertainty Modeling Analysis, pp 469–473
– reference: Byington CS, Watson M, Edwards D, Stoelting P (2004) A model-based approach to prognostics and health management for flight control actuators. Proceedings of the IEEE Aerospace Conf, 6–13 Mar 2004, Big Sky, MT (USA), vol 6, pp 3351–3362
– reference: GuHYTsengCYLeeLSIsolated-utterance speech recognition using hidden Markov models with bounded state durationIEEE Trans Signal Process19913981743175110.1109/78.91145
– reference: Przytula KW, Choi A (2007) Reasoning framework for diagnosis and prognosis. Proceedings of 2007 IEEE Aerospace Conf, 3–10 Mar 2007, Big Sky, MT (USA), art. no. 4161649
– reference: ChoiSSKangKSKimHGChangSHDevelopment of an on-line fuzzy expert system for integrated alarm processing in nuclear power plantsIEEE Trans Nucl Sci19954241406141810.1109/23.467727
– reference: Liu Y, Li SQ (2007) Decision support for maintenance management using Bayesian networks. Int Conf on Wireless Communications, Networking and Mobile Computing, art. no. 4341175, 5708–5711
– reference: Garga AK, McClintic KT, Campbell RL, Yang CC, Lebold MS, Hay TA, Byington CS (2001) Hybrid reasoning for prognostic learning in CBM systems. Proceedings of the IEEE Aerospace Conf, 10–17 Mar 2001, Big Sky, MT (USA), vol 6, pp 2957–2969
– reference: KothamasuRHuangSHVerDuinWHSystem health monitoring and prognostics—a review of current paradigms and practicesInt J Adv Manuf Technol2006281012102410.1007/s00170-004-2131-6
– reference: ZhangSGanesanRMultivariable trend analysis using neural networks for intelligent diagnostics of rotating machineryTrans ASME J Eng Gas Turbine Power199711937838410.1115/1.2815585
– reference: ChinnamRBBaruahPA neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systemsInt J Mater Prod Technol20042016617910.1504/IJMPT.2004.003920
– reference: Schwabacher M, Goebel K (2005) A survey of artificial intelligence for prognostics. AAAI Fall Symposium—Tech Rep, pp 107–114
– reference: DongMHeDA segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodologyMech Sys Signal Process20072152248226610.1016/j.ymssp.2006.10.001
– reference: Engel SJ, Gilmartin BJ, Bongort K, Hess A (2000) Prognostics, the real issues involved with predicting life remaining. Proceedings of the IEEE Aerospace Conf, 18–25 Mar. 2000, Big Sky, MT (USA), vol 6, pp 457–469
– reference: Parker BE, Nigro TM, Carley MP, Barron RL, Ward DG, Poor HV, Rock D (1993) Helicopter gearbox diagnostics and prognostics using vibration signature analysis. Proceedings of the SPIE—The Int Society for Optical Eng, 13 April 1993, Orlando, FL (USA), vol 1965, pp 531–542
– reference: Byington CS, Watson M, Edwards D (2004) Data-driven neural network methodology to remaining life predictions for aircraft actuator components. Proceedings of the IEEE Aerospace Conf, 6–13 Mar 2004, Big Sky, MT (USA), vol 6, pp 3581–3589
– reference: Liao H, Qiu H, Lee J, Lin D, Banjevic D, Jardine A (2005) A predictive tool for remaining useful life estimation of rotating machinery components. Proceedings of the ASME Int Design Eng Tech Conf and Computers and Inf in Eng Conf-DETC, 24–28 Sep 2005, Long Beach, CA (USA), vol 1A, pp 509–515
– reference: Mohanty S, Chattopadhyay A, Peralta P, Das S, Willhauck C (2008) Fatigue life prediction using multivariate Gaussian process. Collection of Tech Papers AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf, 7–10 Apr 2008, Schaumburg, IL (USA), art. no. 2008-1837
– reference: LuoJBixbyAPattipatiKLiuQKawamotoMChigusaSAn interacting multiple model approach to model-based prognosticsSyst Man Cybern20031189194
– reference: FalaschiALafacePDe MoriRContinuously variable transition probability HMM for speech recognitionSpeech recognition and understanding1992BerlinSpringer125130
– reference: TsoukalasLHUhrigREFuzzy and neural approaches in engineering1997New YorkWiley
– reference: DongMHeDBanerjeePKellerJEquipment health diagnosis and prognosis using hidden semi-Markov modelsInt J Adv Manuf Technol20063073874910.1007/s00170-005-0111-0
– reference: Luo J, Namburu M, Pattipati K, Liu Q, Kawamoto M, Chigusa S (2003) Model-based prognostic techniques [maintenance applications]. Proceedings of AUTOTESTCON, IEEE Sys Readiness Tech Conf, 22–25 Sep 2003, Anaheim, CA (USA), vol 22–25, pp 330–340
– reference: KumarDKlefsjoBProportional hazards model: a reviewReliab Eng Sys Saf19944417718810.1016/0951-8320(94)90010-8
– reference: GebraeelNZLawleyMALiRRyanJKResidual-life distributions from component degradation signals: a Bayesian approachIIE Trans20053754355710.1080/07408170590929018
– reference: DongMHeDHidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosisEur J Oper Res200717838588781163.9078410.1016/j.ejor.2006.01.041
– reference: Zhang L, Li XS (2006) A review of fault prognostics in condition based maintenance. The Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-electronic Technology, and Artificial Intelligence, 13–15 Oct 2006, Beijing (China), vol 6357, art. no. 635752
– reference: KohonenTSelf-organizing maps1995BerlinSpringer
– reference: Oppenheimer CH, Loparo KA (2002) Physically based diagnosis and prognosis of cracked rotor shafts. Proceedings of SPIE Compo and Sys Diagnostics, Prognostics, and Health Management II, vol 4733, pp 122–132
– reference: Zhang XD, Xu R, Chiman K, Liang SY, Xie QL, Haynes L (2005) An integrated approach to bearing fault diagnostics and prognostics. Proceedings of the 2005 American Control Conf, 8–10 Jun 2005, Portland, OR (USA), vol 4, pp 2750–2755
– reference: Kwan C, Zhang X, Xu R, Haynes L (2003) A novel approach to fault diagnostics and prognostics. Proceedings of the 2003 IEEE Int Conf on Robotics and Automation, 14–19 Sep 2003, Taipei (Taiwan), vol 1, pp 604–609
– reference: Jamsa-JounelaSLVermasvuoriMEndenPHaavistoSA process monitoring system based on the Kohonen self-organizing mapsControl Eng Pract200311839210.1016/S0967-0661(02)00141-7
– reference: CamciFProcess monitoring, diagnostics and prognostics using support vector machines and hidden Markov models2005DetroitGraduate School of Wanye State University
– reference: YamRCMTsePWLiLTuPIntelligent predictive decision support system for condition-based maintenanceInt J Adv Manuf Technol20011738339110.1007/s001700170173
– reference: Huang YP, Huang CC, Hung CH (1994) Determination of the preferred fuzzy variables and applications to the prediction control by the grey modeling. The Sec National Conf on Fuzzy Theory and Application, Taipei (Taiwan), pp 406–409
– reference: HuangRQXiLFResidual life predictions for ball bearing based on neural networksChinese Journal of Mechanical Engineering2007431013714310.3901/JME.2007.10.137
– reference: ElwanyAHGebraeelNZSensor-driven prognostic models for equipment replacement and spare parts inventoryIIE Trans200840762963910.1080/07408170701730818
– reference: TuPYLYamRTsePSunAOWAn integrated maintenance management system for an advanced manufacturing companyInt J Adv Manuf Technol20011769270310.1007/s001700170135
– reference: RayATangiralaSStochastic modeling of fatigue crack dynamics for on-line failure prognosticsIEEE Trans Control Sys Technol1996444345110.1109/87.508893
– reference: Xue GX, Xiao LC, Bie MH, Lu SW (2005) Fault prediction of boilers with fuzzy mathematics and RBF neural network. Proceedings of Int Conf on Communications, Circuits and Sys, 27–30 May 2005, Hong Kong (China), vol 2, pp 1012–1016
– reference: WangPVachtsevanosGFault prognosis using dynamic wavelet neural networksArtif Intell Eng Des Anal Manuf (AIEDAM)20011543493650981.68510
– reference: BaruahPChinnamRBHMMs for diagnostics and prognostics in machining processesInt J Prod Res20034361275129310.1080/00207540412331327727
– reference: Satish B, Sarma NDR (2005) A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. IEEE Power Eng Soc General Meeting, 12–16 Jun 2005, San Francisco, CA (USA), vol 3, pp 2291–2294
– reference: Shao Q, Shao C, Feng CJ (2008) Identification of non-stationary time series based on SVM-HMM method. Proceedings of 2008 IEEE Int Conf on Service Operations and Logistics, and Informatics, 12–15 Oct 2008, Beijing, China, vol 1, pp 293–298
– reference: David JM, Krivine JP (1987) Three artificial intelligence issues in fault diagnosis: declarative programming, expert systems, and model-based reasoning. Proceedings of the Sec Euro Workshop on Fault Diagnostics, Reliability and Related Knowledge Based Approaches, vol 6–8, pp 190–196
– reference: Brotherton T, Jahns J, Jacobs J, Wroblewski D (2000) Prognosis of faults in gas turbine engines. Proceedings of the IEEE Aerospace Conf, 18–25 Mar. 2000, Big Sky, MT (USA), vol 6, pp 163–171
– reference: GertsbakhIBModels of preventive maintenance1977AmsterdamNorth-Holland0349.90055
– reference: Khawaja T, Vachtsevanos G, Wu B (2005) Reasoning about uncertainty in prognosis: a confidence prediction neural network approach. Annual Conf of the North American Fuzzy Inf Proc Society—NAFIPS, 26–28 Jun 2005, Detroit, MI (USA), vol 2005, pp 7–12
– reference: CoxDRRegression models and life-tablesJ R Stat Soc1972134187220
– reference: WangWA model to predict the residual life of rolling element bearings given monitored condition information to dateIMA J Manag Math2002133161022.9101610.1093/imaman/13.1.31993123
– reference: BiagettiTSciubbaEAutomatic diagnostics and prognostics of energy conversion processes via knowledge based systemsEnergy20042912–152553257210.1016/j.energy.2004.03.031
– reference: LiZGZhouSChoubeySSievenpiperCFailure event prediction using the Cox proportional hazard model driven by frequent failure signaturesIIE Trans20073930331510.1080/07408170600847168
– reference: YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProd Plan Control20041579680110.1080/09537280412331309208
– reference: DengJLIntroduction to grey system theoryJ Grey Syst1989111240701.90057
– reference: YuGQiuHDjurdjanovicDJayLFeature signature prediction of a boring process using neural network modeling with confidence boundsInt J Adv Manuf Technol20063061462110.1007/s00170-005-0114-x
– reference: KatipamulaSBrambleyMRMethods for fault detection, diagnostics, and prognostics for building systems—a review, part IHVAC&R Res2005111325
– reference: KacprzynskiGJSarlashkarARoemerMJPredicting remaining life by fusing the physics of failure modeling with diagnosticsJ Met2004562935
– reference: LeeJMYooCKChoiSWVanrolleghemPANonlinear process monitoring using kernel principal component analysisChem Eng Sci20045922323410.1016/j.ces.2003.09.012
– reference: QiuJZhangCSethBBLiangSYDamage mechanics approach for bearing lifetime prognosticsMech Sys Signal Process20021681782910.1006/mssp.2002.1483
– reference: Sheppard JW, Kaufman MA (2005) Bayesian diagnosis and prognosis using instrument uncertainty. Proceedings of AUTOTESTCON, 26–29 Sep 2005, Orlando, FL (USA), vol 2005, pp 417–423
– reference: Butler KL (1996) An expert system based framework for an incipient failure detection and predictive maintenance system. Proceedings of the Int Conf on Intelligent Sys Applications to Power Sys, ISAP, 28 Jan–2 Feb 1996, Orlando, FL (USA), pp 321–326
– ident: 2482_CR21
  doi: 10.1109/AERO.2001.931316
– volume: 11
  start-page: 33
  issue: 4
  year: 2005
  ident: 2482_CR33
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2008.4579269
– volume: 27
  start-page: 543
  issue: 5–6
  year: 2006
  ident: 2482_CR70
  publication-title: Int J Adv Manuf Technol
– volume: 44
  start-page: 177
  year: 1994
  ident: 2482_CR61
  publication-title: Reliab Eng Sys Saf
  doi: 10.1016/0951-8320(94)90010-8
– volume: 15
  start-page: 700
  year: 2008
  ident: 2482_CR72
  publication-title: J Cent South Univ Technol
  doi: 10.1007/s11771-008-0130-8
– ident: 2482_CR86
  doi: 10.1109/SOLI.2008.4686408
– ident: 2482_CR48
– ident: 2482_CR65
  doi: 10.1115/IMECE2005-82657
– volume: 11
  start-page: 83
  year: 2003
  ident: 2482_CR46
  publication-title: Control Eng Pract
  doi: 10.1016/S0967-0661(02)00141-7
– ident: 2482_CR22
– ident: 2482_CR13
  doi: 10.1109/AERO.2000.877920
– ident: 2482_CR49
  doi: 10.1109/AUTEST.2005.1609172
– volume: 20
  start-page: 166
  year: 2004
  ident: 2482_CR78
  publication-title: Int J Mater Prod Technol
  doi: 10.1504/IJMPT.2004.003920
– ident: 2482_CR18
  doi: 10.1109/AERO.2004.1368172
– volume: 40
  start-page: 1361
  year: 2004
  ident: 2482_CR74
  publication-title: AIChE J
  doi: 10.1002/aic.690400809
– volume: 37
  start-page: 543
  year: 2005
  ident: 2482_CR34
  publication-title: IIE Trans
  doi: 10.1080/07408170590929018
– volume: 16
  start-page: 817
  year: 2002
  ident: 2482_CR20
  publication-title: Mech Sys Signal Process
  doi: 10.1006/mssp.2002.1483
– volume: 52
  start-page: 2079
  year: 2008
  ident: 2482_CR63
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2007.07.003
– volume: 13
  start-page: 3
  year: 2002
  ident: 2482_CR30
  publication-title: IMA J Manag Math
  doi: 10.1093/imaman/13.1.3
– volume-title: Safety and reliability technology review. Res Rep BTUO43-031209
  year: 2004
  ident: 2482_CR1
– volume: 17
  start-page: 115
  issue: 2
  year: 2006
  ident: 2482_CR32
  publication-title: IMA J Manag Math
  doi: 10.1093/imaman/dpi029
– ident: 2482_CR14
  doi: 10.21236/ADA408968
– volume: 30
  start-page: 738
  year: 2006
  ident: 2482_CR58
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-005-0111-0
– ident: 2482_CR69
– ident: 2482_CR82
– ident: 2482_CR8
  doi: 10.1117/12.717514
– volume: 13
  start-page: 318
  issue: 3
  year: 2008
  ident: 2482_CR51
  publication-title: J Shanghai Jiaotong Univ (Sci)
  doi: 10.1007/s12204-008-0318-y
– ident: 2482_CR23
– ident: 2482_CR24
  doi: 10.1109/ISAP.1996.501092
– volume: 30
  start-page: 614
  year: 2006
  ident: 2482_CR41
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-005-0114-x
– volume: 59
  start-page: 223
  year: 2004
  ident: 2482_CR73
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2003.09.012
– ident: 2482_CR11
  doi: 10.1109/AERO.2000.877892
– volume: 119
  start-page: 378
  year: 1997
  ident: 2482_CR37
  publication-title: Trans ASME J Eng Gas Turbine Power
  doi: 10.1115/1.2815585
– volume: 11
  start-page: 3
  issue: 1
  year: 2005
  ident: 2482_CR5
  publication-title: HVAC&R Res
  doi: 10.1080/10789669.2005.10391123
– volume: 42
  start-page: 1406
  issue: 4
  year: 1995
  ident: 2482_CR26
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/23.467727
– volume: 28
  start-page: 1012
  year: 2006
  ident: 2482_CR9
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2131-6
– volume: 17
  start-page: 383
  year: 2001
  ident: 2482_CR38
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700170173
– start-page: 125
  volume-title: Speech recognition and understanding
  year: 1992
  ident: 2482_CR57
  doi: 10.1007/978-3-642-76626-8_14
– volume: 17
  start-page: 692
  year: 2001
  ident: 2482_CR2
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s001700170135
– volume: 27
  start-page: 1903
  year: 2003
  ident: 2482_CR76
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(03)00151-0
– ident: 2482_CR71
– volume-title: Self-organizing maps
  year: 1995
  ident: 2482_CR45
  doi: 10.1007/978-3-642-97610-0
– ident: 2482_CR79
  doi: 10.1109/PES.2005.1489277
– volume: 40
  start-page: 629
  issue: 7
  year: 2008
  ident: 2482_CR87
  publication-title: IIE Trans
  doi: 10.1080/07408170701730818
– volume: 39
  start-page: 303
  year: 2007
  ident: 2482_CR67
  publication-title: IIE Trans
  doi: 10.1080/07408170600847168
– volume: 13
  start-page: 103
  year: 1999
  ident: 2482_CR12
  publication-title: Mech Sys Signal Process
  doi: 10.1006/mssp.1998.0183
– ident: 2482_CR40
  doi: 10.1109/NAFIPS.2005.1548498
– volume-title: Fuzzy and neural approaches in engineering
  year: 1997
  ident: 2482_CR35
– volume: 30
  start-page: 281
  issue: 2–3
  year: 1996
  ident: 2482_CR27
  publication-title: J Eur Sys Autom
– volume-title: Models of preventive maintenance
  year: 1977
  ident: 2482_CR3
– ident: 2482_CR85
  doi: 10.2514/6.2008-1837
– volume: 15
  start-page: 349
  issue: 4
  year: 2001
  ident: 2482_CR42
  publication-title: Artif Intell Eng Des Anal Manuf (AIEDAM)
  doi: 10.1017/S0890060401154089
– volume: 43
  start-page: 1275
  issue: 6
  year: 2003
  ident: 2482_CR54
  publication-title: Int J Prod Res
  doi: 10.1080/00207540412331327727
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  ident: 2482_CR60
  publication-title: Mech Sys Signal Process
  doi: 10.1016/j.ymssp.2006.10.001
– volume-title: Process monitoring, diagnostics and prognostics using support vector machines and hidden Markov models
  year: 2005
  ident: 2482_CR55
– volume: 1
  start-page: 1
  issue: 1
  year: 1989
  ident: 2482_CR68
  publication-title: J Grey Syst
– ident: 2482_CR50
  doi: 10.1109/AERO.2007.352872
– ident: 2482_CR83
  doi: 10.1109/ICMLC.2004.1380389
– volume: 1
  start-page: 189
  year: 2003
  ident: 2482_CR16
  publication-title: Syst Man Cybern
– volume: 18
  start-page: 813
  year: 2004
  ident: 2482_CR77
  publication-title: Mech Sys Signal Process
  doi: 10.1016/S0888-3270(03)00079-7
– ident: 2482_CR7
– ident: 2482_CR66
  doi: 10.1115/DETC2005-84095
– ident: 2482_CR15
  doi: 10.1117/12.475502
– volume: 158
  start-page: 2715
  year: 2007
  ident: 2482_CR81
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2007.07.004
– volume: 56
  start-page: 29
  year: 2004
  ident: 2482_CR17
  publication-title: J Met
– volume: 39
  start-page: 1743
  issue: 8
  year: 1991
  ident: 2482_CR56
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.91145
– ident: 2482_CR53
  doi: 10.1109/ACC.2005.1470385
– volume: 134
  start-page: 187
  year: 1972
  ident: 2482_CR64
  publication-title: J R Stat Soc
– volume: 5
  start-page: 240
  year: 1994
  ident: 2482_CR36
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279188
– ident: 2482_CR44
  doi: 10.1117/12.152553
– volume: 24
  start-page: 51
  issue: 1
  year: 2008
  ident: 2482_CR62
  publication-title: Appl Stoch Models Bus Ind
  doi: 10.1002/asmb.693
– volume: 11
  start-page: 107
  year: 1997
  ident: 2482_CR19
  publication-title: Mech Sys Signal Process
  doi: 10.1006/mssp.1996.0064
– volume: 4
  start-page: 443
  year: 1996
  ident: 2482_CR29
  publication-title: IEEE Trans Control Sys Technol
  doi: 10.1109/87.508893
– ident: 2482_CR75
  doi: 10.1109/ROBOT.2003.1241660
– volume: 29
  start-page: 2553
  issue: 12–15
  year: 2004
  ident: 2482_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.031
– ident: 2482_CR39
  doi: 10.1109/AERO.2004.1368175
– volume: 5
  start-page: 387
  issue: 1
  year: 2008
  ident: 2482_CR43
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2007.910302
– ident: 2482_CR28
– ident: 2482_CR80
– ident: 2482_CR10
  doi: 10.1109/INDIN.2006.275836
– volume: 20
  start-page: 1483
  year: 2006
  ident: 2482_CR6
  publication-title: Mech Sys Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– ident: 2482_CR4
– volume: 178
  start-page: 858
  issue: 3
  year: 2007
  ident: 2482_CR59
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.01.041
– volume: 14
  start-page: 597
  issue: 4
  year: 2000
  ident: 2482_CR52
  publication-title: Mech Sys Signal Process
  doi: 10.1006/mssp.2000.1309
– volume: 15
  start-page: 796
  year: 2004
  ident: 2482_CR31
  publication-title: Prod Plan Control
  doi: 10.1080/09537280412331309208
– volume: 43
  start-page: 137
  issue: 10
  year: 2007
  ident: 2482_CR47
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/JME.2007.10.137
– volume: 130
  start-page: 021601
  issue: 2
  year: 2008
  ident: 2482_CR84
  publication-title: J Eng Gas Turbine Power
  doi: 10.1115/1.2795761
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.4878638
Snippet Condition-based maintenance (CBM) is a decision-making strategy based on real-time diagnosis of impending failures and prognosis of future equipment health. It...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Decision making
Engineering
Industrial and Production Engineering
Literature reviews
Maintenance
Mechanical Engineering
Media Management
Original Article
R&D
Research & development
Technical literature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vehBfOL6IgdPSjFJH0kEEZVdRLCIKOyttGkCgrY-1v9vJm23KrjnpjlMZ5KZfjPfB3CkBFMxT8qAKmODqBA0UImrUrgsjCuCcst8y_9dmtw8RbeTeLIAaTcLg22V3ZnoD-qy1viP_NSlCTyKRaiSi7f3AFWjEF3tJDTyVlqhPPcUY4uwxJEZawBLV6P0_qHzMKYEqmTOPJArlKbvPTyM4rDBvVocImF-mM4VKhJDUXa4KPU0pF60xSMULk2lv2-2Pl39g7D6i2u8BqttxkkuGxdZhwVTbcDKDx7CTUhbliaC40Vfn6S25NU3WRqC_VtV7cmcyXNFXPVc-iavAK-_0i1Dvgkk7TBnJCfNIMwWPI1Hj9c3QSu0EOhQ8mlgXdkjQ6pLF6CJFpLlMo6LSBWhwMFYw5jFtFAUQueGRpblsZXONtZlf5ZFOtyGQVVXZgdIIUquXYllOC2jhAsVG22NQTxHWhkmQ6CdkTLdspCjGMZLNuNP9nbNnF0ztGtGh3A8e-WtoeCYt3i_s3zWRuNn1vvOEE66r9E__nez3fmb7cFy00uAHWf7MJh-fJkDl6JMi8PW774BSCTadA
  priority: 102
  providerName: ProQuest
Title Current status of machine prognostics in condition-based maintenance: a review
URI https://link.springer.com/article/10.1007/s00170-009-2482-0
https://www.proquest.com/docview/2262457396
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwRjwrD0ygVLbzsM1WoAXxqBC0EkxR4tgSAlJE04Vfz9lJWkCAxJTBTiyf7-I73XffIbQvOZUhizKPSG28IOXEkxFEKUykGoKgxFAH-b_uReeD4OI-vK_quEc12r1OSbo_9aTYzVG9eMRlBMAthDh9ztFtNdBc--zhslOrEZXctsKcqBmTtv_8VI39IPTL5FaVbIioq5iDaERYexN18vOnRb9eX1Of9Fsa1d1O3SXUr_dVglKeWuMiban3b5SP_9z4MlqsvFXcLtVrBc3ofBUtfOIwXEO9iuEJ29Kk8QgPDX5xAE2NLfYrHzoiaPyYY4i8MwcQ8-zVmcE0y1VhCT_0EU5wWUSzjgbdTv_k3KuaNHjKF6zwDIRMwicqA-OOFBc0EWGYBjL1uS2q1ZQa61LylKtEk8DQJDQCRG7AczQ0UP4GauTDXG8inPKMKQjPNCNZEDEuQ62M1jYXJIzwoy1EatnHqmIwt400nuMJ97ITVQyiiq2oYrKFDiavvJb0HX9N3q0PNK4seRSDe8qCkPsSlj-sz2c6_OvHtv81ewfNl7AEC17bRY3ibaz3wNsp0iaaFd2zJuj46fXVXbPSdXged3o3tzA6YO0PawPyGA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLQcUOmHWEqLD_TSKqq_EttIqGoLaCmwqiqQuKWJY0uVSha6i1D_XH8bY8fZbZHgxjmOD-Ox_cbz5g3AllHM5LxoMmqcz2StaGYKjFK4rh0GQZVnkfJ_PCqGp_LrWX62AH_7WphAq-zPxHhQN2Mb3sg_IEzgMlfCFB8vLrPQNSpkV_sWGlVqrdDsRImxVNhx6P5cYwg32TnYxfV-y_n-3smXYZa6DGRWaD7NPGJ-Laht0DsLqzSrdJ7X0tRChapQx5gPmEjVylaOSs-q3GvESR6hj2fSCpz3ESxJIQ0Gf0uf90bfvvcezYwKXTlnHs8NAhw131FC5qLLs6W8R8Fi8R4GRjpsfd3nYWmUPY1NYmJGBGEx_f8mncPjWxndeFHuP4WVhHDJp84lV2HBtc9g-R_dw-cwSqpQJJQzXU3I2JPzSOp0JPDF2nEUjyY_W4LRehNJZVm4bhscFvQtgkiI2yYV6QpvXsDpg5j8JSy249atAalVwy2GdI7TRhZcmdxZ71zIH2mvRTEA2huptEn1PDTf-FXO9JqjXUu0axnsWtIBvJv9ctFJftw3eKO3fJl2_6Sc--oA3verMf9852Tr90-2CY-HJ8dH5dHB6PAVPOl4DIHttgGL099X7jXCo2n9JvkggR8P7fY3_54VaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA0yQfRB_MTp1Dz4pIQ1adokvg11zK_hg4O9hX4kIGg3XPf_vUnbTUUFn5s2cHpD7uWcey5CZ0pQFbE4J4EylvBUBETFUKUwmRooghJLveT_cRgPRvxuHI3rOaezRu3eUJJVT4NzaSrK7jS33UXjm7d9IYFnByBFhJp9lTufBAjoEes1AUWVcEMxFwHHlJtEvwzokEdhRXPVtENMfe8c1CXSnTzZ0KA_bfn1Iltmp98IVX9P9bfQZp1g4l4VEdtoxRQ7aOOT7eAuGtamTNh1E81neGLxm9dUGuzkWsXEezfjlwIDKrnXdBF32-WwzNlLOI8Oc4kTXPW97KFR_-b5akDquQokCyUriYUqR4ZBlsN5jDMhaSKjKOUqDYXrgzWUWpcFilRkiQm4pUlkJWBjIdmzlGfhPmoVk8IcIJyKnGVQURkW5DxmQkUms8Y4-kZaGcZtFDQg6aw2HXezL171wi7Z46oBV-1w1UEbnS9emVaOG38t7jTI6_rwzTRklIxHIlSw_UXzN5aPf_3Y4b9Wn6K1p-u-frgd3h-h9UpU4KRnHdQq3-fmGHKVMj3x8fgBsvTXfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+of+machine+prognostics+in+condition-based+maintenance%3A+a+review&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Peng%2C+Ying&rft.au=Dong%2C+Ming&rft.au=Zuo%2C+Ming+Jian&rft.date=2010-09-01&rft.pub=Springer-Verlag&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=50&rft.issue=1-4&rft.spage=297&rft.epage=313&rft_id=info:doi/10.1007%2Fs00170-009-2482-0&rft.externalDocID=10_1007_s00170_009_2482_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon