EFFICIENCY OF HIERARCHIC AGGLOMERATIVE CLUSTERING USING THE ICL DISTRIBUTED ARRAY PROCESSOR

The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering...

Full description

Saved in:
Bibliographic Details
Published inJournal of documentation Vol. 45; no. 1; pp. 1 - 24
Main Authors RASMUSSEN, EDIE M., WILLETT, PETER
Format Journal Article
LanguageEnglish
Published London MCB UP Ltd 1989
Aslib, etc
Subjects
Online AccessGet full text
ISSN0022-0418
1758-7379
DOI10.1108/eb026836

Cover

Abstract The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.9-7.9 times as fast as the IBM, the exact degree of speed-up depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speed-ups could be obtained from array processors of this type if they were to be based on more powerful processing elements.
AbstractList The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.9–7.9 times as fast as the IBM, the exact degree of speed‐up depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speed‐ups could be obtained from array processors of this type if they were to be based on more powerful processing elements.
The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor DAP allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated datasets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is found to be 2.97.9 times as fast as the IBM, the exact degree of speedup depending on the size of the dataset, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the two machines is presented which suggests that further, very substantial speedups could be obtained from array processors of this type if they were to be based on more powerful processing elements.
The implementation of hierarchic agglomerative methods of cluster analysis for large data sets is very demanding of computational resources when implemented on conventional computers. The ICL Distributed Array Processor (DAP) allows many of the scanning and matching operations required in clustering to be carried out in parallel. Experiments are described using the single linkage and Ward's hierarchical agglomerative clustering methods on both real and simulated data sets. Clustering runs on the DAP are compared with the most efficient algorithms currently available implemented on an IBM 3083 BX. The DAP is 2.9-7.9 times as fast as the IBM, the exact degree of speed-up depending on the size of the data set, the clustering method, and the serial clustering algorithm that is used. An analysis of the cycle times of the 2 machines suggests that further, very substantial speed-ups could be obtained from array processors of this type if they were to be based on more powerful processing elements. 00 Original abstract
Author WILLETT, PETER
RASMUSSEN, EDIE M.
Author_xml – sequence: 1
  givenname: EDIE M.
  surname: RASMUSSEN
  fullname: RASMUSSEN, EDIE M.
  organization: Department of Information Studies, University of Sheffield Western Bank, Sheffield, S10 2TN
– sequence: 2
  givenname: PETER
  surname: WILLETT
  fullname: WILLETT, PETER
  organization: Department of Information Studies, University of Sheffield Western Bank, Sheffield, S10 2TN
BookMark eNptkV1r2zAYhcXoYOkH7CcYBttu3OrDluVLV3USgVevtrOu24WQLRncOXZmObD9-6lk7aDrzSte9Jyjw9ExOBrGwQDwFsFzhCC7MDXElBH6CixQFDI_IlF8BBYQYuzDALE34NjaewiRu2AL8D1dLgUX6TW_8_KltxZpkRR8LbiXrFZZ_smtlfiSejzblFVaiOuVtykfZrVOPcEz70qUVSEuN1V65SVFkdx5n4ucp2WZF6fgdat6a87-nidgs0wrvvazfCV4kvkNYXj2W0IwZCymNG5crka3cR1BrUNqqI5RHVKEMDE11RFUhNGwrrVmMcY6DNogUOQEvD_47qbx597YWW4725i-V4MZ91aGEcI0xLED3z0D78f9NLhsEhEYQkoIpY76eKCaabR2Mq3cTd1WTb8lgvKhY_nYsUPPn6FNN6u5G4d5Ul3_ksA_CDo7m19Pxmr6Ian7kFAGt1hichvcfPtayst_ic3WTKrXT4pHR7nTraM-vEz99_4fdged0g
CitedBy_id crossref_primary_10_1016_0306_4573_91_90087_3
crossref_primary_10_1016_j_compbiolchem_2004_09_002
crossref_primary_10_1155_2016_1879327
crossref_primary_10_1016_0306_4573_91_90089_5
crossref_primary_10_1016_S0167_8655_02_00031_4
crossref_primary_10_1177_016555158901500405
crossref_primary_10_1016_j_parco_2005_01_001
crossref_primary_10_1109_TPDS_2014_2355205
crossref_primary_10_1016_j_neucom_2006_10_034
crossref_primary_10_1109_ACCESS_2023_3341156
crossref_primary_10_1142_S021987621100271X
crossref_primary_10_4304_jcp_8_1_10_17
crossref_primary_10_4028_www_scientific_net_AMR_301_303_1133
crossref_primary_10_1088_1755_1315_258_1_012031
crossref_primary_10_14778_3514061_3514062
crossref_primary_10_21923_jesd_748209
crossref_primary_10_1002__SICI_1097_4571_2000_51_7_602__AID_ASI3_3_0_CO_2_1
crossref_primary_10_1016_0306_4573_91_90083_X
crossref_primary_10_1108_EUM0000000007201
crossref_primary_10_1002_widm_1219
crossref_primary_10_1002_asi_21311
crossref_primary_10_1016_j_future_2013_12_029
crossref_primary_10_1002_widm_53
crossref_primary_10_1016_j_patcog_2005_09_015
crossref_primary_10_1016_0167_8191_95_00017_I
crossref_primary_10_1007_s13748_011_0004_4
crossref_primary_10_1109_TCBB_2007_70272
crossref_primary_10_1186_s12859_016_1112_8
crossref_primary_10_3233_IFS_141518
crossref_primary_10_1109_34_159908
Cites_doi 10.1007/978-1-4613-9883-7_4
10.1016/S0169-7161(82)02015-X
10.1145/42005.42020
10.1002/(SICI)1097-4571(198811)39:6<390::AID-ASI2>3.0.CO;2-N
10.1016/0167-8191(87)90025-1
10.1002/jcc.540090413
10.1145/7902.7907
10.1093/comjnl/16.1.30
10.2307/2346439
10.1016/0010-4655(83)90031-0
10.1109/TC.1983.1676121
10.2307/2344237
10.1145/361284.361299
10.1016/0164-1212(86)90017-8
10.1093/comjnl/9.4.373
10.1002/j.1538-7305.1957.tb01515.x
10.1109/TC.1978.1675043
10.1108/eb026764
10.1016/0306-4573(86)90097-X
10.1016/0010-4655(82)90097-2
10.1109/PROC.1966.5273
10.1145/253168.253200
10.1007/BF01386390
10.1016/S0065-2458(08)60034-0
10.1007/978-3-642-51461-6_58
10.1145/42372.42380
10.1108/eb024172
10.1109/MC.1987.1663384
ContentType Journal Article
Copyright MCB UP Limited
Copyright_xml – notice: MCB UP Limited
DBID BSCLL
AAYXX
CITATION
GHXMH
GPCCI
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
E3H
F2A
DOI 10.1108/eb026836
DatabaseName Istex
CrossRef
Periodicals Index Online Segment 09
Periodicals Index Online Segment 10
Periodicals Index Online Segment 29
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
Primary Sources Access (Plan D) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Periodicals Index Online Segments 1-50
Periodicals Index Online Segment 10
Periodicals Index Online
Periodicals Index Online Segment 29
Periodicals Index Online Segment 09
Library and Information Science Abstracts (LISA)
DatabaseTitleList CrossRef


Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
EISSN 1758-7379
EndPage 24
ExternalDocumentID 10_1108_eb026836
ark_67375_4W2_23W4QZXS_B
10.1108/eb026836
GroupedDBID -~X
.DC
07C
0R~
1WG
1XV
29K
3FY
4.4
5GY
5VS
70U
77I
77K
9E0
9F-
AAGBP
AAOWE
ABHCV
ABJNI
ABUFD
ABYQI
ACGFO
ACGFS
ACHQT
ACXJU
ADFRT
ADMHG
AFFNX
AFVFF
AGQPQ
AGSTH
AHMHQ
AI.
ALMA_UNASSIGNED_HOLDINGS
ASJQZ
ASMFL
ASPBG
AVWKF
AZFZN
BFQZO
BTXLY
BUONS
CS3
D-I
DU5
EBS
EJD
EOXHF
F5P
GEA
GEI
GMM
GQ.
H13
H~9
IJT
IPNFZ
L7B
LPU
M42
MVM
O9-
OHT
P2P
RIG
RXW
SCAQC
TGG
TMF
TMI
UGKUH
VH1
ZCG
ZY4
0B8
ABTAH
AMLIN
AUCOK
BSCLL
AAYXX
CITATION
AFNTC
GHXMH
GPCCI
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
E3H
F2A
ID FETCH-LOGICAL-c382t-f3320889669c001cdf9b70dd56e6d91b561123eb6d70a3865bbdd8922d54f44a3
IEDL.DBID GEI
ISSN 0022-0418
IngestDate Wed Oct 01 10:49:15 EDT 2025
Sun Jun 29 12:36:08 EDT 2025
Wed Oct 01 05:44:51 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Wed Oct 30 09:15:58 EDT 2024
Thu Oct 30 03:08:25 EDT 2025
Wed Jul 31 14:17:47 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-f3320889669c001cdf9b70dd56e6d91b561123eb6d70a3865bbdd8922d54f44a3
Notes href:eb026836.pdf
ark:/67375/4W2-23W4QZXS-B
original-pdf:2780450101.pdf
filenameID:2780450101
istex:F1C24CA749D3453AD3D9A11F0C128ADB5398A277
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1305063366
PQPubID 1819630
PageCount 24
ParticipantIDs proquest_journals_1305063366
crossref_primary_10_1108_eb026836
crossref_citationtrail_10_1108_eb026836
proquest_miscellaneous_57126529
emerald_primary_10_1108_eb026836
istex_primary_ark_67375_4W2_23W4QZXS_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1989-00-00
PublicationDateYYYYMMDD 1989-01-01
PublicationDate_xml – year: 1989
  text: 1989-00-00
PublicationDecade 1980
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of documentation
PublicationYear 1989
Publisher MCB UP Ltd
Aslib, etc
Publisher_xml – name: MCB UP Ltd
– name: Aslib, etc
References p_28
p_24
p_25
p_26
QUINN M.J. (p_35) 1987
PARKINSON D. (p_27) 1982
p_41
p_20
p_42
p_21
HWANG K. (p_11) 1984
GOSTICK R.W (p_29) 1979; 2
p_40
p_16
SALEH A.O. (p_22); 1985
p_38
p_17
WHITE R.A. (p_23) 1985
p_2
WISHART D. (p_9) 1978
p_18
p_19
p_4
p_12
MEILANDER W.C. (p_14); 1980
p_34
p_3
p_6
p_36
p_5
p_15
p_37
SPATH H. (p_39) 1980
p_8
p_7
ANDERBERG M.R. (p_1) 1973
p_31
p_32
MURTAGH F. (p_10) 1985
p_33
DAVIS E.W (p_13) 1983; 52
GOSTICK R.W (p_30) 1981; 13
References_xml – ident: p_4
  doi: 10.1007/978-1-4613-9883-7_4
– ident: p_32
  doi: 10.1016/S0169-7161(82)02015-X
– volume-title: Designing efficient algorithms for parallel computers
  year: 1987
  ident: p_35
– ident: p_40
– ident: p_24
  doi: 10.1145/42005.42020
– ident: p_12
  doi: 10.1002/(SICI)1097-4571(198811)39:6<390::AID-ASI2>3.0.CO;2-N
– ident: p_16
  doi: 10.1016/0167-8191(87)90025-1
– ident: p_25
  doi: 10.1002/jcc.540090413
– ident: p_17
  doi: 10.1145/7902.7907
– ident: p_34
  doi: 10.1093/comjnl/16.1.30
– volume: 52
  start-page: 299
  year: 1983
  ident: p_13
  publication-title: AFIPS Conference Proceedings
– ident: p_31
  doi: 10.2307/2346439
– ident: p_28
  doi: 10.1016/0010-4655(83)90031-0
– ident: p_42
  doi: 10.1109/TC.1983.1676121
– ident: p_2
  doi: 10.2307/2344237
– ident: p_38
  doi: 10.1145/361284.361299
– ident: p_41
  doi: 10.1016/0164-1212(86)90017-8
– volume-title: The massively parallel processor
  year: 1985
  ident: p_23
– ident: p_8
  doi: 10.1093/comjnl/9.4.373
– ident: p_37
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– volume: 13
  start-page: 1
  year: 1981
  ident: p_30
  publication-title: Australian Computer Journal
– volume: 1985
  start-page: 172
  volume-title: IEEE Proceedings, C-132
  ident: p_22
– ident: p_33
  doi: 10.1109/TC.1978.1675043
– volume-title: Cluster analysis algorithms for data reduction and classification of objects
  year: 1980
  ident: p_39
– ident: p_5
  doi: 10.1108/eb026764
– ident: p_6
  doi: 10.1016/0306-4573(86)90097-X
– ident: p_20
  doi: 10.1016/0010-4655(82)90097-2
– ident: p_26
  doi: 10.1109/PROC.1966.5273
– ident: p_7
  doi: 10.1145/253168.253200
– volume: 1980
  start-page: 332
  volume-title: Proceedings of the 43rd ASIS Annual Meeting, 17
  ident: p_14
– volume: 2
  start-page: 116
  year: 1979
  ident: p_29
  publication-title: ICL Technical Journal
– ident: p_36
  doi: 10.1007/BF01386390
– volume-title: CLUSTAN user manual
  year: 1978
  ident: p_9
– ident: p_3
  doi: 10.1016/S0065-2458(08)60034-0
– ident: p_21
  doi: 10.1007/978-3-642-51461-6_58
– ident: p_19
  doi: 10.1145/42372.42380
– volume-title: Parallel processing systems
  year: 1982
  ident: p_27
– volume-title: Multidimensional clustering algorithms
  year: 1985
  ident: p_10
– ident: p_15
  doi: 10.1108/eb024172
– ident: p_18
  doi: 10.1109/MC.1987.1663384
– volume-title: Cluster analysisfor applications
  year: 1973
  ident: p_1
– volume-title: Computer architecture andparallelprocessing
  year: 1984
  ident: p_11
SSID ssj0017378
Score 1.4680532
SecondaryResourceType review_article
Snippet The implementation of hierarchic agglomerative methods of cluster anlaysis for large datasets is very demanding of computational resources when implemented on...
The implementation of hierarchic agglomerative methods of cluster analysis for large data sets is very demanding of computational resources when implemented on...
SourceID proquest
crossref
istex
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Clustering
Computerised information retrieval
Computerized information storage and retrieval
Computerized subject indexing
File organization
ICL Distributed Array Processor
Information storage and retrieval
Information work
Searching
Software
Subject indexing
Technical services
Title EFFICIENCY OF HIERARCHIC AGGLOMERATIVE CLUSTERING USING THE ICL DISTRIBUTED ARRAY PROCESSOR
URI https://www.emerald.com/insight/content/doi/10.1108/eb026836/full/html
https://api.istex.fr/ark:/67375/4W2-23W4QZXS-B/fulltext.pdf
https://www.proquest.com/docview/1305063366
https://www.proquest.com/docview/57126529
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald A-Z Complete All Journals Journals
  customDbUrl:
  eissn: 1758-7379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017378
  issn: 0022-0418
  databaseCode: GEI
  dateStart: 19450101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKe-HCQ4BYKGAkBKd0N47jxMdt2EfQwkI2S7flYMWxA6glrbpZCfHrmcljgYLgwDWeOIk9Gc_jmxlCnjE_dDNENebaWocHQjoyM5ljQ-NKuCa1QX_H6zdiuuSvVv5qh4y7XJgaVtm4Y2o5_blco5HaR-A2SOFtwQHsXmM1GBChJ_roqe5_qr6cXSN7mGUru6TfNpoQeK1EBsNrwN2wLUL78xy_HEs_cnP3cK2__ian68NnfJN87F67wZycHmwqfZB_u1LR8f-_6xa50eqndNgw1G2yY8s75ANos3HtjTqm8zGdxqMEg0xxRIeTyWyOzULT-P2IRrPlIq2LVFFs5zGh6XRE42hGX8aLNIkPlyAm6TBJhsf0bTKPYO_nyV2yHI_SaOq0XRmc3AtZ5RSexxAbJYTMYW1zU0gdDIzxhRVGuhoUMjgNrRYmGGTYUVRrY0LJmPF5wXnm3SO75Xlp7xOquTY2yKSXgxokw1wWwhRwmwapYEDV65EX3aaovC1Zjp0zzlRtugxC1S1VjzzdUl40ZTr-QEPbHfgLyf5Vkm5IXZiiR57X_LAdzC5PERgX-IofMcW8I_7uZLVQhzBPxzCqlQlrDBz6oBB6Ah7zZDsMfzOGaLLSnm_Wyg9cJnwmH_z7XR-S6w3eDd1B-2S3utzYR6AgVfpxzf3fAcvdBX0
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaU9gCXAgMMKX2IGQZObmLLkq1japLY4DbgODSFg8ayZGBa3E7jzDD8elZ-BCgMHLh617Ksx2ofn3YReuZQ384MqjGXWluux7jFM5VZ2lc2h2dcKuPvOD5h4dx9taCLDTTu7sLUsMrGHVPL6c_l0hipfQPcBim8TjhgqtdoCQaET1jfeKr7n6ovF7fQFjUwj-7SbxtN8EgrkcHwGri23yah_bmNX46lH3dzt8xYf_1NTteHz_gu-th1u8GcnB-uKnmYf7uR0fH__-se2m71UzxsFtR9tKHLB-gDaLNR7Y06w9MxDqNRYoJMUYCHk0k8NcVC0-jdCAfxfJbWSaqwKecxwWk4wlEQ45fRLE2iozmISTxMkuEZfpNMA5j7afIQzcejNAittiqDlRPfqayCEMdgoxjjOYxtrgouvYFSlGmmuC1BIYPTUEumvEFmKopKqZTPHUdRt3DdjDxCm-VlqR8jLF2ptJdxkoMaxP2cF0wV8JoEqaBA1euhF92kiLxNWW4qZ1yI2nQZ-KIbqh56uua8atJ0_IEHtzPwF5bdmywdSVypooee1-thTcyuzw0wzqPCPXWEQ07dt-8XM3EE7XQLRrQyYWkChxQUQsLgMwdrMuxmE6LJSn25Wgrq2Q6jDt_5d18P0O0wPY5FHJ28foLuNNg34xraRZvV9UrvgbJUyf16J3wHNIYIaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGJiFe-BAgygYzEoKnrE3sOPFjl6VtoKwjTVk3Hqw4diS0KZvWVkL89ZydD2AgeOA1vjixzz7fx893CL32_NDNDaqxkFo7NGDc4bnKHR0ql8MzLpXxd3w4ZpMFfbf0l1sobu_CWFhl7Y6xcvpLtTJGat8At0EKdwkHTPUaLcGACAnrG091_1qVd9AO2FVBd-e3CSYEpBHIYHcNqBs2OWh_7uKXU-nH1dwdM9VffxPT9uwZPagxIiubstBATi4ONmt5UHy7ldDxv4f1EN1vtFM8rJfTI7Slq8foM-iyifVFneHZCE-SODUhpiTCw_F4OjOlQrPkU4yj6WKe2RRV2BTzGONsEuMkmuKjZJ6lyeEChCQepunwDJ-kswg4P0ufoMUozqKJ09RkcAoSemunJMQzyCjGeAFTW6iSy2CglM80U9yVoI7BWaglU8EgN_VEpVQq5J6nfFpSmpOnaLu6qvQzhCWVSgc5JwUoQTwseMlUCa9JkAkKFL0eetvyRBRNwnJTN-NSWMNlEIp2pnroVUd5XSfp-AMNbhjwF5K92yRtkwA29NAbuxy6xvzmwsDiAl_QU0945JR-PF_OxSH0064X0UiElQkb-qAOEgaf2e-aYS-bAE1e6avNSviB6zHf48___a_76O7J0UhMk-P3u-heDXwzfqE9tL2-2egXoCmt5Uu7D74DARQHEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EFFICIENCY+OF+HIERARCHIC+AGGLOMERATIVE+CLUSTERING+USING+THE+ICL+DISTRIBUTED+ARRAY+PROCESSOR&rft.jtitle=Journal+of+documentation&rft.au=RASMUSSEN%2C+EDIE+M.&rft.au=WILLETT%2C+PETER&rft.date=1989&rft.pub=MCB+UP+Ltd&rft.issn=0022-0418&rft.volume=45&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1108%2Feb026836&rft.externalDBID=HAS_PDF&rft.externalDocID=10.1108%2Feb026836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0418&client=summon