A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in...
Saved in:
| Published in | Engineering with computers Vol. 33; no. 3; pp. 689 - 700 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0177-0667 1435-5663 |
| DOI | 10.1007/s00366-016-0497-3 |
Cover
| Abstract | Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation (
R
2
) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability. |
|---|---|
| AbstractList | Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation (
R
2
) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability. Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation (R2) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability. |
| Author | Golzar, Saeid Bagheri Hasanipanah, Mahdi Taheri, Khalil Majid, Muhd Zaimi Abd |
| Author_xml | – sequence: 1 givenname: Khalil surname: Taheri fullname: Taheri, Khalil organization: Advanced Robotic and Intelligent Systems Lab, School of Electrical and Computer Engineering, University of Tehran – sequence: 2 givenname: Mahdi surname: Hasanipanah fullname: Hasanipanah, Mahdi organization: Young Researchers and Elite Club, Qom Branch, Islamic Azad University – sequence: 3 givenname: Saeid Bagheri surname: Golzar fullname: Golzar, Saeid Bagheri email: saeid.bagherigolzar@gmail.com organization: Young Researchers and Elite Club, Qom Branch, Islamic Azad University – sequence: 4 givenname: Muhd Zaimi Abd surname: Majid fullname: Majid, Muhd Zaimi Abd organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz9Fks5_HUvwCwYueQzY7aVO3SU2ylf5709ZDEfQwDEPeZ-bNO0Ej6ywgdM3oLaO0uguU8rIklKXKm4rwMzRmOS9IUZZ8hMaUVRWhZVldoEkIK0oZp7QZo-0ML3etNx2WPhptlJE9bgGwcr2zOyz7hfMmLtfk5N3C4A8tfjn_gbXz-wIlQzR2geMScNungWy86wYFHV54N9gOb03rZTTOXqJzLfsAVz99it4f7t_mT-Tl9fF5PnshitdZJLLrkkul6owzDa2ui6ZT6Y9FCwx0XTZloymwrOUyz-tcq0K1qi5YowE6mWk-RTfHvcnJ5wAhipUbvE0nBWvqrKAFzeukqo4q5V0IHrRQJh58Ri9NLxgV-5DFMWSRDIh9yIInkv0iN96spd_9y2RHJiStXYA_8fQn9A2NEJQN |
| CitedBy_id | crossref_primary_10_1007_s40033_024_00653_4 crossref_primary_10_1016_j_ijthermalsci_2023_108281 crossref_primary_10_1007_s00366_018_0648_9 crossref_primary_10_1007_s00366_018_0645_z crossref_primary_10_1007_s00366_020_01082_z crossref_primary_10_1007_s11053_020_09623_5 crossref_primary_10_1016_j_measurement_2019_05_069 crossref_primary_10_1007_s00366_018_0621_7 crossref_primary_10_1177_1687814019847290 crossref_primary_10_1007_s00366_019_00720_5 crossref_primary_10_1016_j_jsm_2019_10_001 crossref_primary_10_1002_eng2_12483 crossref_primary_10_1007_s00366_019_00822_0 crossref_primary_10_1080_19648189_2017_1367727 crossref_primary_10_1007_s12517_022_10615_3 crossref_primary_10_1007_s00366_017_0539_5 crossref_primary_10_1016_j_jksuci_2020_07_004 crossref_primary_10_1038_s41598_024_70939_w crossref_primary_10_3390_su151813415 crossref_primary_10_1007_s00366_019_00868_0 crossref_primary_10_1007_s10064_025_04216_z crossref_primary_10_1007_s00521_020_04822_w crossref_primary_10_1007_s12145_024_01488_z crossref_primary_10_1007_s00366_018_0659_6 crossref_primary_10_3390_app13053128 crossref_primary_10_1155_2021_2847180 crossref_primary_10_1007_s00500_022_07141_5 crossref_primary_10_3390_min11060601 crossref_primary_10_1007_s42461_024_00976_6 crossref_primary_10_1080_12269328_2019_1607570 crossref_primary_10_1007_s11053_019_09597_z crossref_primary_10_1016_j_ijmst_2021_07_012 crossref_primary_10_1007_s00366_019_00895_x crossref_primary_10_1007_s00366_021_01332_8 crossref_primary_10_5937_mmeb2202043S crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s11053_019_09573_7 crossref_primary_10_1007_s11053_019_09577_3 crossref_primary_10_1007_s12665_017_6864_6 crossref_primary_10_1007_s00366_018_0600_z crossref_primary_10_1080_17480930_2021_1885583 crossref_primary_10_3390_s20010132 crossref_primary_10_1007_s00366_020_00937_9 crossref_primary_10_1007_s00366_019_00725_0 crossref_primary_10_1016_j_procs_2019_12_133 crossref_primary_10_1007_s11053_021_09890_w crossref_primary_10_1007_s11053_021_09903_8 crossref_primary_10_1007_s00366_018_0668_5 crossref_primary_10_1007_s10706_019_00945_7 crossref_primary_10_1038_s41598_019_50262_5 crossref_primary_10_1007_s42461_023_00879_y crossref_primary_10_1140_epje_s10189_022_00248_5 crossref_primary_10_1016_j_asoc_2019_01_042 crossref_primary_10_1016_j_tust_2023_105508 crossref_primary_10_1155_2019_4014761 crossref_primary_10_1016_j_eswa_2024_125923 crossref_primary_10_1016_j_neucom_2017_08_015 crossref_primary_10_1007_s00366_018_0686_3 crossref_primary_10_1007_s11053_020_09676_6 crossref_primary_10_1016_j_mlwa_2023_100517 crossref_primary_10_3390_app9224912 crossref_primary_10_1016_j_eswa_2023_120857 crossref_primary_10_1088_1742_6596_1703_1_012030 crossref_primary_10_1155_2021_6694918 crossref_primary_10_1007_s12517_020_06189_7 crossref_primary_10_3390_app10041403 crossref_primary_10_17694_bajece_932391 crossref_primary_10_3390_app9214554 crossref_primary_10_7717_peerj_cs_2333 crossref_primary_10_1007_s00366_018_0581_y crossref_primary_10_1007_s42461_022_00659_0 crossref_primary_10_1007_s10586_018_2136_9 crossref_primary_10_1007_s42461_021_00449_0 crossref_primary_10_1007_s00366_019_00707_2 crossref_primary_10_1007_s00366_018_0601_y crossref_primary_10_1007_s00366_018_0623_5 crossref_primary_10_1007_s42452_020_03611_3 crossref_primary_10_1007_s42461_024_00996_2 crossref_primary_10_1038_s41598_023_33796_7 crossref_primary_10_1080_03772063_2021_1948923 crossref_primary_10_1016_j_ecoinf_2018_08_008 crossref_primary_10_3390_a14070214 crossref_primary_10_3390_sym12091405 crossref_primary_10_1007_s11053_019_09503_7 crossref_primary_10_1007_s11053_021_09960_z crossref_primary_10_1007_s00366_019_00847_5 crossref_primary_10_1007_s10706_018_0459_1 crossref_primary_10_1007_s00366_018_0578_6 crossref_primary_10_3389_feart_2022_928052 crossref_primary_10_1016_j_jmapro_2021_08_062 crossref_primary_10_1016_j_compag_2021_106478 crossref_primary_10_1007_s11356_023_29712_1 crossref_primary_10_1007_s11600_019_00268_4 crossref_primary_10_1007_s12145_021_00665_8 crossref_primary_10_1007_s11053_019_09464_x crossref_primary_10_1007_s00366_018_0615_5 crossref_primary_10_1007_s40808_022_01637_7 crossref_primary_10_1007_s11053_021_09823_7 crossref_primary_10_1007_s00366_019_00858_2 crossref_primary_10_1007_s12517_023_11237_z crossref_primary_10_1007_s12517_021_06716_0 crossref_primary_10_1007_s00366_018_0582_x crossref_primary_10_1007_s00366_021_01444_1 crossref_primary_10_3390_app12010012 crossref_primary_10_1007_s40515_025_00532_9 crossref_primary_10_1016_j_heliyon_2024_e26639 crossref_primary_10_1177_16878132221081584 crossref_primary_10_1007_s10489_020_01711_6 crossref_primary_10_1007_s11053_019_09492_7 crossref_primary_10_1080_17480930_2024_2340876 crossref_primary_10_1007_s00366_018_0670_y crossref_primary_10_1016_j_asoc_2017_10_040 crossref_primary_10_1007_s00366_018_0635_1 crossref_primary_10_1108_EC_09_2017_0332 crossref_primary_10_1007_s10706_020_01213_9 crossref_primary_10_1007_s10706_023_02473_x crossref_primary_10_3389_fpubh_2022_1094771 crossref_primary_10_1177_1077546319829938 crossref_primary_10_1007_s11803_022_2125_0 crossref_primary_10_3390_app12189189 crossref_primary_10_1007_s42461_023_00899_8 crossref_primary_10_1080_17480930_2019_1577940 crossref_primary_10_1007_s42452_018_0136_2 crossref_primary_10_1007_s00603_022_02866_z crossref_primary_10_1016_j_ijmst_2020_05_020 crossref_primary_10_1007_s00366_018_0658_7 crossref_primary_10_1007_s00366_017_0508_z crossref_primary_10_1007_s11053_019_09515_3 crossref_primary_10_3390_mining1030020 crossref_primary_10_1016_j_coal_2023_104294 |
| Cites_doi | 10.3844/ajessp.2009.468.474 10.1007/978-1-4899-3099-6_2 10.1016/j.neucom.2003.08.006 10.1016/j.measurement.2015.07.019 10.1007/s00603-013-0368-9 10.1016/j.ijrmms.2011.04.016 10.1007/s00366-016-0447-0 10.1016/0893-6080(89)90020-8 10.1007/s00366-010-0190-x 10.1080/19475705.2010.488352 10.1016/j.sandf.2012.01.002 10.1007/s00366-016-0486-6 10.1007/s00366-015-0425-y 10.1016/0925-2312(95)00039-9 10.1016/j.jsv.2005.02.044 10.1260/0957456042880192 10.1007/s00366-015-0408-z 10.1007/s00254-007-1143-6 10.1007/s10064-015-0720-2 10.1007/s00366-015-0415-0 10.1016/j.ijrmms.2009.03.004 10.1179/037178404225006137 10.1007/BF02551274 10.1007/s00366-009-0157-y 10.1007/s11069-016-2241-0 10.1109/ICSYSE.1989.48672 10.1016/j.eswa.2011.01.156 10.1007/s10064-014-0657-x 10.1061/(ASCE)1090-0241(2002)128:9(785) 10.1007/s00366-016-0475-9 10.1016/j.engappai.2009.03.007 10.1007/s10706-004-7068-x 10.1016/j.soildyn.2006.06.004 10.1080/014311697218719 10.1111/0885-9507.00206 10.1007/s10706-016-0093-8 10.1016/j.jhydrol.2012.01.026 10.1016/j.jrmge.2013.11.001 10.1007/s00366-010-0193-7 10.1007/s12665-014-3280-z 10.1177/1077546312437002 10.1016/j.measurement.2014.09.075 10.1007/s00521-012-0856-y 10.1109/72.143376 10.1007/978-3-642-28962-0_43 10.1016/j.soildyn.2007.06.013 10.1007/s00521-012-0845-1 10.1016/j.ijrmms.2005.06.007 10.1007/s12517-015-1908-2 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London 2016 Engineering with Computers is a copyright of Springer, (2016). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag London 2016 – notice: Engineering with Computers is a copyright of Springer, (2016). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00366-016-0497-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 700 |
| ExternalDocumentID | 10_1007_s00366_016_0497_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c382t-add009cc8231febf859dc0165be1ef86969f0e12b3a4484fc5cbc8519feeda2f3 |
| IEDL.DBID | BENPR |
| ISSN | 0177-0667 |
| IngestDate | Wed Aug 13 03:13:30 EDT 2025 Wed Oct 01 04:55:33 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:35:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | ANN ABC-ANN Multiple regression Ground vibration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-add009cc8231febf859dc0165be1ef86969f0e12b3a4484fc5cbc8519feeda2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1982505048 |
| PQPubID | 326339 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1982505048 crossref_citationtrail_10_1007_s00366_016_0497_3 crossref_primary_10_1007_s00366_016_0497_3 springer_journals_10_1007_s00366_016_0497_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2017 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | SaghatforoushAMonjeziMShirani FaradonbehRJahed ArmaghaniDCombination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blastingEng Comput2015 SharmaLKSinghRUmraoRKSharmaKMSinghTNEvaluating the modulus of elasticity of soil using soft computing systemEng Comput2016 RipleyBDBarndoff-NeilsenOEJensenJLKendallWSStatistical aspects of neural networksNetworks and chaos-statistical and probabilistic aspects1993LondonChapman & Hall4012310.1007/978-1-4899-3099-6_2 Singh TN, Singh R, Singh B, Sharma LK, Singh R, Ansari MK (2016) Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India. Nat Hazards. doi:10.1007/s11069-016-2241-0 KhandelwalMSinghTNApplication of an expert system to predict maximum explosive charge used per delay in surface miningRock Mech Rock Eng20134661551155810.1007/s00603-013-0368-9 SinghTNSinghVAn intelligent approach to prediction and control ground vibration in minesGeotech Geol Eng20052324926210.1007/s10706-004-7068-x ShahinMAMaierHRJaksaMBPredicting settlement of shallow foundations using neural networksJ Geotech Geoenviron Eng200212878579310.1061/(ASCE)1090-0241(2002)128:9(785) Hush DR (1989) Classification with neural networks: a performance analysis. In: Proceedings of the IEEE international conference on systems engineering, Dayton, pp 277–280 KhandelwalMKumarDLYellishettyMApplication of soft computing to predict blast-induced ground vibrationEng Comput201127211712510.1007/s00366-009-0157-y Shah H, Ghazali R, Nawi NM (2012) Hybrid ant bee colony algorithm for volcano temperature prediction. In: Emerging trends and applications in information communication technologies. Springer, Berlin, pp 453–465 VasovićDKostićSRavilićMTrajkovićSEnvironmental impact of blasting at Drenovac limestone quarry (Serbia)Environ Earth Sci201472103915392810.1007/s12665-014-3280-z KhandelwalMBlast-induced ground vibration prediction using support vector machineEng Comput20112719320010.1007/s00366-010-0190-x OrnekMLamanMDemirAYildizAPrediction of bearing capacity of circular footings on soft clay stabilized with granular soilSoil Found201252698010.1016/j.sandf.2012.01.002 Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania AticiUPrediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural networkExpert Syst Appl2011389609961810.1016/j.eswa.2011.01.156 DaviesBFarmerIWAttewellPBGround vibrations from shallow sub-surface blasts1964LondonThe Engineer553559 Jahed ArmaghaniDHasanipanahMMohamadETA combination of the ICA-ANN model to predict air overpressure resulting from blastingEng Comput201632115517110.1007/s00366-015-0408-z MomeniEJahed ArmaghaniDHajihassaniMAminMFMPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075 SonmezHGokceogluCNefesliogluHAKayabasiAEstimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equationInt J Rock Mech Min Sci20064322423510.1016/j.ijrmms.2005.06.007 WangXGTangZTamuraHIshiiMSunWDAn improved backpropagation algorithm to avoid the local minima problemNeurocomputing20045645546010.1016/j.neucom.2003.08.006 VermaAKSinghTNIntelligent systems for ground vibration measurement: a comparative studyEng Comput201127322523310.1007/s00366-010-0193-7 SinghTNVermaAKSensitivity of total charge and maximum charge per delay on ground vibrationGeomat Nat Hazards Risk20101325927210.1080/19475705.2010.488352 KaastraIBoydMDesigning a neural network for forecasting financial and economic time seriesNeurocomputing19961021523610.1016/0925-2312(95)00039-9 SwinglerKApplying neural networks: a practical guide1996New YorkAcademic Press EbrahimiEMonjeziMKhalesiMRJahed ArmaghaniDPrediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithmBull Eng Geol Environ2015 GevaSJoaquinSA constructive method for multivariate function approximation by multilayer perceptronsNeural Netw IEEE Trans1992362162410.1109/72.143376 GiraudiACarduMKecojevicVAn assessment of blasting vibration: a case study on quarry operationAm J Environ Sci20095446347310.3844/ajessp.2009.468.474 HasanipanahMMonjeziMShahnazarAJahed ArmaghaniDFarazmandAFeasibility of indirect determination of blast induced ground vibration based on support vector machineMeasurement20157528929710.1016/j.measurement.2015.07.019 GhasemiEAtaeiMHashemolhosseiniHDevelopment of a fuzzy model for predicting ground vibration caused by rock blasting in surface miningJ Vib Control201319575577010.1177/1077546312437002 SaadatMKhandelwalMMonjeziMAn ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, IranJ Rock Mech Geotech Eng20146677610.1016/j.jrmge.2013.11.001 SinghTNKanchanRVermaAKPrediction of blast induced ground vibration and frequency using an artificial intelligent techniqueNoise Vib Worldw2004351171510.1260/0957456042880192 Hustrulid W (1999) Blasting principles for open pit mining: general design concepts, vol 1. Balkema, Rotterdam Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks, San Diego, pp 11–14 VermaAKSinghTNComparative study of cognitive systems for ground vibration measurementsNeural Comput Appl20132234135010.1007/s00521-012-0845-1 IpharMYavuzMAkHakanPrediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference systemEnviron Geol2008569710710.1007/s00254-007-1143-6 HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal ApproximatorsNeural Netw1989235936610.1016/0893-6080(89)90020-8 Duvall WI, Petkof B (1959) Spherical propagation of explosion generated strain pulses in rock. US Bureau of Mines Report of Investigation 5483 CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals Syst198924303314101567010.1007/BF025512740679.94019 HasanipanahMNoorian-BidgoliMJahed ArmaghaniDKhamesiHFeasibility of PSO-ANN model for predicting surface settlement caused by tunnelingEng Comput2016 Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, The University of Arizona HajihassaniMJahed ArmaghaniDMartoAMohamadETGround vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithmBull Eng Geol Environ20157487388610.1007/s10064-014-0657-x SharmaLKUmraoRKSinghRAhmadMSinghTNGeotechnical characterization of road cut hill slope forming unconsolidated geo-materials: a case studyGeotech Geol Eng2016 MonjeziMHasanipanahMKhandelwalMEvaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural networkNeural Comput Appl2013221637164310.1007/s00521-012-0856-y Adhikari R, Agrawal RK (2011) Effectiveness of PSO based neural network for seasonal time series forecasting. In: Indian international conference on artificial intelligence (IICAI), Tumkur, India, pp 232–244 KisiOOzkanCAkayBModeling discharge—sediment relationship using neural networks with artificial bee colony algorithmJ Hydrol20124289410310.1016/j.jhydrol.2012.01.026 MohamedMTPerformance of fuzzy logic and artificial neural network in prediction of ground and air vibrationsInt J Rock Mech Min Sci20114884585110.1016/j.ijrmms.2011.04.016 Ghosh A, Daemen JK (1983) A simple new blast vibration predictor. In: Proceedings of the 24th US symposium on rock mechanics, Texas, pp 151–161 MastersTPractical neural network recipes in C++1994BostonAcademic0818.68049 Jahed ArmaghaniDHajihassaniMMonjeziMMohamadETMartoAMoghaddamMRApplication of two intelligent systems in predicting environmental impacts of quarry blastingArab J Geosci20158119647966510.1007/s12517-015-1908-2 AmbraseysNRHendronAJDynamic behavior of rock masses: rock mechanics in engineering practices1968LondonWiley KanellopoulasIWilkinsonGGStrategies and best practice for neural network image classificationInt J Remote Sens199718471172510.1080/014311697218719 KhandelwalMSinghTNPrediction of blast induced ground vibrations and frequency in opencast mine-a neural network approachJ Sound Vib200628971172510.1016/j.jsv.2005.02.044 KuzuCThe importance of site-specific characters in prediction models for blast-induced ground vibrationsSoil Dyn Earthq Eng20082840541410.1016/j.soildyn.2007.06.013 RaiRSinghTNA new predictor for ground vibration prediction and its comparison with other predictorsIndian J Eng Mater Sci2004113178184 HasanipanahMShirani FaradonbehRBakhshandeh AmniehHJahed ArmaghaniDMonjeziMForecasting blast-induced ground vibration developing a CART modelEng Comput2016 BaheerISelection of methodology for modeling hysteresis behavior of soils using neural networksJ Comput Aid Civil Infrastruct Eng2000544546310.1111/0885-9507.00206 HasanipanahMJahed ArmaghaniDKhamesiHBakhshandeh AmniehHGhorabaSSeveral non-linear models in estimating air-overpressure resulting from mine blastingEng Comput2015 YagizSGokceogluCSezerEIplikciSApplication of two non-linear prediction tools to the estimation of tunnel boring machine performanceEng Appl Artif Intel200922480881410.1016/j.engappai.2009.03.007 KhandelwalMSinghTNEvaluation of blast-induced ground vibration predictorsSoil Dyn Earthq Eng20072711612510.1016/j.soildyn.2006.06.004 KhandelwalMSinghTNPrediction of blasting induced ground vibration using artificial neural networkInt J Rock Mech Min Sci2009461214122210.1016/j.ijrmms.2009.03.004 Indian Standards Institute (1973) Criteria for safety and design of structures subjected to underground blast. ISI Bull NR Ambraseys (497_CR22) 1968 O Kisi (497_CR47) 2012; 428 497_CR60 BD Ripley (497_CR58) 1993 497_CR8 I Kanellopoulas (497_CR51) 1997; 18 497_CR25 497_CR24 497_CR1 A Giraudi (497_CR9) 2009; 5 497_CR21 LK Sharma (497_CR36) 2016 D Jahed Armaghani (497_CR34) 2016; 32 K Swingler (497_CR49) 1996 M Monjezi (497_CR27) 2013; 22 497_CR59 M Khandelwal (497_CR26) 2007; 27 M Saadat (497_CR10) 2014; 6 A Saghatforoush (497_CR38) 2015 497_CR50 M Hasanipanah (497_CR6) 2016 M Khandelwal (497_CR15) 2011; 27 497_CR55 TN Singh (497_CR29) 2004; 113 M Hasanipanah (497_CR16) 2015; 75 MA Shahin (497_CR40) 2002; 128 AK Verma (497_CR13) 2013; 22 M Khandelwal (497_CR17) 2006; 289 H Sonmez (497_CR57) 2006; 43 D Vasović (497_CR63) 2014; 72 S Geva (497_CR42) 1992; 3 XG Wang (497_CR44) 2004; 56 M Iphar (497_CR14) 2008; 56 AK Verma (497_CR18) 2011; 27 K Hornik (497_CR41) 1989; 2 497_CR45 E Momeni (497_CR54) 2015; 60 T Masters (497_CR61) 1994 E Ghasemi (497_CR4) 2013; 19 497_CR46 LK Sharma (497_CR7) 2016 TN Singh (497_CR12) 2010; 1 S Yagiz (497_CR31) 2009; 22 M Khandelwal (497_CR3) 2013; 46 M Khandelwal (497_CR2) 2011; 27 E Ebrahimi (497_CR35) 2015 G Cybenko (497_CR43) 1989; 2 U Atici (497_CR52) 2011; 38 TN Singh (497_CR28) 2004; 35 497_CR39 MT Mohamed (497_CR5) 2011; 48 I Kaastra (497_CR62) 1996; 10 H Shah (497_CR48) 2011; 3 M Ornek (497_CR53) 2012; 52 B Davies (497_CR23) 1964 M Hasanipanah (497_CR33) 2016 R Rai (497_CR11) 2004; 11 M Hasanipanah (497_CR32) 2015 C Kuzu (497_CR19) 2008; 28 D Jahed Armaghani (497_CR64) 2015; 8 M Khandelwal (497_CR20) 2009; 46 TN Singh (497_CR30) 2005; 23 M Hajihassani (497_CR37) 2015; 74 I Baheer (497_CR56) 2000; 5 |
| References_xml | – reference: ShahinMAMaierHRJaksaMBPredicting settlement of shallow foundations using neural networksJ Geotech Geoenviron Eng200212878579310.1061/(ASCE)1090-0241(2002)128:9(785) – reference: SwinglerKApplying neural networks: a practical guide1996New YorkAcademic Press – reference: SonmezHGokceogluCNefesliogluHAKayabasiAEstimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equationInt J Rock Mech Min Sci20064322423510.1016/j.ijrmms.2005.06.007 – reference: MonjeziMHasanipanahMKhandelwalMEvaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural networkNeural Comput Appl2013221637164310.1007/s00521-012-0856-y – reference: Shah H, Ghazali R, Nawi NM (2012) Hybrid ant bee colony algorithm for volcano temperature prediction. In: Emerging trends and applications in information communication technologies. Springer, Berlin, pp 453–465 – reference: KhandelwalMSinghTNPrediction of blast induced ground vibrations and frequency in opencast mine-a neural network approachJ Sound Vib200628971172510.1016/j.jsv.2005.02.044 – reference: KisiOOzkanCAkayBModeling discharge—sediment relationship using neural networks with artificial bee colony algorithmJ Hydrol20124289410310.1016/j.jhydrol.2012.01.026 – reference: MastersTPractical neural network recipes in C++1994BostonAcademic0818.68049 – reference: GhasemiEAtaeiMHashemolhosseiniHDevelopment of a fuzzy model for predicting ground vibration caused by rock blasting in surface miningJ Vib Control201319575577010.1177/1077546312437002 – reference: KhandelwalMKumarDLYellishettyMApplication of soft computing to predict blast-induced ground vibrationEng Comput201127211712510.1007/s00366-009-0157-y – reference: SharmaLKSinghRUmraoRKSharmaKMSinghTNEvaluating the modulus of elasticity of soil using soft computing systemEng Comput2016 – reference: KhandelwalMSinghTNPrediction of blasting induced ground vibration using artificial neural networkInt J Rock Mech Min Sci2009461214122210.1016/j.ijrmms.2009.03.004 – reference: DaviesBFarmerIWAttewellPBGround vibrations from shallow sub-surface blasts1964LondonThe Engineer553559 – reference: Indian Standards Institute (1973) Criteria for safety and design of structures subjected to underground blast. ISI Bull, IS-6922 – reference: KhandelwalMSinghTNApplication of an expert system to predict maximum explosive charge used per delay in surface miningRock Mech Rock Eng20134661551155810.1007/s00603-013-0368-9 – reference: VermaAKSinghTNComparative study of cognitive systems for ground vibration measurementsNeural Comput Appl20132234135010.1007/s00521-012-0845-1 – reference: AticiUPrediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural networkExpert Syst Appl2011389609961810.1016/j.eswa.2011.01.156 – reference: Jahed ArmaghaniDHajihassaniMMonjeziMMohamadETMartoAMoghaddamMRApplication of two intelligent systems in predicting environmental impacts of quarry blastingArab J Geosci20158119647966510.1007/s12517-015-1908-2 – reference: Ghosh A, Daemen JK (1983) A simple new blast vibration predictor. In: Proceedings of the 24th US symposium on rock mechanics, Texas, pp 151–161 – reference: HajihassaniMJahed ArmaghaniDMartoAMohamadETGround vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithmBull Eng Geol Environ20157487388610.1007/s10064-014-0657-x – reference: Duvall WI, Petkof B (1959) Spherical propagation of explosion generated strain pulses in rock. US Bureau of Mines Report of Investigation 5483 – reference: EbrahimiEMonjeziMKhalesiMRJahed ArmaghaniDPrediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithmBull Eng Geol Environ2015 – reference: KuzuCThe importance of site-specific characters in prediction models for blast-induced ground vibrationsSoil Dyn Earthq Eng20082840541410.1016/j.soildyn.2007.06.013 – reference: Adhikari R, Agrawal RK (2011) Effectiveness of PSO based neural network for seasonal time series forecasting. In: Indian international conference on artificial intelligence (IICAI), Tumkur, India, pp 232–244 – reference: HasanipanahMMonjeziMShahnazarAJahed ArmaghaniDFarazmandAFeasibility of indirect determination of blast induced ground vibration based on support vector machineMeasurement20157528929710.1016/j.measurement.2015.07.019 – reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal ApproximatorsNeural Netw1989235936610.1016/0893-6080(89)90020-8 – reference: SinghTNArtificial neural network approach for prediction and control of ground vibrations in minesMin Technol2004113425125610.1179/037178404225006137 – reference: Hustrulid W (1999) Blasting principles for open pit mining: general design concepts, vol 1. Balkema, Rotterdam – reference: Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks, San Diego, pp 11–14 – reference: GiraudiACarduMKecojevicVAn assessment of blasting vibration: a case study on quarry operationAm J Environ Sci20095446347310.3844/ajessp.2009.468.474 – reference: SharmaLKUmraoRKSinghRAhmadMSinghTNGeotechnical characterization of road cut hill slope forming unconsolidated geo-materials: a case studyGeotech Geol Eng2016 – reference: MomeniEJahed ArmaghaniDHajihassaniMAminMFMPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075 – reference: KhandelwalMBlast-induced ground vibration prediction using support vector machineEng Comput20112719320010.1007/s00366-010-0190-x – reference: ShahHGhazaliRNawiNMUsing artificial bee colony algorithm for MLP training on earthquake time series data predictionJ Comput201136135142 – reference: HasanipanahMJahed ArmaghaniDKhamesiHBakhshandeh AmniehHGhorabaSSeveral non-linear models in estimating air-overpressure resulting from mine blastingEng Comput2015 – reference: KaastraIBoydMDesigning a neural network for forecasting financial and economic time seriesNeurocomputing19961021523610.1016/0925-2312(95)00039-9 – reference: Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania – reference: GevaSJoaquinSA constructive method for multivariate function approximation by multilayer perceptronsNeural Netw IEEE Trans1992362162410.1109/72.143376 – reference: SinghTNKanchanRVermaAKPrediction of blast induced ground vibration and frequency using an artificial intelligent techniqueNoise Vib Worldw2004351171510.1260/0957456042880192 – reference: RipleyBDBarndoff-NeilsenOEJensenJLKendallWSStatistical aspects of neural networksNetworks and chaos-statistical and probabilistic aspects1993LondonChapman & Hall4012310.1007/978-1-4899-3099-6_2 – reference: OrnekMLamanMDemirAYildizAPrediction of bearing capacity of circular footings on soft clay stabilized with granular soilSoil Found201252698010.1016/j.sandf.2012.01.002 – reference: HasanipanahMNoorian-BidgoliMJahed ArmaghaniDKhamesiHFeasibility of PSO-ANN model for predicting surface settlement caused by tunnelingEng Comput2016 – reference: AmbraseysNRHendronAJDynamic behavior of rock masses: rock mechanics in engineering practices1968LondonWiley – reference: SaghatforoushAMonjeziMShirani FaradonbehRJahed ArmaghaniDCombination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blastingEng Comput2015 – reference: Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, The University of Arizona – reference: IpharMYavuzMAkHakanPrediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference systemEnviron Geol2008569710710.1007/s00254-007-1143-6 – reference: Jahed ArmaghaniDHasanipanahMMohamadETA combination of the ICA-ANN model to predict air overpressure resulting from blastingEng Comput201632115517110.1007/s00366-015-0408-z – reference: RaiRSinghTNA new predictor for ground vibration prediction and its comparison with other predictorsIndian J Eng Mater Sci2004113178184 – reference: SinghTNVermaAKSensitivity of total charge and maximum charge per delay on ground vibrationGeomat Nat Hazards Risk20101325927210.1080/19475705.2010.488352 – reference: VasovićDKostićSRavilićMTrajkovićSEnvironmental impact of blasting at Drenovac limestone quarry (Serbia)Environ Earth Sci201472103915392810.1007/s12665-014-3280-z – reference: KanellopoulasIWilkinsonGGStrategies and best practice for neural network image classificationInt J Remote Sens199718471172510.1080/014311697218719 – reference: BaheerISelection of methodology for modeling hysteresis behavior of soils using neural networksJ Comput Aid Civil Infrastruct Eng2000544546310.1111/0885-9507.00206 – reference: SinghTNSinghVAn intelligent approach to prediction and control ground vibration in minesGeotech Geol Eng20052324926210.1007/s10706-004-7068-x – reference: Singh TN, Singh R, Singh B, Sharma LK, Singh R, Ansari MK (2016) Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India. Nat Hazards. doi:10.1007/s11069-016-2241-0 – reference: VermaAKSinghTNIntelligent systems for ground vibration measurement: a comparative studyEng Comput201127322523310.1007/s00366-010-0193-7 – reference: MohamedMTPerformance of fuzzy logic and artificial neural network in prediction of ground and air vibrationsInt J Rock Mech Min Sci20114884585110.1016/j.ijrmms.2011.04.016 – reference: Hush DR (1989) Classification with neural networks: a performance analysis. In: Proceedings of the IEEE international conference on systems engineering, Dayton, pp 277–280 – reference: HasanipanahMShirani FaradonbehRBakhshandeh AmniehHJahed ArmaghaniDMonjeziMForecasting blast-induced ground vibration developing a CART modelEng Comput2016 – reference: CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals Syst198924303314101567010.1007/BF025512740679.94019 – reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department – reference: KhandelwalMSinghTNEvaluation of blast-induced ground vibration predictorsSoil Dyn Earthq Eng20072711612510.1016/j.soildyn.2006.06.004 – reference: WangXGTangZTamuraHIshiiMSunWDAn improved backpropagation algorithm to avoid the local minima problemNeurocomputing20045645546010.1016/j.neucom.2003.08.006 – reference: SaadatMKhandelwalMMonjeziMAn ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, IranJ Rock Mech Geotech Eng20146677610.1016/j.jrmge.2013.11.001 – reference: YagizSGokceogluCSezerEIplikciSApplication of two non-linear prediction tools to the estimation of tunnel boring machine performanceEng Appl Artif Intel200922480881410.1016/j.engappai.2009.03.007 – volume: 5 start-page: 463 issue: 4 year: 2009 ident: 497_CR9 publication-title: Am J Environ Sci doi: 10.3844/ajessp.2009.468.474 – volume: 11 start-page: 178 issue: 3 year: 2004 ident: 497_CR11 publication-title: Indian J Eng Mater Sci – start-page: 40 volume-title: Networks and chaos-statistical and probabilistic aspects year: 1993 ident: 497_CR58 doi: 10.1007/978-1-4899-3099-6_2 – volume: 56 start-page: 455 year: 2004 ident: 497_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.08.006 – volume: 75 start-page: 289 year: 2015 ident: 497_CR16 publication-title: Measurement doi: 10.1016/j.measurement.2015.07.019 – volume: 46 start-page: 1551 issue: 6 year: 2013 ident: 497_CR3 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0368-9 – volume: 48 start-page: 845 year: 2011 ident: 497_CR5 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.04.016 – year: 2016 ident: 497_CR33 publication-title: Eng Comput doi: 10.1007/s00366-016-0447-0 – volume-title: Practical neural network recipes in C++ year: 1994 ident: 497_CR61 – volume: 2 start-page: 359 year: 1989 ident: 497_CR41 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – ident: 497_CR45 – volume: 27 start-page: 193 year: 2011 ident: 497_CR2 publication-title: Eng Comput doi: 10.1007/s00366-010-0190-x – volume-title: Dynamic behavior of rock masses: rock mechanics in engineering practices year: 1968 ident: 497_CR22 – volume: 1 start-page: 259 issue: 3 year: 2010 ident: 497_CR12 publication-title: Geomat Nat Hazards Risk doi: 10.1080/19475705.2010.488352 – volume: 52 start-page: 69 year: 2012 ident: 497_CR53 publication-title: Soil Found doi: 10.1016/j.sandf.2012.01.002 – year: 2016 ident: 497_CR36 publication-title: Eng Comput doi: 10.1007/s00366-016-0486-6 – ident: 497_CR59 – ident: 497_CR55 – year: 2015 ident: 497_CR32 publication-title: Eng Comput doi: 10.1007/s00366-015-0425-y – volume: 10 start-page: 215 year: 1996 ident: 497_CR62 publication-title: Neurocomputing doi: 10.1016/0925-2312(95)00039-9 – ident: 497_CR60 – volume: 289 start-page: 711 year: 2006 ident: 497_CR17 publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.02.044 – start-page: 553 volume-title: Ground vibrations from shallow sub-surface blasts year: 1964 ident: 497_CR23 – volume-title: Applying neural networks: a practical guide year: 1996 ident: 497_CR49 – volume: 35 start-page: 7 issue: 11 year: 2004 ident: 497_CR28 publication-title: Noise Vib Worldw doi: 10.1260/0957456042880192 – volume: 32 start-page: 155 issue: 1 year: 2016 ident: 497_CR34 publication-title: Eng Comput doi: 10.1007/s00366-015-0408-z – volume: 56 start-page: 97 year: 2008 ident: 497_CR14 publication-title: Environ Geol doi: 10.1007/s00254-007-1143-6 – year: 2015 ident: 497_CR35 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0720-2 – year: 2015 ident: 497_CR38 publication-title: Eng Comput doi: 10.1007/s00366-015-0415-0 – volume: 46 start-page: 1214 year: 2009 ident: 497_CR20 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.03.004 – volume: 113 start-page: 251 issue: 4 year: 2004 ident: 497_CR29 publication-title: Min Technol doi: 10.1179/037178404225006137 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 497_CR43 publication-title: Math Control Signals Syst doi: 10.1007/BF02551274 – volume: 27 start-page: 117 issue: 2 year: 2011 ident: 497_CR15 publication-title: Eng Comput doi: 10.1007/s00366-009-0157-y – ident: 497_CR8 doi: 10.1007/s11069-016-2241-0 – ident: 497_CR50 doi: 10.1109/ICSYSE.1989.48672 – volume: 38 start-page: 9609 year: 2011 ident: 497_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.156 – volume: 74 start-page: 873 year: 2015 ident: 497_CR37 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0657-x – volume: 128 start-page: 785 year: 2002 ident: 497_CR40 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2002)128:9(785) – year: 2016 ident: 497_CR6 publication-title: Eng Comput doi: 10.1007/s00366-016-0475-9 – ident: 497_CR24 – volume: 22 start-page: 808 issue: 4 year: 2009 ident: 497_CR31 publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2009.03.007 – volume: 23 start-page: 249 year: 2005 ident: 497_CR30 publication-title: Geotech Geol Eng doi: 10.1007/s10706-004-7068-x – volume: 27 start-page: 116 year: 2007 ident: 497_CR26 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2006.06.004 – volume: 18 start-page: 711 issue: 4 year: 1997 ident: 497_CR51 publication-title: Int J Remote Sens doi: 10.1080/014311697218719 – volume: 5 start-page: 445 year: 2000 ident: 497_CR56 publication-title: J Comput Aid Civil Infrastruct Eng doi: 10.1111/0885-9507.00206 – year: 2016 ident: 497_CR7 publication-title: Geotech Geol Eng doi: 10.1007/s10706-016-0093-8 – volume: 428 start-page: 94 year: 2012 ident: 497_CR47 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – volume: 6 start-page: 67 year: 2014 ident: 497_CR10 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2013.11.001 – volume: 27 start-page: 225 issue: 3 year: 2011 ident: 497_CR18 publication-title: Eng Comput doi: 10.1007/s00366-010-0193-7 – volume: 72 start-page: 3915 issue: 10 year: 2014 ident: 497_CR63 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3280-z – volume: 19 start-page: 755 issue: 5 year: 2013 ident: 497_CR4 publication-title: J Vib Control doi: 10.1177/1077546312437002 – volume: 60 start-page: 50 year: 2015 ident: 497_CR54 publication-title: Measurement doi: 10.1016/j.measurement.2014.09.075 – volume: 22 start-page: 1637 year: 2013 ident: 497_CR27 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0856-y – ident: 497_CR25 – ident: 497_CR1 – volume: 3 start-page: 621 year: 1992 ident: 497_CR42 publication-title: Neural Netw IEEE Trans doi: 10.1109/72.143376 – ident: 497_CR39 doi: 10.1007/978-3-642-28962-0_43 – ident: 497_CR46 – ident: 497_CR21 – volume: 28 start-page: 405 year: 2008 ident: 497_CR19 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2007.06.013 – volume: 3 start-page: 135 issue: 6 year: 2011 ident: 497_CR48 publication-title: J Comput – volume: 22 start-page: 341 year: 2013 ident: 497_CR13 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0845-1 – volume: 43 start-page: 224 year: 2006 ident: 497_CR57 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2005.06.007 – volume: 8 start-page: 9647 issue: 11 year: 2015 ident: 497_CR64 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1908-2 |
| SSID | ssj0013009 |
| Score | 2.4965982 |
| Snippet | Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 689 |
| SubjectTerms | Artificial neural networks Blasting CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Ground motion Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Neural networks Open pit mining Optimization Original Article Prediction models Search algorithms Swarm intelligence Systems Theory Vibration measurement Vibration monitoring Weight |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3rwURWrVXLwpAT20c1mj0UsIujJQm_LJptYoW5Ldy303zuT3bRVVPAQFvJiyUySb5iZL4Rc54DCjVQe06HKwUARCUMYwThXGhQozCKO2chPz_xh2HscRaMmj7t00e7OJWlP6lWyG1KnoPULpZfAztgmOxGyeYESD4P-2nXg1XEdfoxxXTx2rsyfpvh6Ga0R5jenqL1rBodkvwGJtF9L9Yhs6aJNDhrASJvtWEKVe5PB1bXJ3gbB4DFZ9Ol4iTlZFDWkJougUmuKXNXFkmaT1-n8rRq_s412pLi0HxsgTgHVYtEqKzFEmgJipBIwd8Vmli0W_ghTQ4qcLtD0RkGfkOHg_uXugTUvLTAViqBicMjBqimFPkGjpRFRkitMdJLa10bwhCfG034gwwzMuZ5RkZIKsFpi4IrNAhOeklYxLfQZobnUgNe1AFzp9-LYEwpRmg_z60jwOOwQzy15qhoacnwNY5KuCJStlFIMPUMppTDkZjVkVnNw_NW56-SYNtuxTP1EINSD06pDbp1sN5p_m-z8X70vyG6Al74N5u2SVjX_0JcAWSp5ZVX0EygM464 priority: 102 providerName: Springer Nature |
| Title | A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration |
| URI | https://link.springer.com/article/10.1007/s00366-016-0497-3 https://www.proquest.com/docview/1982505048 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1435-5663 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-5663 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: 8FG dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vejBR1Wsj7IHT8piHs0mOYhU6QPFImJBTyG72dhDTauNgv_emW3SVkEPIZDHhmRmd77JzHwDcJIgCk-lsrh2VYIOShByghFcCKVRgdzYE1SNfNcXvUHz5sl7WoF-WQtDaZXlmmgW6mSs6B_5OTrHZK1R4S4nb5y6RlF0tWyhERetFZILQzG2ClWHmLEqUL1q9-8fFnEFa5b0YfuU9CX8Ms5pGVpRV5B3jVszxJn301It4OeviKkxRJ0t2CgQJGvNRL4NKzqrwWaBJlkxV6c1WF-iGtyBzxYbflF1FiNdmdFGMKk1I9bq7IvFoxd823z4ypfOE9ml2ZlUcYb4ljat4iklSzPEjkwi-s75xPDG4uOpSCRL2Cc54STyXRh02o_XPV70XODKDZyc43KHn0gpig6mWqaBFyaKSp6ktnUaiFCEqaVtR7oxOnbNVHlKKkRtYYrGNnZSdw8q2TjT-8ASqRG56wARpt30fStQhNdsHF97gfDdOljl941UQUhOfTFG0ZxK2YgkoiQ0EkmEt5zOb5nM2Dj-u_ioFFpUTMxptFCjOpyVglw6_ddgB_8PdghrDtl7k8d7BJX8_UMfI1rJZQNWg063AdVW9_m23SgUEo8OnNY30oTqww |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcigcoNCi8qwPcCmymsSJkxwQ4qnltaoQSNzS2HHKAbILG0D75_htzHgddlup3DhYOTh2JM_Y_iYz8w3ARoEovFTa40boAg2UJOUEI7iU2qACiTySlI183pHtq_DkOrqegJcmF4bCKpsz0R7URVfTP_KfaBzTbY0Kt9O751Q1iryrTQmN3JVWKLYtxZhL7Dg1g2c04frbxwco780gODq83G9zV2WAa5EENccNjjhDa_KHlUaVSZQWmpJ8lPFNmchUpqVn_ECJHE2ZsNSRVhpxSlri9ZIHpcB5J2EqFGGKxt_U3mHn18XIj-ENg0z8mILMZNz4VT1LYyokWfPYcCgXf9-MI7j7j4fWXnxHn2HWIVa2O1SxeZgw1QLMOfTK3NnQX4CZMWrDL_C0y24GlA3GSDeHNBVMGcOIJbsasPz2D65ufXPHx_qJXNM-bGg6QzxNzei8T8HZDLEqU4j2a96zPLX4eUpKqQr2REY_qdhXuPqQ1V-EVtWtzDdghTJoKZgEEa0fxrGXaMKHPs5vokTGYgm8Zn0z7QjQqQ7HbfZG3WxFklHQG4kkwyE_3ob0huwf77282ggtcwdBPxup7RJsNYIc6_7fZMvvT_YdPrUvz8-ys-PO6QpMB4Q1bAzxKrTqh0ezhkipVutOHRn8_ugd8ApegCZ_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xSAgKbsSNC2hAFjk2TlIghIDlRhQg0YXYsdkCwsIG0P4aX8eMk7ALEnQUVgonjuR5sd9kZp4B1jNk4UYqh2tfZeigRDEnGsGFUBoB5KeBoGrki0txfNM4vQ1uB-CjroWhtMp6TbQLdfak6B_5NjrHtFuTzKyp0iKuDpq77WdOJ0hRpLU-TqOEyJnuvqP71tk5OUBbb3he8_B6_5hXJwxw5UdewfHjRo6hFMXCjJYmCuJMUYGP1K42kYhFbBztetJP0Y1pGBUoqZCjxAa3ltQzPo47CMMhqbhTlXrzqBfBcMr0Ejek9DIR1hFVxwqY-oL8eGyNGL_x73tij-j-iM3aLa85CeMVV2V7JbimYEDn0zBR8VZWrQqdaRjrEzWcgbc91upSHRgjVJYCFUxqzUgfO--y9OEe57JoPfK-fpLVtBeblM6QSVPTKu1QWjZDlsok8vyCt61CLb6eylHyjL2Ru0_gmoWbf5n7ORjKn3I9DyyTGn0EHSGXdRth6ESKmKGL4-sgEqG_AE49v4mqpM_pBI6H5Eu02ZokoXQ3MkmCj2x-PdIudT_-unm5NlpSLQGdpAfYBdiqDdnX_dtgi38PtgYjiPvk_OTybAlGPSIZNnl4GYaKl1e9ghSpkKsWiwzu_hv8n1WcJBk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+artificial+bee+colony+algorithm-artificial+neural+network+for+forecasting+the+blast-produced+ground+vibration&rft.jtitle=Engineering+with+computers&rft.au=Taheri%2C+Khalil&rft.au=Hasanipanah%2C+Mahdi&rft.au=Golzar%2C+Saeid+Bagheri&rft.au=Majid%2C+Muhd+Zaimi+Abd&rft.date=2017-07-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=33&rft.issue=3&rft.spage=689&rft.epage=700&rft_id=info:doi/10.1007%2Fs00366-016-0497-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_016_0497_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |