Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data
Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the geneti...
Saved in:
| Published in | Progress in artificial intelligence Vol. 7; no. 4; pp. 399 - 410 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2192-6352 2192-6360 |
| DOI | 10.1007/s13748-018-0161-9 |
Cover
| Abstract | Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original |
|---|---|
| AbstractList | Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (
Gbc
) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the
Gbc
and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of
Gbc
with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc
, and (iii) improving the exploitation method in
Gbc
, our experiments in microarray data sets reveal that our new method
Gbc+
is not only significantly more accurate, but also around ten times faster on average than the original Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (Gbc) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc, and (iii) improving the exploitation method in Gbc, our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original |
| Author | Pino Angulo, Adrian Shin, Kilho Velázquez-Rodríguez, Camilo |
| Author_xml | – sequence: 1 givenname: Adrian orcidid: 0000-0002-2386-2098 surname: Pino Angulo fullname: Pino Angulo, Adrian email: apinoa85@gmail.com organization: Graduate School of Applied Informatics, University of Hyogo – sequence: 2 givenname: Kilho surname: Shin fullname: Shin, Kilho organization: Graduate School of Applied Informatics, University of Hyogo – sequence: 3 givenname: Camilo surname: Velázquez-Rodríguez fullname: Velázquez-Rodríguez, Camilo organization: Grupo de Procesamiento de Datos Biomédicos, Universidad de Holguín |
| BookMark | eNp9kE1LAzEQhoNUsNb-AG8Bz6v52N3sHqX4URC86Dlks5Ntym5Sk1Sov95tKwqCHoaZw_vMvPOeo4nzDhC6pOSaEiJuIuUirzJC91XSrD5BU0ZrlpW8JJPvuWBnaB7jmhDCaE4oz6eoWw6b4N-t63BaAe7AQbIaNwBY-967HfabZAf7oZL1Dqu-88Gm1YCNDxiMsdqCSwcOR-hBH2TW4cHq4FUIaodbldQFOjWqjzD_6jP0en_3snjMnp4flovbp0zziqWs4apWjRGg2rJieWNaRZqqNaTlDIjilHOmdaHzihR52xaNKYUQFWtErbhQhM_Q1XHv-NXbFmKSa78NbjwpGaWiKnLBxKgSR9XoMcYARmqbDh-moGwvKZH7YOUxWDkGK_fBynok6S9yE-ygwu5fhh2ZOGpdB-HH09_QJzwRjmU |
| CitedBy_id | crossref_primary_10_1007_s12559_019_09632_4 crossref_primary_10_1016_j_engappai_2024_108554 crossref_primary_10_1016_j_compbiomed_2021_104558 crossref_primary_10_1186_s12859_023_05247_7 crossref_primary_10_1016_j_asoc_2023_110649 |
| Cites_doi | 10.1109/TPAMI.2005.159 10.1016/S0004-3702(97)00043-X 10.1145/2641190.2641198 10.1016/j.cor.2012.12.006 10.1016/j.compbiolchem.2015.03.001 10.1002/int.21833 10.1504/IJDMB.2017.088538 10.1007/978-3-642-13529-3_3 10.1007/s10115-010-0288-x |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s13748-018-0161-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2192-6360 |
| EndPage | 410 |
| ExternalDocumentID | 10_1007_s13748_018_0161_9 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 17H00762 funderid: http://dx.doi.org/10.13039/501100001691 |
| GroupedDBID | -EM 0R~ 0VY 203 30V 4.4 406 408 409 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BGNMA BSONS CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 HF~ HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RIG RLLFE ROL RSV SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7X Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03 |
| IEDL.DBID | AGYKE |
| ISSN | 2192-6352 |
| IngestDate | Thu Sep 25 00:55:01 EDT 2025 Wed Oct 01 04:42:55 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Fri Feb 21 02:34:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Feature selection Gene selection Microarray data Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2386-2098 |
| PQID | 2117854727 |
| PQPubID | 2044106 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2117854727 crossref_citationtrail_10_1007_s13748_018_0161_9 crossref_primary_10_1007_s13748_018_0161_9 springer_journals_10_1007_s13748_018_0161_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Progress in artificial intelligence |
| PublicationTitleAbbrev | Prog Artif Intell |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Peng, Long, Ding (CR4) 2005; 27 CR6 Osama, Tajudin, Azmi, Mohammad (CR11) 2017; 19 Karaboga, Akay (CR8) 2009; 214 CR15 Ramrez-Gallego, Lastra, Martnez-Rego, Boln-Canedo, Bentez, Herrera, AlonsoBetanzos (CR5) 2017; 32 Vanschoren, van Rijn, Bischl, Torgo (CR14) 2013; 15 Kohavi, John (CR2) 1997; 97 Xiang, An (CR7) 2013; 40 Guyon, Elisseeff (CR1) 2003; 3 Moraglio, Di Chio, Poli (CR12) 2007 El Akadi, Amine, El Ouardighi, Aboutajdine (CR10) 2011; 26 Witten, Frank, Hall, Pal (CR13) 2016 Wojnarski, Janusz, Nguyen, Bazan, Luo, Chen, Hu, Wang, Guan, Luo, Gao, Shen, Nikulin, Huang, McLachlan, Bošnjak, Gamberger (CR9) 2010 Alshamlan, Badr, Alohali (CR3) 2015; 56 161_CR6 HM Alshamlan (161_CR3) 2015; 56 Alberto Moraglio (161_CR12) 2007 J Vanschoren (161_CR14) 2013; 15 161_CR15 Marcin Wojnarski (161_CR9) 2010 R Kohavi (161_CR2) 1997; 97 H Peng (161_CR4) 2005; 27 I Witten (161_CR13) 2016 WL Xiang (161_CR7) 2013; 40 D Karaboga (161_CR8) 2009; 214 I Guyon (161_CR1) 2003; 3 S Ramrez-Gallego (161_CR5) 2017; 32 A El Akadi (161_CR10) 2011; 26 A Osama (161_CR11) 2017; 19 |
| References_xml | – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: CR4 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – ident: CR15 – year: 2016 ident: CR13 publication-title: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems – volume: 97 start-page: 273 issue: 1 year: 1997 ident: CR2 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 15 start-page: 49 issue: 2 year: 2013 ident: CR14 article-title: OpenML: networked science in machine learning publication-title: SIGKDD Explor. doi: 10.1145/2641190.2641198 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: CR8 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – start-page: 125 year: 2007 end-page: 136 ident: CR12 article-title: Geometric Particle Swarm Optimisation publication-title: Lecture Notes in Computer Science – volume: 40 start-page: 1256 issue: 5 year: 2013 ident: CR7 article-title: An efficient and robust artificial bee colony algorithm for numerical optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.12.006 – volume: 56 start-page: 49 year: 2015 ident: CR3 article-title: Genetic bee colony (GBC) algorithm: A new gene selection method for microarray cancer classification publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.03.001 – ident: CR6 – volume: 32 start-page: 134 year: 2017 end-page: 152 ident: CR5 article-title: FastmRMR: fast minimum redundancy maximum relevance algorithm for high-dimensional big data publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21833 – volume: 3 start-page: 1157 year: 2003 ident: CR1 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 32 issue: 1 year: 2017 ident: CR11 article-title: Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm publication-title: Int. J. Data Min. Bioinf. doi: 10.1504/IJDMB.2017.088538 – start-page: 4 year: 2010 end-page: 19 ident: CR9 article-title: RSCTC’2010 Discovery Challenge: Mining DNA Microarray Data for Medical Diagnosis and Treatment publication-title: Rough Sets and Current Trends in Computing doi: 10.1007/978-3-642-13529-3_3 – volume: 26 start-page: 487 issue: 3 year: 2011 ident: CR10 article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-010-0288-x – start-page: 4 volume-title: Rough Sets and Current Trends in Computing year: 2010 ident: 161_CR9 doi: 10.1007/978-3-642-13529-3_3 – volume: 3 start-page: 1157 year: 2003 ident: 161_CR1 publication-title: J. Mach. Learn. Res. – start-page: 125 volume-title: Lecture Notes in Computer Science year: 2007 ident: 161_CR12 – volume: 19 start-page: 32 issue: 1 year: 2017 ident: 161_CR11 publication-title: Int. J. Data Min. Bioinf. doi: 10.1504/IJDMB.2017.088538 – volume: 15 start-page: 49 issue: 2 year: 2013 ident: 161_CR14 publication-title: SIGKDD Explor. doi: 10.1145/2641190.2641198 – volume: 56 start-page: 49 year: 2015 ident: 161_CR3 publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2015.03.001 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 161_CR4 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 32 start-page: 134 year: 2017 ident: 161_CR5 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.21833 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems year: 2016 ident: 161_CR13 – ident: 161_CR15 – volume: 26 start-page: 487 issue: 3 year: 2011 ident: 161_CR10 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-010-0288-x – volume: 97 start-page: 273 issue: 1 year: 1997 ident: 161_CR2 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 40 start-page: 1256 issue: 5 year: 2013 ident: 161_CR7 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.12.006 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 161_CR8 publication-title: Appl. Math. Comput. – ident: 161_CR6 |
| SSID | ssj0002140134 |
| Score | 2.0886247 |
| Snippet | Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 399 |
| SubjectTerms | Algorithms Ant colony optimization Artificial Intelligence Biomedical data Computational Intelligence Computer Imaging Computer Science Control Critical components Data analysis Data mining Data Mining and Knowledge Discovery Filtration Mechatronics Natural Language Processing (NLP) Optimization algorithms Pattern Recognition and Graphics Regular Paper Robotics Vision Workflow |
| Title | Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data |
| URI | https://link.springer.com/article/10.1007/s13748-018-0161-9 https://www.proquest.com/docview/2117854727 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: AFBBN dateStart: 20120401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: AGYKE dateStart: 20120101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWVgon6JQkAcmUFBqO7EzUkRBIJhAgimyYwcQbYradIBfz9lNiECAxJAptpX4zr539t07gAOupTRaiCCSeRhwamigOHVchDzKo9hS6887rm_iizt-eR_dV3nc0zravb6S9Dt1k-zmmFLQ9XVP3AuSRVjydFstWDo5f7hqjlaodxrcfTIuRxqgSaX1feZP43y1SA3M_HYz6g3OoA239afO40xejmelPs7ev7E4_vNfVmGlAqDkZK4xa7Bgi3Vo18UdSLXWN-Dx87iBIEYkqGcu3ZFoa4kjui7eyBh3m1GVxknU8HE8eS6fRgRRMLGemALtme9Hpr7Yjmv2XJCRCwFUk4l6Iy48dRPuBme3pxdBVZUhyJikZaCZSpTOBapgLCnXuVGhliYPDUPBKoZOL82yKOMS0aAxkc5jIRCHaJEoJlTItqBVjAu7DaSndI9lhnHJGSoIVRkzgsYySiz6bT3dgbCWTJpVlOWucsYwbciW3USmOJGpm8g06cDhZ5fXOV_HX427tbjTaulOU_SIhYw44roOHNXSa17_OtjOv1rvwjJ14veBMV1olZOZ3UN4U-p9VOdBv3-zX6n1B-gO8Z0 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjShPD0ygoNR2YmdECCiPdioSTJEdO1BBU5SGAX495zQhAgESQ6bYVuI7-76z774DOOBaSqOF8AKZ-h6nhnqKU8dFyIM0CC215XlHrx92b_nVXXBX5XFP6mj3-kqy3KmbZDfHlIKur3vCjhfNwhxH_4S2YO7k4v66OVqhpdPg7pNxOVIPTSqt7zN_GuerRWpg5reb0dLgnC_BoP7UaZzJ0_FroY-T928sjv_8l2VYrAAoOZlqzArM2GwVluriDqRa62vw8HncQBAjEtQzl-5ItLXEEV1nb2SMu82oSuMk6vlhnA-LxxFBFExsSUyB9qzsRyZlsR3XbJiRkQsBVHmu3ogLT12H2_OzwWnXq6oyeAmTtPA0U5HSqUAVDCXlOjXK19KkvmEoWMXQ6aVJEiRcIho0JtBpKATiEC0ixYTy2Qa0snFmN4F0lO6wxDAuOUMFoSphRtBQBpFFv62j2-DXkomTirLcVc54jhuyZTeRMU5k7CYyjtpw-NnlZcrX8VfjnVrccbV0JzF6xEIGHHFdG45q6TWvfx1s61-t92G-O-jdxDeX_ettWKBOFcogmR1oFfmr3UWoU-i9SrU_AKRW8wA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5emACBVLbiZ0RAeWNGECCKdixAwiaojYd4NdzThMiECAhhkyxrcR3tr_z3X0HsMG1lEYL4QUy9T1ODfUUp46LkAdpEFpqi_uO84vw6Jqf3AQ3ZZ3TfhXtXrkkhzkNjqUpy3deTLpTJ7451hQ0g90TtrxoFMbQMhGo6GO7h7en9TULLQwI51vGpUk9PF5p5dv8bpzPp1MNOb94SYvDpz0Fd9VnD2NOnrYHud5O3r4wOv7jv6ZhsgSmZHeoSTMwYrNZmKqKPpByD5iD-49rCILYkaD-uTRIoq0ljgA7eyVd3IU6ZXonUc_33d5j_tAhiI6JLQgr8HuKfqRfFOFxzR4z0nGhgarXU6_Eha3Ow3X74GrvyCurNXgJkzT3NFOR0qlA1Qwl5To1ytfSpL5hKHDF0BimSRIkXCJKNCbQaSgE4hMtIsWE8tkCNLJuZheBtJRuscQwLjlDxaEqYUbQUAaRRXuupZvgV1KKk5LK3FXUeI5rEmY3kTFOZOwmMo6asPnR5WXI4_Fb45VK9HG5pPsxWspCBhzxXhO2KknWr38cbOlPrddh_HK_HZ8dX5wuwwR1mlDEzqxAI-8N7CoioFyvlVr-Ds7l--Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+genetic+bee+colony+optimization+algorithm+for+efficient+gene+selection+in+microarray+data&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Pino+Angulo%2C+Adrian&rft.au=Shin%2C+Kilho&rft.au=Vel%C3%A1zquez-Rodr%C3%ADguez%2C+Camilo&rft.date=2018-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=7&rft.issue=4&rft.spage=399&rft.epage=410&rft_id=info:doi/10.1007%2Fs13748-018-0161-9&rft.externalDocID=10_1007_s13748_018_0161_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon |