Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data

Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the geneti...

Full description

Saved in:
Bibliographic Details
Published inProgress in artificial intelligence Vol. 7; no. 4; pp. 399 - 410
Main Authors Pino Angulo, Adrian, Shin, Kilho, Velázquez-Rodríguez, Camilo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2192-6352
2192-6360
DOI10.1007/s13748-018-0161-9

Cover

Abstract Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original
AbstractList Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony ( Gbc ) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc , and (iii) improving the exploitation method in Gbc , our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original
Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within the scope of microarray data analysis, the genetic bee colony (Gbc) algorithm is one of the best feature selection algorithms, which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution. In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in Gbc, and (iii) improving the exploitation method in Gbc, our experiments in microarray data sets reveal that our new method Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original
Author Pino Angulo, Adrian
Shin, Kilho
Velázquez-Rodríguez, Camilo
Author_xml – sequence: 1
  givenname: Adrian
  orcidid: 0000-0002-2386-2098
  surname: Pino Angulo
  fullname: Pino Angulo, Adrian
  email: apinoa85@gmail.com
  organization: Graduate School of Applied Informatics, University of Hyogo
– sequence: 2
  givenname: Kilho
  surname: Shin
  fullname: Shin, Kilho
  organization: Graduate School of Applied Informatics, University of Hyogo
– sequence: 3
  givenname: Camilo
  surname: Velázquez-Rodríguez
  fullname: Velázquez-Rodríguez, Camilo
  organization: Grupo de Procesamiento de Datos Biomédicos, Universidad de Holguín
BookMark eNp9kE1LAzEQhoNUsNb-AG8Bz6v52N3sHqX4URC86Dlks5Ntym5Sk1Sov95tKwqCHoaZw_vMvPOeo4nzDhC6pOSaEiJuIuUirzJC91XSrD5BU0ZrlpW8JJPvuWBnaB7jmhDCaE4oz6eoWw6b4N-t63BaAe7AQbIaNwBY-967HfabZAf7oZL1Dqu-88Gm1YCNDxiMsdqCSwcOR-hBH2TW4cHq4FUIaodbldQFOjWqjzD_6jP0en_3snjMnp4flovbp0zziqWs4apWjRGg2rJieWNaRZqqNaTlDIjilHOmdaHzihR52xaNKYUQFWtErbhQhM_Q1XHv-NXbFmKSa78NbjwpGaWiKnLBxKgSR9XoMcYARmqbDh-moGwvKZH7YOUxWDkGK_fBynok6S9yE-ygwu5fhh2ZOGpdB-HH09_QJzwRjmU
CitedBy_id crossref_primary_10_1007_s12559_019_09632_4
crossref_primary_10_1016_j_engappai_2024_108554
crossref_primary_10_1016_j_compbiomed_2021_104558
crossref_primary_10_1186_s12859_023_05247_7
crossref_primary_10_1016_j_asoc_2023_110649
Cites_doi 10.1109/TPAMI.2005.159
10.1016/S0004-3702(97)00043-X
10.1145/2641190.2641198
10.1016/j.cor.2012.12.006
10.1016/j.compbiolchem.2015.03.001
10.1002/int.21833
10.1504/IJDMB.2017.088538
10.1007/978-3-642-13529-3_3
10.1007/s10115-010-0288-x
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13748-018-0161-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-6360
EndPage 410
ExternalDocumentID 10_1007_s13748_018_0161_9
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 17H00762
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -EM
0R~
0VY
203
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
BSONS
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HF~
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RIG
RLLFE
ROL
RSV
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03
IEDL.DBID AGYKE
ISSN 2192-6352
IngestDate Thu Sep 25 00:55:01 EDT 2025
Wed Oct 01 04:42:55 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Fri Feb 21 02:34:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Feature selection
Gene selection
Microarray data
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-b3a9abf7ead6824bfda0b8df0d32e0a31332cc5c48054dd5bf677782b79a37a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2386-2098
PQID 2117854727
PQPubID 2044106
PageCount 12
ParticipantIDs proquest_journals_2117854727
crossref_citationtrail_10_1007_s13748_018_0161_9
crossref_primary_10_1007_s13748_018_0161_9
springer_journals_10_1007_s13748_018_0161_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in artificial intelligence
PublicationTitleAbbrev Prog Artif Intell
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Peng, Long, Ding (CR4) 2005; 27
CR6
Osama, Tajudin, Azmi, Mohammad (CR11) 2017; 19
Karaboga, Akay (CR8) 2009; 214
CR15
Ramrez-Gallego, Lastra, Martnez-Rego, Boln-Canedo, Bentez, Herrera, AlonsoBetanzos (CR5) 2017; 32
Vanschoren, van Rijn, Bischl, Torgo (CR14) 2013; 15
Kohavi, John (CR2) 1997; 97
Xiang, An (CR7) 2013; 40
Guyon, Elisseeff (CR1) 2003; 3
Moraglio, Di Chio, Poli (CR12) 2007
El Akadi, Amine, El Ouardighi, Aboutajdine (CR10) 2011; 26
Witten, Frank, Hall, Pal (CR13) 2016
Wojnarski, Janusz, Nguyen, Bazan, Luo, Chen, Hu, Wang, Guan, Luo, Gao, Shen, Nikulin, Huang, McLachlan, Bošnjak, Gamberger (CR9) 2010
Alshamlan, Badr, Alohali (CR3) 2015; 56
161_CR6
HM Alshamlan (161_CR3) 2015; 56
Alberto Moraglio (161_CR12) 2007
J Vanschoren (161_CR14) 2013; 15
161_CR15
Marcin Wojnarski (161_CR9) 2010
R Kohavi (161_CR2) 1997; 97
H Peng (161_CR4) 2005; 27
I Witten (161_CR13) 2016
WL Xiang (161_CR7) 2013; 40
D Karaboga (161_CR8) 2009; 214
I Guyon (161_CR1) 2003; 3
S Ramrez-Gallego (161_CR5) 2017; 32
A El Akadi (161_CR10) 2011; 26
A Osama (161_CR11) 2017; 19
References_xml – volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: CR4
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: CR15
– year: 2016
  ident: CR13
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: CR2
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 15
  start-page: 49
  issue: 2
  year: 2013
  ident: CR14
  article-title: OpenML: networked science in machine learning
  publication-title: SIGKDD Explor.
  doi: 10.1145/2641190.2641198
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: CR8
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– start-page: 125
  year: 2007
  end-page: 136
  ident: CR12
  article-title: Geometric Particle Swarm Optimisation
  publication-title: Lecture Notes in Computer Science
– volume: 40
  start-page: 1256
  issue: 5
  year: 2013
  ident: CR7
  article-title: An efficient and robust artificial bee colony algorithm for numerical optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.12.006
– volume: 56
  start-page: 49
  year: 2015
  ident: CR3
  article-title: Genetic bee colony (GBC) algorithm: A new gene selection method for microarray cancer classification
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2015.03.001
– ident: CR6
– volume: 32
  start-page: 134
  year: 2017
  end-page: 152
  ident: CR5
  article-title: FastmRMR: fast minimum redundancy maximum relevance algorithm for high-dimensional big data
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21833
– volume: 3
  start-page: 1157
  year: 2003
  ident: CR1
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 32
  issue: 1
  year: 2017
  ident: CR11
  article-title: Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm
  publication-title: Int. J. Data Min. Bioinf.
  doi: 10.1504/IJDMB.2017.088538
– start-page: 4
  year: 2010
  end-page: 19
  ident: CR9
  article-title: RSCTC’2010 Discovery Challenge: Mining DNA Microarray Data for Medical Diagnosis and Treatment
  publication-title: Rough Sets and Current Trends in Computing
  doi: 10.1007/978-3-642-13529-3_3
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  ident: CR10
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-010-0288-x
– start-page: 4
  volume-title: Rough Sets and Current Trends in Computing
  year: 2010
  ident: 161_CR9
  doi: 10.1007/978-3-642-13529-3_3
– volume: 3
  start-page: 1157
  year: 2003
  ident: 161_CR1
  publication-title: J. Mach. Learn. Res.
– start-page: 125
  volume-title: Lecture Notes in Computer Science
  year: 2007
  ident: 161_CR12
– volume: 19
  start-page: 32
  issue: 1
  year: 2017
  ident: 161_CR11
  publication-title: Int. J. Data Min. Bioinf.
  doi: 10.1504/IJDMB.2017.088538
– volume: 15
  start-page: 49
  issue: 2
  year: 2013
  ident: 161_CR14
  publication-title: SIGKDD Explor.
  doi: 10.1145/2641190.2641198
– volume: 56
  start-page: 49
  year: 2015
  ident: 161_CR3
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2015.03.001
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 161_CR4
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 32
  start-page: 134
  year: 2017
  ident: 161_CR5
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.21833
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems
  year: 2016
  ident: 161_CR13
– ident: 161_CR15
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  ident: 161_CR10
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-010-0288-x
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 161_CR2
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 40
  start-page: 1256
  issue: 5
  year: 2013
  ident: 161_CR7
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.12.006
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 161_CR8
  publication-title: Appl. Math. Comput.
– ident: 161_CR6
SSID ssj0002140134
Score 2.0886247
Snippet Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is a need for feature selection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 399
SubjectTerms Algorithms
Ant colony optimization
Artificial Intelligence
Biomedical data
Computational Intelligence
Computer Imaging
Computer Science
Control
Critical components
Data analysis
Data mining
Data Mining and Knowledge Discovery
Filtration
Mechatronics
Natural Language Processing (NLP)
Optimization algorithms
Pattern Recognition and Graphics
Regular Paper
Robotics
Vision
Workflow
Title Improving the genetic bee colony optimization algorithm for efficient gene selection in microarray data
URI https://link.springer.com/article/10.1007/s13748-018-0161-9
https://www.proquest.com/docview/2117854727
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: AFBBN
  dateStart: 20120401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: AGYKE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWVgon6JQkAcmUFBqO7EzUkRBIJhAgimyYwcQbYradIBfz9lNiECAxJAptpX4zr539t07gAOupTRaiCCSeRhwamigOHVchDzKo9hS6887rm_iizt-eR_dV3nc0zravb6S9Dt1k-zmmFLQ9XVP3AuSRVjydFstWDo5f7hqjlaodxrcfTIuRxqgSaX1feZP43y1SA3M_HYz6g3OoA239afO40xejmelPs7ev7E4_vNfVmGlAqDkZK4xa7Bgi3Vo18UdSLXWN-Dx87iBIEYkqGcu3ZFoa4kjui7eyBh3m1GVxknU8HE8eS6fRgRRMLGemALtme9Hpr7Yjmv2XJCRCwFUk4l6Iy48dRPuBme3pxdBVZUhyJikZaCZSpTOBapgLCnXuVGhliYPDUPBKoZOL82yKOMS0aAxkc5jIRCHaJEoJlTItqBVjAu7DaSndI9lhnHJGSoIVRkzgsYySiz6bT3dgbCWTJpVlOWucsYwbciW3USmOJGpm8g06cDhZ5fXOV_HX427tbjTaulOU_SIhYw44roOHNXSa17_OtjOv1rvwjJ14veBMV1olZOZ3UN4U-p9VOdBv3-zX6n1B-gO8Z0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjShPD0ygoNR2YmdECCiPdioSTJEdO1BBU5SGAX495zQhAgESQ6bYVuI7-76z774DOOBaSqOF8AKZ-h6nhnqKU8dFyIM0CC215XlHrx92b_nVXXBX5XFP6mj3-kqy3KmbZDfHlIKur3vCjhfNwhxH_4S2YO7k4v66OVqhpdPg7pNxOVIPTSqt7zN_GuerRWpg5reb0dLgnC_BoP7UaZzJ0_FroY-T928sjv_8l2VYrAAoOZlqzArM2GwVluriDqRa62vw8HncQBAjEtQzl-5ItLXEEV1nb2SMu82oSuMk6vlhnA-LxxFBFExsSUyB9qzsRyZlsR3XbJiRkQsBVHmu3ogLT12H2_OzwWnXq6oyeAmTtPA0U5HSqUAVDCXlOjXK19KkvmEoWMXQ6aVJEiRcIho0JtBpKATiEC0ixYTy2Qa0snFmN4F0lO6wxDAuOUMFoSphRtBQBpFFv62j2-DXkomTirLcVc54jhuyZTeRMU5k7CYyjtpw-NnlZcrX8VfjnVrccbV0JzF6xEIGHHFdG45q6TWvfx1s61-t92G-O-jdxDeX_ettWKBOFcogmR1oFfmr3UWoU-i9SrU_AKRW8wA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BkRALb0R5emACBVLbiZ0RAeWNGECCKdixAwiaojYd4NdzThMiECAhhkyxrcR3tr_z3X0HsMG1lEYL4QUy9T1ODfUUp46LkAdpEFpqi_uO84vw6Jqf3AQ3ZZ3TfhXtXrkkhzkNjqUpy3deTLpTJ7451hQ0g90TtrxoFMbQMhGo6GO7h7en9TULLQwI51vGpUk9PF5p5dv8bpzPp1MNOb94SYvDpz0Fd9VnD2NOnrYHud5O3r4wOv7jv6ZhsgSmZHeoSTMwYrNZmKqKPpByD5iD-49rCILYkaD-uTRIoq0ljgA7eyVd3IU6ZXonUc_33d5j_tAhiI6JLQgr8HuKfqRfFOFxzR4z0nGhgarXU6_Eha3Ow3X74GrvyCurNXgJkzT3NFOR0qlA1Qwl5To1ytfSpL5hKHDF0BimSRIkXCJKNCbQaSgE4hMtIsWE8tkCNLJuZheBtJRuscQwLjlDxaEqYUbQUAaRRXuupZvgV1KKk5LK3FXUeI5rEmY3kTFOZOwmMo6asPnR5WXI4_Fb45VK9HG5pPsxWspCBhzxXhO2KknWr38cbOlPrddh_HK_HZ8dX5wuwwR1mlDEzqxAI-8N7CoioFyvlVr-Ds7l--Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+genetic+bee+colony+optimization+algorithm+for+efficient+gene+selection+in+microarray+data&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Pino+Angulo%2C+Adrian&rft.au=Shin%2C+Kilho&rft.au=Vel%C3%A1zquez-Rodr%C3%ADguez%2C+Camilo&rft.date=2018-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=7&rft.issue=4&rft.spage=399&rft.epage=410&rft_id=info:doi/10.1007%2Fs13748-018-0161-9&rft.externalDocID=10_1007_s13748_018_0161_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon