Bare Bones Particle Swarm Optimization With Scale Matrix Adaptation

Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems over continuous search spaces. However, it suffers of the premature convergence problem that means it may get trapped into a local optimum whe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 44; no. 9; pp. 1567 - 1578
Main Authors Campos, Mauro, Krohling, Renato A., Enriquez, Ivan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2013.2290223

Cover

Abstract Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems over continuous search spaces. However, it suffers of the premature convergence problem that means it may get trapped into a local optimum when solving multimodal problems. In order to address this drawback and improve the performance of the BBPSO, we propose a variant of this algorithm, named by us as BBPSO with scale matrix adaptation (SMA), SMA-BBPSO for short reference. In the SMA-BBPSO, the position of a particle is selected from a multivariate t -distribution with a rule for adaptation of its scale matrix. We use the multivariate t -distribution in its hierarchical form, as a scale mixtures of normal distributions. The t -distribution has heavier tails than those of the normal distribution, which increases the ability of the particles to escape from a local optimum. In addition, our approach includes the normal distribution as a particular case. As a consequence, the t -distribution can be applied during the optimization process by maintaining the proper balance between exploration and exploitation. We also propose a simple update rule to adapt the scale matrix associated with a particle. Our strategy consists of adapting the scale matrix of a particle such that the best position found by any particle in its neighborhood is sampled with maximum likelihood in the next iteration. A theoretical analysis was developed to explain how the SMA-BBPSO works, and an empirical study was carried out to evaluate the performance of the proposed algorithm. The experimental results show the suitability of the proposed approach in terms of effectiveness to find good solutions for all benchmark problems investigated. Nonparametric statistical tests indicate that SMA-BBPSO shows a statistically significant improvement compared with other swarm algorithms.
AbstractList Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems over continuous search spaces. However, it suffers of the premature convergence problem that means it may get trapped into a local optimum when solving multimodal problems. In order to address this drawback and improve the performance of the BBPSO, we propose a variant of this algorithm, named by us as BBPSO with scale matrix adaptation (SMA), SMA-BBPSO for short reference. In the SMA-BBPSO, the position of a particle is selected from a multivariate t-distribution with a rule for adaptation of its scale matrix. We use the multivariate t-distribution in its hierarchical form, as a scale mixtures of normal distributions. The t -distribution has heavier tails than those of the normal distribution, which increases the ability of the particles to escape from a local optimum. In addition, our approach includes the normal distribution as a particular case. As a consequence, the t -distribution can be applied during the optimization process by maintaining the proper balance between exploration and exploitation. We also propose a simple update rule to adapt the scale matrix associated with a particle. Our strategy consists of adapting the scale matrix of a particle such that the best position found by any particle in its neighborhood is sampled with maximum likelihood in the next iteration. A theoretical analysis was developed to explain how the SMA-BBPSO works, and an empirical study was carried out to evaluate the performance of the proposed algorithm. The experimental results show the suitability of the proposed approach in terms of effectiveness to find good solutions for all benchmark problems investigated. Nonparametric statistical tests indicate that SMA-BBPSO shows a statistically significant improvement compared with other swarm algorithms.Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems over continuous search spaces. However, it suffers of the premature convergence problem that means it may get trapped into a local optimum when solving multimodal problems. In order to address this drawback and improve the performance of the BBPSO, we propose a variant of this algorithm, named by us as BBPSO with scale matrix adaptation (SMA), SMA-BBPSO for short reference. In the SMA-BBPSO, the position of a particle is selected from a multivariate t-distribution with a rule for adaptation of its scale matrix. We use the multivariate t-distribution in its hierarchical form, as a scale mixtures of normal distributions. The t -distribution has heavier tails than those of the normal distribution, which increases the ability of the particles to escape from a local optimum. In addition, our approach includes the normal distribution as a particular case. As a consequence, the t -distribution can be applied during the optimization process by maintaining the proper balance between exploration and exploitation. We also propose a simple update rule to adapt the scale matrix associated with a particle. Our strategy consists of adapting the scale matrix of a particle such that the best position found by any particle in its neighborhood is sampled with maximum likelihood in the next iteration. A theoretical analysis was developed to explain how the SMA-BBPSO works, and an empirical study was carried out to evaluate the performance of the proposed algorithm. The experimental results show the suitability of the proposed approach in terms of effectiveness to find good solutions for all benchmark problems investigated. Nonparametric statistical tests indicate that SMA-BBPSO shows a statistically significant improvement compared with other swarm algorithms.
Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems over continuous search spaces. However, it suffers of the premature convergence problem that means it may get trapped into a local optimum when solving multimodal problems. In order to address this drawback and improve the performance of the BBPSO, we propose a variant of this algorithm, named by us as BBPSO with scale matrix adaptation (SMA), SMA-BBPSO for short reference. In the SMA-BBPSO, the position of a particle is selected from a multivariate $t$ -distribution with a rule for adaptation of its scale matrix. We use the multivariate $t$ -distribution in its hierarchical form, as a scale mixtures of normal distributions. The $t$ -distribution has heavier tails than those of the normal distribution, which increases the ability of the particles to escape from a local optimum. In addition, our approach includes the normal distribution as a particular case. As a consequence, the $t$ -distribution can be applied during the optimization process by maintaining the proper balance between exploration and exploitation. We also propose a simple update rule to adapt the scale matrix associated with a particle. Our strategy consists of adapting the scale matrix of a particle such that the best position found by any particle in its neighborhood is sampled with maximum likelihood in the next iteration. A theoretical analysis was developed to explain how the SMA-BBPSO works, and an empirical study was carried out to evaluate the performance of the proposed algorithm. The experimental results show the suitability of the proposed approach in terms of effectiveness to find good solutions for all benchmark problems investigated. Nonparametric statistical tests indicate that SMA-BBPSO shows a statistically significant improvement compared with other swarm algorithms.
Author Campos, Mauro
Krohling, Renato A.
Enriquez, Ivan
Author_xml – sequence: 1
  givenname: Mauro
  surname: Campos
  fullname: Campos, Mauro
  email: maurocm.campos@gmail.com
  organization: Dept. of Stat., Fed. Univ. of Espirito Santo, Vitoria, Brazil
– sequence: 2
  givenname: Renato A.
  surname: Krohling
  fullname: Krohling, Renato A.
  email: krohling.renato@gmail.com
  organization: Dept. of Production Eng., Fed. Univ. of Espirito Santo, Vitoria, Brazil
– sequence: 3
  givenname: Ivan
  surname: Enriquez
  fullname: Enriquez, Ivan
  email: ivanrobertenriquez@gmail.com
  organization: Dept. of Stat., Fed. Univ. of Espirito Santo, Vitoria, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25137686$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYMoVqs_QAQZcOOmNbmZZCZLW3xBpUIVcRXS6R2MzKMmKT5-vamtLlyI2STkfuck955dstm0DRJywGifMapO74aPgz5QxvsAigLwDbIDTOY9gExs_pxl1iH73j_TuPJ4pfJt0gHBeCZzuUOGA-MwGURrn9waF2xRYTJ5Na5OxvNga_thgm2b5MGGp2RSmFi9McHZt-RsZubhq7hHtkpTedxf711yf3F-N7zqjcaX18OzUa_gOYQeAs1npUEO8f-USVZOFaSFgIwVslQpMi5KRJFPU0ohVak0ApQSUqaZMFPFu-Rk5Tt37csCfdC19QVWlWmwXXjNhMyoBCrZP1Ah4hPAZUSPf6HP7cI1sZEllaZMUc4jdbSmFtMaZ3rubG3cu_6eZASyFVC41nuHpS7sajzBGVtpRvUyNr2MTS9j0-vYopL9Un6b_6U5XGksIv7wMvbPaMY_AbrQngY
CODEN ITCEB8
CitedBy_id crossref_primary_10_1038_s41598_023_43748_w
crossref_primary_10_1080_00949655_2020_1762600
crossref_primary_10_4018_IJSIR_2018010101
crossref_primary_10_1007_s12293_020_00305_6
crossref_primary_10_1007_s12652_022_04432_5
crossref_primary_10_3233_JCM_193644
crossref_primary_10_1016_j_swevo_2017_11_002
crossref_primary_10_1016_j_asoc_2016_06_028
crossref_primary_10_1109_TEVC_2017_2743016
crossref_primary_10_1007_s00500_016_2081_6
crossref_primary_10_1016_j_ins_2019_08_065
crossref_primary_10_1088_1742_6596_1732_1_012072
crossref_primary_10_3390_buildings13092132
crossref_primary_10_1007_s10489_019_01474_9
crossref_primary_10_1016_j_knosys_2015_12_017
crossref_primary_10_1109_TEVC_2016_2591064
crossref_primary_10_1016_j_swevo_2018_08_016
crossref_primary_10_1080_10106049_2022_2102226
crossref_primary_10_1109_TCYB_2015_2474153
crossref_primary_10_1109_TCYB_2019_2937565
crossref_primary_10_1109_TCYB_2017_2692385
crossref_primary_10_1109_TSC_2018_2878561
crossref_primary_10_1007_s10489_017_1113_y
crossref_primary_10_1109_TCYB_2015_2447574
crossref_primary_10_1155_2018_9054623
crossref_primary_10_1109_ACCESS_2022_3222530
crossref_primary_10_1371_journal_pone_0284170
crossref_primary_10_1109_TCYB_2016_2574766
crossref_primary_10_1109_ACCESS_2017_2723538
crossref_primary_10_1109_TCYB_2016_2616170
crossref_primary_10_1371_journal_pone_0267197
crossref_primary_10_1109_TCYB_2016_2611020
crossref_primary_10_1017_S0269888916000151
crossref_primary_10_1109_TCYB_2019_2943928
crossref_primary_10_1007_s13369_021_05483_0
crossref_primary_10_1109_ACCESS_2018_2809457
crossref_primary_10_1016_j_sasc_2023_200057
crossref_primary_10_1007_s10015_018_0440_3
crossref_primary_10_1109_TCYB_2016_2549639
crossref_primary_10_1016_j_eswa_2017_05_047
crossref_primary_10_1109_TNNLS_2017_2708712
Cites_doi 10.1109/ICEC.1998.699146
10.1016/j.swevo.2011.02.002
10.1103/PhysRevE.49.4677
10.1016/j.plrev.2006.10.002
10.1162/106365601750190398
10.1109/TSMCB.2012.2213808
10.1109/CEC.2009.4983361
10.1109/TEVC.2011.2136347
10.1111/j.2517-6161.1974.tb00989.x
10.1109/ICEC.1996.542381
10.1109/4235.985692
10.1109/4235.771163
10.1109/SIS.2007.368035
10.1016/j.ins.2011.08.014
10.1145/1143997.1144082
10.1109/ICNN.1995.488968
10.1109/TEVC.2005.857610
10.1109/SIS.2003.1202251
10.1109/TEVC.2011.2169967
10.1111/j.1467-842X.2008.00504.x
10.1007/s11721-007-0002-0
10.1109/TEVC.2003.816583
10.1023/A:1015059928466
10.1109/TSMCC.2006.875410
10.1109/CEC.2004.1330877
10.1007/978-3-540-87700-4_13
10.1109/TEVC.2004.826074
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2013.2290223
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
Aerospace Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1578
ExternalDocumentID 3407449231
25137686
10_1109_TCYB_2013_2290223
6670107
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c382t-e208dfae321100161fb924c5271c6f94e135fee58b40024946a5299566475ab93
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 02:17:57 EDT 2025
Sun Sep 28 09:09:12 EDT 2025
Mon Jun 30 06:30:13 EDT 2025
Thu Apr 03 07:01:25 EDT 2025
Wed Oct 01 05:14:30 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
Tue Aug 26 16:49:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords scale matrix adaptation (SMA)
swarm algorithms
Multivariate t -distribution
scale mixtures of normal distributions
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-e208dfae321100161fb924c5271c6f94e135fee58b40024946a5299566475ab93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 25137686
PQID 1554419033
PQPubID 85422
PageCount 12
ParticipantIDs proquest_miscellaneous_1567062061
pubmed_primary_25137686
crossref_citationtrail_10_1109_TCYB_2013_2290223
crossref_primary_10_1109_TCYB_2013_2290223
ieee_primary_6670107
proquest_miscellaneous_1555249236
proquest_journals_1554419033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref30
ref33
ref10
ref2
ref1
ref17
ref16
eberhart (ref5) 2007
ref19
ref18
hsieh (ref14) 2010; 7
demsar (ref32) 2006; 7
hollander (ref31) 1999
ref24
ref23
ref26
ref25
ref20
ref22
ref21
richer (ref11) 2006
andrews (ref15) 1974; 36
ref28
ref27
ref8
suganthan (ref29) 2005
ref7
ref9
ref4
ref3
ref6
References_xml – volume: 7
  start-page: 12
  year: 2010
  ident: ref14
  article-title: A modified algorithm of bare bones particle swarm optimization
  publication-title: Int J Comput Sci Issues
– start-page: 3150
  year: 2006
  ident: ref11
  article-title: The Lévy particle swarm
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref17
  doi: 10.1109/ICEC.1998.699146
– ident: ref33
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref10
  doi: 10.1103/PhysRevE.49.4677
– ident: ref4
  doi: 10.1016/j.plrev.2006.10.002
– ident: ref22
  doi: 10.1162/106365601750190398
– ident: ref30
  doi: 10.1109/TSMCB.2012.2213808
– ident: ref12
  doi: 10.1109/CEC.2009.4983361
– ident: ref13
  doi: 10.1109/TEVC.2011.2136347
– year: 1999
  ident: ref31
  publication-title: Nonparametric Statistical Methods
– volume: 36
  start-page: 99
  year: 1974
  ident: ref15
  article-title: Scale mixtures of normal distributions
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– ident: ref21
  doi: 10.1109/ICEC.1996.542381
– ident: ref6
  doi: 10.1109/4235.985692
– ident: ref8
  doi: 10.1109/4235.771163
– ident: ref2
  doi: 10.1109/SIS.2007.368035
– ident: ref27
  doi: 10.1016/j.ins.2011.08.014
– year: 2007
  ident: ref5
  publication-title: Computational Intelligence Concepts to Implementations
– ident: ref24
  doi: 10.1145/1143997.1144082
– volume: 7
  start-page: 1
  year: 2006
  ident: ref32
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learning Res
– ident: ref1
  doi: 10.1109/ICNN.1995.488968
– ident: ref28
  doi: 10.1109/TEVC.2005.857610
– start-page: 1
  year: 2005
  ident: ref29
  publication-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
– ident: ref7
  doi: 10.1109/SIS.2003.1202251
– ident: ref26
  doi: 10.1109/TEVC.2011.2169967
– ident: ref16
  doi: 10.1111/j.1467-842X.2008.00504.x
– ident: ref3
  doi: 10.1007/s11721-007-0002-0
– ident: ref9
  doi: 10.1109/TEVC.2003.816583
– ident: ref23
  doi: 10.1023/A:1015059928466
– ident: ref19
  doi: 10.1109/TSMCC.2006.875410
– ident: ref20
  doi: 10.1109/CEC.2004.1330877
– ident: ref25
  doi: 10.1007/978-3-540-87700-4_13
– ident: ref18
  doi: 10.1109/TEVC.2004.826074
SSID ssj0000816898
Score 2.2642674
Snippet Bare bones particle swarm optimization (BBPSO) is a swarm algorithm that has shown potential for solving single-objective unconstrained optimization problems...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1567
SubjectTerms Adaptation
Algorithms
Bones
Covariance matrices
Exploitation
Gaussian distribution
Multivariate t-distribution
Normal distribution
Optimization
Particle swarm optimization
scale matrix adaptation (SMA)
scale mixtures of normal distributions
Search problems
Searching
swarm algorithms
Swarm intelligence
Vectors
Title Bare Bones Particle Swarm Optimization With Scale Matrix Adaptation
URI https://ieeexplore.ieee.org/document/6670107
https://www.ncbi.nlm.nih.gov/pubmed/25137686
https://www.proquest.com/docview/1554419033
https://www.proquest.com/docview/1555249236
https://www.proquest.com/docview/1567062061
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB7UJ1_aqv1xrZUU-qDSve5mk-zuox6KCFcLKrVPS5KdpaX1FN2jpX99Z7K5RYpK3wKbkGxmknzJzHwD8L6QujVNrpKyJfjGfoSJM14m2DTGVVa2PiTtm34yR-fq-EJfLMGHIRYGEYPzGY65GGz5zZWf81MZZ-6j60OxDMtFafpYreE9JSSQCKlvJRUSQhVFNGJmafXxbPJ1n_248jHzm9ORyCTAOqPVxUHUd06kkGLlYbQZTp3DpzBdjLd3Nvkxnndu7P_8Q-X4vz_0DJ5E-Cn2en1ZgyWcrcNaXOC3YjuyUO9swIQzIYh9pvIXn6N-idNf9uZSnNA2cxnjN8WX7903cUqSRjFluv_fYq-x172B_zmcHx6cTY6SmHEh8XkpuwRlWjatxZyvhQwGW0f3M69lkXnTVgqzXLeIunQqcA0qY7Xk2FijCm1dlb-AlRkN7BUIZwrbyAzbyqKiPdSlXklL0ncEEFKPI0gXs177SEfOWTF-1uFaklY1y6xmmdVRZiPYHZpc91wcj1Xe4PkeKsapHsHmQrR1XK23NWMqRcgop1bvhs-0zth4Ymd4NQ91NLMr5uaxOtSJkQSRRvCyV5uh_4W2vb5_XG9glUaveu-1TVjpbub4luBO57aCnv8FGT317A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALpZSPbQsYiQMgsiSO7WyO7YpqgW5B6la0p8h2JgJBt1WbVRG_nhnHGyEEFTdLsWXHM7afPTNvAJ4XUjemzlUyagi-sR9h4oyXCda1caWVjQ9J-6YHZnKk3h_r4xV43cfCIGJwPsMhF4Mtvz7zC34q48x9dH0obsBNrZTSXbRW_6ISUkiE5LeSCgnhiiKaMbO0fDMbn-yyJ1c-ZIZzOhSZBlhntL44jPq3MykkWfk33gznzt4aTJcj7txNvg0XrRv6n3-QOf7vL92FOxGAip1OY9ZhBef3YD0u8UvxIvJQv9yAMedCELtM5i8-RQ0Th1f24lR8pI3mNEZwis9f2y_ikGSNYsqE_z_ETm3POxP_fTjaezsbT5KYcyHx-Ui2Ccp0VDcWc74YMhxsHN3QvJZF5k1TKsxy3SDqkVOBbVAZqyVHxxpVaOvK_AGszmlgj0A4U9haZtiUFhXtoi71SlqSvyOIkHocQLqc9cpHQnLOi_G9CheTtKxYZhXLrIoyG8Crvsl5x8ZxXeUNnu--YpzqAWwvRVvF9XpZMapShI1yavWs_0wrjc0ndo5ni1BHM79ibq6rQ50YSSBpAA87ten7X2rb5t_H9RRuTWbT_Wr_3cGHLbhNf6I6X7ZtWG0vFviYwE_rngSd_wUiQ_k5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bare+Bones+Particle+Swarm+Optimization+With+Scale+Matrix+Adaptation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Campos%2C+Mauro&rft.au=Krohling%2C+Renato+A.&rft.au=Enriquez%2C+Ivan&rft.date=2014-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=44&rft.issue=9&rft.spage=1567&rft.epage=1578&rft_id=info:doi/10.1109%2FTCYB.2013.2290223&rft_id=info%3Apmid%2F25137686&rft.externalDocID=6670107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon