EFFICIENCY OF HIERARCHIC AGGLOMERATIVE CLUSTERING USING THE ICL DISTRIBUTED ARRAY PROCESSOR
The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering...
Saved in:
| Published in | Journal of documentation Vol. 45; no. 1; pp. 1 - 24 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
MCB UP Ltd
1989
Aslib, etc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-0418 1758-7379 |
| DOI | 10.1108/eb026836 |
Cover
| Abstract | The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.9-7.9 times as fast as the IBM, the exact degree of speed-up depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speed-ups could be obtained from array processors of this type if they were to be based on more powerful processing elements. |
|---|---|
| AbstractList | The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.9–7.9 times as fast as the IBM, the exact degree of speed‐up depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speed‐ups could be obtained from array processors of this type if they were to be based on more powerful processing elements. The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor DAP allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.97.9 times as fast as the IBM, the exact degree of speedup depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speedups could be obtained from array processors of this type if they were to be based on more powerful processing elements. The implementation of hierarchic agglomerative methods of cluster analysis for large data sets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated data sets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is 2.9-7.9 times as fast as the IBM, the exact degree of speed-up depending on the size of the data set, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the 2 machines suggests that further, very substantial speed-ups could be obtained from array processors of this type if they were to be based on more powerful processing elements. 00 Original abstract |
| Author | WILLETT, PETER RASMUSSEN, EDIE M. |
| Author_xml | – sequence: 1 givenname: EDIE M. surname: RASMUSSEN fullname: RASMUSSEN, EDIE M. organization: Department of Information Studies, University of Sheffield Western Bank, Sheffield, S10 2TN – sequence: 2 givenname: PETER surname: WILLETT fullname: WILLETT, PETER organization: Department of Information Studies, University of Sheffield Western Bank, Sheffield, S10 2TN |
| BookMark | eNptkV1r2zAYhcXoYOkH7CcYBttu3OrDluVLV3USgVevtrOu24WQLRncOXZmObD9-6lk7aDrzSte9Jyjw9ExOBrGwQDwFsFzhCC7MDXElBH6CixQFDI_IlF8BBYQYuzDALE34NjaewiRu2AL8D1dLgUX6TW_8_KltxZpkRR8LbiXrFZZ_smtlfiSejzblFVaiOuVtykfZrVOPcEz70qUVSEuN1V65SVFkdx5n4ucp2WZF6fgdat6a87-nidgs0wrvvazfCV4kvkNYXj2W0IwZCymNG5crka3cR1BrUNqqI5RHVKEMDE11RFUhNGwrrVmMcY6DNogUOQEvD_47qbx597YWW4725i-V4MZ91aGEcI0xLED3z0D78f9NLhsEhEYQkoIpY76eKCaabR2Mq3cTd1WTb8lgvKhY_nYsUPPn6FNN6u5G4d5Ul3_ksA_CDo7m19Pxmr6Ian7kFAGt1hichvcfPtayst_ic3WTKrXT4pHR7nTraM-vEz99_4fdged0g |
| CitedBy_id | crossref_primary_10_1016_0306_4573_91_90087_3 crossref_primary_10_1016_j_compbiolchem_2004_09_002 crossref_primary_10_1155_2016_1879327 crossref_primary_10_1016_0306_4573_91_90089_5 crossref_primary_10_1016_S0167_8655_02_00031_4 crossref_primary_10_1177_016555158901500405 crossref_primary_10_1016_j_parco_2005_01_001 crossref_primary_10_1109_TPDS_2014_2355205 crossref_primary_10_1016_j_neucom_2006_10_034 crossref_primary_10_1109_ACCESS_2023_3341156 crossref_primary_10_1142_S021987621100271X crossref_primary_10_4304_jcp_8_1_10_17 crossref_primary_10_4028_www_scientific_net_AMR_301_303_1133 crossref_primary_10_1088_1755_1315_258_1_012031 crossref_primary_10_14778_3514061_3514062 crossref_primary_10_21923_jesd_748209 crossref_primary_10_1002__SICI_1097_4571_2000_51_7_602__AID_ASI3_3_0_CO_2_1 crossref_primary_10_1016_0306_4573_91_90083_X crossref_primary_10_1108_EUM0000000007201 crossref_primary_10_1002_widm_1219 crossref_primary_10_1002_asi_21311 crossref_primary_10_1016_j_future_2013_12_029 crossref_primary_10_1002_widm_53 crossref_primary_10_1016_j_patcog_2005_09_015 crossref_primary_10_1016_0167_8191_95_00017_I crossref_primary_10_1007_s13748_011_0004_4 crossref_primary_10_1109_TCBB_2007_70272 crossref_primary_10_1186_s12859_016_1112_8 crossref_primary_10_3233_IFS_141518 crossref_primary_10_1109_34_159908 |
| Cites_doi | 10.1007/978-1-4613-9883-7_4 10.1016/S0169-7161(82)02015-X 10.1145/42005.42020 10.1002/(SICI)1097-4571(198811)39:6<390::AID-ASI2>3.0.CO;2-N 10.1016/0167-8191(87)90025-1 10.1002/jcc.540090413 10.1145/7902.7907 10.1093/comjnl/16.1.30 10.2307/2346439 10.1016/0010-4655(83)90031-0 10.1109/TC.1983.1676121 10.2307/2344237 10.1145/361284.361299 10.1016/0164-1212(86)90017-8 10.1093/comjnl/9.4.373 10.1002/j.1538-7305.1957.tb01515.x 10.1109/TC.1978.1675043 10.1108/eb026764 10.1016/0306-4573(86)90097-X 10.1016/0010-4655(82)90097-2 10.1109/PROC.1966.5273 10.1145/253168.253200 10.1007/BF01386390 10.1016/S0065-2458(08)60034-0 10.1007/978-3-642-51461-6_58 10.1145/42372.42380 10.1108/eb024172 10.1109/MC.1987.1663384 |
| ContentType | Journal Article |
| Copyright | MCB UP Limited |
| Copyright_xml | – notice: MCB UP Limited |
| DBID | BSCLL AAYXX CITATION GHXMH GPCCI IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC E3H F2A |
| DOI | 10.1108/eb026836 |
| DatabaseName | Istex CrossRef Periodicals Index Online Segment 09 Periodicals Index Online Segment 10 Periodicals Index Online Segment 29 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest Primary Sources Access (Plan D) - MEA Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
| DatabaseTitle | CrossRef Periodicals Index Online Segments 1-50 Periodicals Index Online Segment 10 Periodicals Index Online Periodicals Index Online Segment 29 Periodicals Index Online Segment 09 Library and Information Science Abstracts (LISA) |
| DatabaseTitleList | CrossRef Library and Information Science Abstracts (LISA) |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1758-7379 |
| EndPage | 24 |
| ExternalDocumentID | 10_1108_eb026836 ark_67375_4W2_23W4QZXS_B 10.1108/eb026836 |
| GroupedDBID | -~X .DC 07C 0R~ 1WG 1XV 29K 3FY 4.4 5GY 5VS 70U 77I 77K 9E0 9F- AAGBP AAOWE ABHCV ABJNI ABUFD ABYQI ACGFO ACGFS ACHQT ACXJU ADFRT ADMHG AFFNX AFVFF AGQPQ AGSTH AHMHQ AI. ALMA_UNASSIGNED_HOLDINGS ASJQZ ASMFL ASPBG AVWKF AZFZN BFQZO BTXLY BUONS CS3 D-I DU5 EBS EJD EOXHF F5P GEA GEI GMM GQ. H13 H~9 IJT IPNFZ L7B LPU M42 MVM O9- OHT P2P RIG RXW SCAQC TGG TMF TMI UGKUH VH1 ZCG ZY4 0B8 ABTAH AMLIN AUCOK BSCLL AAYXX CITATION AFNTC GHXMH GPCCI IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC E3H F2A |
| ID | FETCH-LOGICAL-c382t-f3320889669c001cdf9b70dd56e6d91b561123eb6d70a3865bbdd8922d54f44a3 |
| IEDL.DBID | GEI |
| ISSN | 0022-0418 |
| IngestDate | Wed Oct 01 10:49:15 EDT 2025 Sun Jun 29 12:36:08 EDT 2025 Wed Oct 01 05:44:51 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Wed Oct 30 09:15:58 EDT 2024 Thu Oct 30 03:08:25 EDT 2025 Wed Jul 31 14:17:47 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-f3320889669c001cdf9b70dd56e6d91b561123eb6d70a3865bbdd8922d54f44a3 |
| Notes | href:eb026836.pdf ark:/67375/4W2-23W4QZXS-B original-pdf:2780450101.pdf filenameID:2780450101 istex:F1C24CA749D3453AD3D9A11F0C128ADB5398A277 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1305063366 |
| PQPubID | 1819630 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_1305063366 crossref_primary_10_1108_eb026836 crossref_citationtrail_10_1108_eb026836 proquest_miscellaneous_57126529 emerald_primary_10_1108_eb026836 istex_primary_ark_67375_4W2_23W4QZXS_B |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1989-00-00 |
| PublicationDateYYYYMMDD | 1989-01-01 |
| PublicationDate_xml | – year: 1989 text: 1989-00-00 |
| PublicationDecade | 1980 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of documentation |
| PublicationYear | 1989 |
| Publisher | MCB UP Ltd Aslib, etc |
| Publisher_xml | – name: MCB UP Ltd – name: Aslib, etc |
| References | p_28 p_24 p_25 p_26 QUINN M.J. (p_35) 1987 PARKINSON D. (p_27) 1982 p_41 p_20 p_42 p_21 HWANG K. (p_11) 1984 GOSTICK R.W (p_29) 1979; 2 p_40 p_16 SALEH A.O. (p_22); 1985 p_38 p_17 WHITE R.A. (p_23) 1985 p_2 WISHART D. (p_9) 1978 p_18 p_19 p_4 p_12 MEILANDER W.C. (p_14); 1980 p_34 p_3 p_6 p_36 p_5 p_15 p_37 SPATH H. (p_39) 1980 p_8 p_7 ANDERBERG M.R. (p_1) 1973 p_31 p_32 MURTAGH F. (p_10) 1985 p_33 DAVIS E.W (p_13) 1983; 52 GOSTICK R.W (p_30) 1981; 13 |
| References_xml | – ident: p_4 doi: 10.1007/978-1-4613-9883-7_4 – ident: p_32 doi: 10.1016/S0169-7161(82)02015-X – volume-title: Designing efficient algorithms for parallel computers year: 1987 ident: p_35 – ident: p_40 – ident: p_24 doi: 10.1145/42005.42020 – ident: p_12 doi: 10.1002/(SICI)1097-4571(198811)39:6<390::AID-ASI2>3.0.CO;2-N – ident: p_16 doi: 10.1016/0167-8191(87)90025-1 – ident: p_25 doi: 10.1002/jcc.540090413 – ident: p_17 doi: 10.1145/7902.7907 – ident: p_34 doi: 10.1093/comjnl/16.1.30 – volume: 52 start-page: 299 year: 1983 ident: p_13 publication-title: AFIPS Conference Proceedings – ident: p_31 doi: 10.2307/2346439 – ident: p_28 doi: 10.1016/0010-4655(83)90031-0 – ident: p_42 doi: 10.1109/TC.1983.1676121 – ident: p_2 doi: 10.2307/2344237 – ident: p_38 doi: 10.1145/361284.361299 – ident: p_41 doi: 10.1016/0164-1212(86)90017-8 – volume-title: The massively parallel processor year: 1985 ident: p_23 – ident: p_8 doi: 10.1093/comjnl/9.4.373 – ident: p_37 doi: 10.1002/j.1538-7305.1957.tb01515.x – volume: 13 start-page: 1 year: 1981 ident: p_30 publication-title: Australian Computer Journal – volume: 1985 start-page: 172 volume-title: IEEE Proceedings, C-132 ident: p_22 – ident: p_33 doi: 10.1109/TC.1978.1675043 – volume-title: Cluster analysis algorithms for data reduction and classification of objects year: 1980 ident: p_39 – ident: p_5 doi: 10.1108/eb026764 – ident: p_6 doi: 10.1016/0306-4573(86)90097-X – ident: p_20 doi: 10.1016/0010-4655(82)90097-2 – ident: p_26 doi: 10.1109/PROC.1966.5273 – ident: p_7 doi: 10.1145/253168.253200 – volume: 1980 start-page: 332 volume-title: Proceedings of the 43rd ASIS Annual Meeting, 17 ident: p_14 – volume: 2 start-page: 116 year: 1979 ident: p_29 publication-title: ICL Technical Journal – ident: p_36 doi: 10.1007/BF01386390 – volume-title: CLUSTAN user manual year: 1978 ident: p_9 – ident: p_3 doi: 10.1016/S0065-2458(08)60034-0 – ident: p_21 doi: 10.1007/978-3-642-51461-6_58 – ident: p_19 doi: 10.1145/42372.42380 – volume-title: Parallel processing systems year: 1982 ident: p_27 – volume-title: Multidimensional clustering algorithms year: 1985 ident: p_10 – ident: p_15 doi: 10.1108/eb024172 – ident: p_18 doi: 10.1109/MC.1987.1663384 – volume-title: Cluster analysisfor applications year: 1973 ident: p_1 – volume-title: Computer architecture andparallelprocessing year: 1984 ident: p_11 |
| SSID | ssj0017378 |
| Score | 1.4680532 |
| SecondaryResourceType | review_article |
| Snippet | The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on... The implementation of hierarchic agglomerative methods of cluster analysis for large data sets is very demanding of computational resources when implemented on... |
| SourceID | proquest crossref istex emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering Computerised information retrieval Computerized information storage and retrieval Computerized subject indexing File organization ICL Distributed Array Processor Information storage and retrieval Information work Searching Software Subject indexing Technical services |
| Title | EFFICIENCY OF HIERARCHIC AGGLOMERATIVE CLUSTERING USING THE ICL DISTRIBUTED ARRAY PROCESSOR |
| URI | https://www.emerald.com/insight/content/doi/10.1108/eb026836/full/html https://api.istex.fr/ark:/67375/4W2-23W4QZXS-B/fulltext.pdf https://www.proquest.com/docview/1305063366 https://www.proquest.com/docview/57126529 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald A-Z Complete All Journals Journals customDbUrl: eissn: 1758-7379 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017378 issn: 0022-0418 databaseCode: GEI dateStart: 19450101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKe-HCQ4BYKGAkBKd0N47jxMdt2EfQwkI2S7flYMWxA6glrbpZCfHrmcljgYLgwDWeOIk9Gc_jmxlCnjE_dDNENebaWocHQjoyM5ljQ-NKuCa1QX_H6zdiuuSvVv5qh4y7XJgaVtm4Y2o5_blco5HaR-A2SOFtwQHsXmM1GBChJ_roqe5_qr6cXSN7mGUru6TfNpoQeK1EBsNrwN2wLUL78xy_HEs_cnP3cK2__ian68NnfJN87F67wZycHmwqfZB_u1LR8f-_6xa50eqndNgw1G2yY8s75ANos3HtjTqm8zGdxqMEg0xxRIeTyWyOzULT-P2IRrPlIq2LVFFs5zGh6XRE42hGX8aLNIkPlyAm6TBJhsf0bTKPYO_nyV2yHI_SaOq0XRmc3AtZ5RSexxAbJYTMYW1zU0gdDIzxhRVGuhoUMjgNrRYmGGTYUVRrY0LJmPF5wXnm3SO75Xlp7xOquTY2yKSXgxokw1wWwhRwmwapYEDV65EX3aaovC1Zjp0zzlRtugxC1S1VjzzdUl40ZTr-QEPbHfgLyf5Vkm5IXZiiR57X_LAdzC5PERgX-IofMcW8I_7uZLVQhzBPxzCqlQlrDBz6oBB6Ah7zZDsMfzOGaLLSnm_Wyg9cJnwmH_z7XR-S6w3eDd1B-2S3utzYR6AgVfpxzf3fAcvdBX0 |
| linkProvider | Emerald |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaU9gCXAgMMKX2IGQZObmLLkq1japLY4DbgODSFg8ayZGBa3E7jzDD8elZ-BCgMHLh617Ksx2ofn3YReuZQ384MqjGXWluux7jFM5VZ2lc2h2dcKuPvOD5h4dx9taCLDTTu7sLUsMrGHVPL6c_l0hipfQPcBim8TjhgqtdoCQaET1jfeKr7n6ovF7fQFjUwj-7SbxtN8EgrkcHwGri23yah_bmNX46lH3dzt8xYf_1NTteHz_gu-th1u8GcnB-uKnmYf7uR0fH__-se2m71UzxsFtR9tKHLB-gDaLNR7Y06w9MxDqNRYoJMUYCHk0k8NcVC0-jdCAfxfJbWSaqwKecxwWk4wlEQ45fRLE2iozmISTxMkuEZfpNMA5j7afIQzcejNAittiqDlRPfqayCEMdgoxjjOYxtrgouvYFSlGmmuC1BIYPTUEumvEFmKopKqZTPHUdRt3DdjDxCm-VlqR8jLF2ptJdxkoMaxP2cF0wV8JoEqaBA1euhF92kiLxNWW4qZ1yI2nQZ-KIbqh56uua8atJ0_IEHtzPwF5bdmywdSVypooee1-thTcyuzw0wzqPCPXWEQ07dt-8XM3EE7XQLRrQyYWkChxQUQsLgMwdrMuxmE6LJSn25Wgrq2Q6jDt_5d18P0O0wPY5FHJ28foLuNNg34xraRZvV9UrvgbJUyf16J3wHNIYIaQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGJiFe-BAgygYzEoKnrE3sOPFjl6VtoKwjTVk3Hqw4diS0KZvWVkL89ZydD2AgeOA1vjixzz7fx893CL32_NDNDaqxkFo7NGDc4bnKHR0ql8MzLpXxd3w4ZpMFfbf0l1sobu_CWFhl7Y6xcvpLtTJGat8At0EKdwkHTPUaLcGACAnrG091_1qVd9AO2FVBd-e3CSYEpBHIYHcNqBs2OWh_7uKXU-nH1dwdM9VffxPT9uwZPagxIiubstBATi4ONmt5UHy7ldDxv4f1EN1vtFM8rJfTI7Slq8foM-iyifVFneHZCE-SODUhpiTCw_F4OjOlQrPkU4yj6WKe2RRV2BTzGONsEuMkmuKjZJ6lyeEChCQepunwDJ-kswg4P0ufoMUozqKJ09RkcAoSemunJMQzyCjGeAFTW6iSy2CglM80U9yVoI7BWaglU8EgN_VEpVQq5J6nfFpSmpOnaLu6qvQzhCWVSgc5JwUoQTwseMlUCa9JkAkKFL0eetvyRBRNwnJTN-NSWMNlEIp2pnroVUd5XSfp-AMNbhjwF5K92yRtkwA29NAbuxy6xvzmwsDiAl_QU0945JR-PF_OxSH0064X0UiElQkb-qAOEgaf2e-aYS-bAE1e6avNSviB6zHf48___a_76O7J0UhMk-P3u-heDXwzfqE9tL2-2egXoCmt5Uu7D74DARQHEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFFICIENCY+OF+HIERARCHIC+AGGLOMERATIVE+CLUSTERING+USING+THE+ICL+DISTRIBUTED+ARRAY+PROCESSOR&rft.jtitle=Journal+of+documentation&rft.au=RASMUSSEN%2C+EDIE+M.&rft.au=WILLETT%2C+PETER&rft.date=1989&rft.pub=MCB+UP+Ltd&rft.issn=0022-0418&rft.volume=45&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1108%2Feb026836&rft.externalDBID=HAS_PDF&rft.externalDocID=10.1108%2Feb026836 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0418&client=summon |