A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration

Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 33; no. 3; pp. 689 - 700
Main Authors Taheri, Khalil, Hasanipanah, Mahdi, Golzar, Saeid Bagheri, Majid, Muhd Zaimi Abd
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-0667
1435-5663
DOI10.1007/s00366-016-0497-3

Cover

Abstract Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation ( R 2 ) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability.
AbstractList Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation ( R 2 ) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability.
Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered as an important issue in blasting works. The aim of this study is to propose a hybrid model for predicting blast-produced ground vibration in the Miduk copper mine, Iran, using combination of the artificial neural network (ANN) combined with artificial bee colony (ABC) (codename ABC-ANN). Here, ABC was used as an optimization algorithm to adjust weights and biases of the ANN. The predicted values of ground vibration by ANN and ABC-ANN models were also compared with several empirical models. In this regard, 89 blasting events were monitored and values of two influential factors on ground vibration, i.e., maximum charge weight used per delay (MC) and distance between monitoring station and blasting-point (DI) together with their peak particle velocity values (as an index of ground vibration) were carefully measured. The results of the predictive models have been compared with the data at hand using mean absolute percentage error, root mean squared error and coefficient of correlation (R2) criteria. Eventually, it was indicated that the constructed ABC-ANN model outperforms the other models in terms of the prediction accuracy and the generalization capability.
Author Golzar, Saeid Bagheri
Hasanipanah, Mahdi
Taheri, Khalil
Majid, Muhd Zaimi Abd
Author_xml – sequence: 1
  givenname: Khalil
  surname: Taheri
  fullname: Taheri, Khalil
  organization: Advanced Robotic and Intelligent Systems Lab, School of Electrical and Computer Engineering, University of Tehran
– sequence: 2
  givenname: Mahdi
  surname: Hasanipanah
  fullname: Hasanipanah, Mahdi
  organization: Young Researchers and Elite Club, Qom Branch, Islamic Azad University
– sequence: 3
  givenname: Saeid Bagheri
  surname: Golzar
  fullname: Golzar, Saeid Bagheri
  email: saeid.bagherigolzar@gmail.com
  organization: Young Researchers and Elite Club, Qom Branch, Islamic Azad University
– sequence: 4
  givenname: Muhd Zaimi Abd
  surname: Majid
  fullname: Majid, Muhd Zaimi Abd
  organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz9Fks5_HUvwCwYueQzY7aVO3SU2ylf5709ZDEfQwDEPeZ-bNO0Ej6ywgdM3oLaO0uguU8rIklKXKm4rwMzRmOS9IUZZ8hMaUVRWhZVldoEkIK0oZp7QZo-0ML3etNx2WPhptlJE9bgGwcr2zOyz7hfMmLtfk5N3C4A8tfjn_gbXz-wIlQzR2geMScNungWy86wYFHV54N9gOb03rZTTOXqJzLfsAVz99it4f7t_mT-Tl9fF5PnshitdZJLLrkkul6owzDa2ui6ZT6Y9FCwx0XTZloymwrOUyz-tcq0K1qi5YowE6mWk-RTfHvcnJ5wAhipUbvE0nBWvqrKAFzeukqo4q5V0IHrRQJh58Ri9NLxgV-5DFMWSRDIh9yIInkv0iN96spd_9y2RHJiStXYA_8fQn9A2NEJQN
CitedBy_id crossref_primary_10_1007_s40033_024_00653_4
crossref_primary_10_1016_j_ijthermalsci_2023_108281
crossref_primary_10_1007_s00366_018_0648_9
crossref_primary_10_1007_s00366_018_0645_z
crossref_primary_10_1007_s00366_020_01082_z
crossref_primary_10_1007_s11053_020_09623_5
crossref_primary_10_1016_j_measurement_2019_05_069
crossref_primary_10_1007_s00366_018_0621_7
crossref_primary_10_1177_1687814019847290
crossref_primary_10_1007_s00366_019_00720_5
crossref_primary_10_1016_j_jsm_2019_10_001
crossref_primary_10_1002_eng2_12483
crossref_primary_10_1007_s00366_019_00822_0
crossref_primary_10_1080_19648189_2017_1367727
crossref_primary_10_1007_s12517_022_10615_3
crossref_primary_10_1007_s00366_017_0539_5
crossref_primary_10_1016_j_jksuci_2020_07_004
crossref_primary_10_1038_s41598_024_70939_w
crossref_primary_10_3390_su151813415
crossref_primary_10_1007_s00366_019_00868_0
crossref_primary_10_1007_s10064_025_04216_z
crossref_primary_10_1007_s00521_020_04822_w
crossref_primary_10_1007_s12145_024_01488_z
crossref_primary_10_1007_s00366_018_0659_6
crossref_primary_10_3390_app13053128
crossref_primary_10_1155_2021_2847180
crossref_primary_10_1007_s00500_022_07141_5
crossref_primary_10_3390_min11060601
crossref_primary_10_1007_s42461_024_00976_6
crossref_primary_10_1080_12269328_2019_1607570
crossref_primary_10_1007_s11053_019_09597_z
crossref_primary_10_1016_j_ijmst_2021_07_012
crossref_primary_10_1007_s00366_019_00895_x
crossref_primary_10_1007_s00366_021_01332_8
crossref_primary_10_5937_mmeb2202043S
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s11053_019_09573_7
crossref_primary_10_1007_s11053_019_09577_3
crossref_primary_10_1007_s12665_017_6864_6
crossref_primary_10_1007_s00366_018_0600_z
crossref_primary_10_1080_17480930_2021_1885583
crossref_primary_10_3390_s20010132
crossref_primary_10_1007_s00366_020_00937_9
crossref_primary_10_1007_s00366_019_00725_0
crossref_primary_10_1016_j_procs_2019_12_133
crossref_primary_10_1007_s11053_021_09890_w
crossref_primary_10_1007_s11053_021_09903_8
crossref_primary_10_1007_s00366_018_0668_5
crossref_primary_10_1007_s10706_019_00945_7
crossref_primary_10_1038_s41598_019_50262_5
crossref_primary_10_1007_s42461_023_00879_y
crossref_primary_10_1140_epje_s10189_022_00248_5
crossref_primary_10_1016_j_asoc_2019_01_042
crossref_primary_10_1016_j_tust_2023_105508
crossref_primary_10_1155_2019_4014761
crossref_primary_10_1016_j_eswa_2024_125923
crossref_primary_10_1016_j_neucom_2017_08_015
crossref_primary_10_1007_s00366_018_0686_3
crossref_primary_10_1007_s11053_020_09676_6
crossref_primary_10_1016_j_mlwa_2023_100517
crossref_primary_10_3390_app9224912
crossref_primary_10_1016_j_eswa_2023_120857
crossref_primary_10_1088_1742_6596_1703_1_012030
crossref_primary_10_1155_2021_6694918
crossref_primary_10_1007_s12517_020_06189_7
crossref_primary_10_3390_app10041403
crossref_primary_10_17694_bajece_932391
crossref_primary_10_3390_app9214554
crossref_primary_10_7717_peerj_cs_2333
crossref_primary_10_1007_s00366_018_0581_y
crossref_primary_10_1007_s42461_022_00659_0
crossref_primary_10_1007_s10586_018_2136_9
crossref_primary_10_1007_s42461_021_00449_0
crossref_primary_10_1007_s00366_019_00707_2
crossref_primary_10_1007_s00366_018_0601_y
crossref_primary_10_1007_s00366_018_0623_5
crossref_primary_10_1007_s42452_020_03611_3
crossref_primary_10_1007_s42461_024_00996_2
crossref_primary_10_1038_s41598_023_33796_7
crossref_primary_10_1080_03772063_2021_1948923
crossref_primary_10_1016_j_ecoinf_2018_08_008
crossref_primary_10_3390_a14070214
crossref_primary_10_3390_sym12091405
crossref_primary_10_1007_s11053_019_09503_7
crossref_primary_10_1007_s11053_021_09960_z
crossref_primary_10_1007_s00366_019_00847_5
crossref_primary_10_1007_s10706_018_0459_1
crossref_primary_10_1007_s00366_018_0578_6
crossref_primary_10_3389_feart_2022_928052
crossref_primary_10_1016_j_jmapro_2021_08_062
crossref_primary_10_1016_j_compag_2021_106478
crossref_primary_10_1007_s11356_023_29712_1
crossref_primary_10_1007_s11600_019_00268_4
crossref_primary_10_1007_s12145_021_00665_8
crossref_primary_10_1007_s11053_019_09464_x
crossref_primary_10_1007_s00366_018_0615_5
crossref_primary_10_1007_s40808_022_01637_7
crossref_primary_10_1007_s11053_021_09823_7
crossref_primary_10_1007_s00366_019_00858_2
crossref_primary_10_1007_s12517_023_11237_z
crossref_primary_10_1007_s12517_021_06716_0
crossref_primary_10_1007_s00366_018_0582_x
crossref_primary_10_1007_s00366_021_01444_1
crossref_primary_10_3390_app12010012
crossref_primary_10_1007_s40515_025_00532_9
crossref_primary_10_1016_j_heliyon_2024_e26639
crossref_primary_10_1177_16878132221081584
crossref_primary_10_1007_s10489_020_01711_6
crossref_primary_10_1007_s11053_019_09492_7
crossref_primary_10_1080_17480930_2024_2340876
crossref_primary_10_1007_s00366_018_0670_y
crossref_primary_10_1016_j_asoc_2017_10_040
crossref_primary_10_1007_s00366_018_0635_1
crossref_primary_10_1108_EC_09_2017_0332
crossref_primary_10_1007_s10706_020_01213_9
crossref_primary_10_1007_s10706_023_02473_x
crossref_primary_10_3389_fpubh_2022_1094771
crossref_primary_10_1177_1077546319829938
crossref_primary_10_1007_s11803_022_2125_0
crossref_primary_10_3390_app12189189
crossref_primary_10_1007_s42461_023_00899_8
crossref_primary_10_1080_17480930_2019_1577940
crossref_primary_10_1007_s42452_018_0136_2
crossref_primary_10_1007_s00603_022_02866_z
crossref_primary_10_1016_j_ijmst_2020_05_020
crossref_primary_10_1007_s00366_018_0658_7
crossref_primary_10_1007_s00366_017_0508_z
crossref_primary_10_1007_s11053_019_09515_3
crossref_primary_10_3390_mining1030020
crossref_primary_10_1016_j_coal_2023_104294
Cites_doi 10.3844/ajessp.2009.468.474
10.1007/978-1-4899-3099-6_2
10.1016/j.neucom.2003.08.006
10.1016/j.measurement.2015.07.019
10.1007/s00603-013-0368-9
10.1016/j.ijrmms.2011.04.016
10.1007/s00366-016-0447-0
10.1016/0893-6080(89)90020-8
10.1007/s00366-010-0190-x
10.1080/19475705.2010.488352
10.1016/j.sandf.2012.01.002
10.1007/s00366-016-0486-6
10.1007/s00366-015-0425-y
10.1016/0925-2312(95)00039-9
10.1016/j.jsv.2005.02.044
10.1260/0957456042880192
10.1007/s00366-015-0408-z
10.1007/s00254-007-1143-6
10.1007/s10064-015-0720-2
10.1007/s00366-015-0415-0
10.1016/j.ijrmms.2009.03.004
10.1179/037178404225006137
10.1007/BF02551274
10.1007/s00366-009-0157-y
10.1007/s11069-016-2241-0
10.1109/ICSYSE.1989.48672
10.1016/j.eswa.2011.01.156
10.1007/s10064-014-0657-x
10.1061/(ASCE)1090-0241(2002)128:9(785)
10.1007/s00366-016-0475-9
10.1016/j.engappai.2009.03.007
10.1007/s10706-004-7068-x
10.1016/j.soildyn.2006.06.004
10.1080/014311697218719
10.1111/0885-9507.00206
10.1007/s10706-016-0093-8
10.1016/j.jhydrol.2012.01.026
10.1016/j.jrmge.2013.11.001
10.1007/s00366-010-0193-7
10.1007/s12665-014-3280-z
10.1177/1077546312437002
10.1016/j.measurement.2014.09.075
10.1007/s00521-012-0856-y
10.1109/72.143376
10.1007/978-3-642-28962-0_43
10.1016/j.soildyn.2007.06.013
10.1007/s00521-012-0845-1
10.1016/j.ijrmms.2005.06.007
10.1007/s12517-015-1908-2
ContentType Journal Article
Copyright Springer-Verlag London 2016
Engineering with Computers is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London 2016
– notice: Engineering with Computers is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-016-0497-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 700
ExternalDocumentID 10_1007_s00366_016_0497_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c382t-add009cc8231febf859dc0165be1ef86969f0e12b3a4484fc5cbc8519feeda2f3
IEDL.DBID BENPR
ISSN 0177-0667
IngestDate Wed Aug 13 03:13:30 EDT 2025
Wed Oct 01 04:55:33 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:35:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ANN
ABC-ANN
Multiple regression
Ground vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-add009cc8231febf859dc0165be1ef86969f0e12b3a4484fc5cbc8519feeda2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1982505048
PQPubID 326339
PageCount 12
ParticipantIDs proquest_journals_1982505048
crossref_citationtrail_10_1007_s00366_016_0497_3
crossref_primary_10_1007_s00366_016_0497_3
springer_journals_10_1007_s00366_016_0497_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References SaghatforoushAMonjeziMShirani FaradonbehRJahed ArmaghaniDCombination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blastingEng Comput2015
SharmaLKSinghRUmraoRKSharmaKMSinghTNEvaluating the modulus of elasticity of soil using soft computing systemEng Comput2016
RipleyBDBarndoff-NeilsenOEJensenJLKendallWSStatistical aspects of neural networksNetworks and chaos-statistical and probabilistic aspects1993LondonChapman & Hall4012310.1007/978-1-4899-3099-6_2
Singh TN, Singh R, Singh B, Sharma LK, Singh R, Ansari MK (2016) Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India. Nat Hazards. doi:10.1007/s11069-016-2241-0
KhandelwalMSinghTNApplication of an expert system to predict maximum explosive charge used per delay in surface miningRock Mech Rock Eng20134661551155810.1007/s00603-013-0368-9
SinghTNSinghVAn intelligent approach to prediction and control ground vibration in minesGeotech Geol Eng20052324926210.1007/s10706-004-7068-x
ShahinMAMaierHRJaksaMBPredicting settlement of shallow foundations using neural networksJ Geotech Geoenviron Eng200212878579310.1061/(ASCE)1090-0241(2002)128:9(785)
Hush DR (1989) Classification with neural networks: a performance analysis. In: Proceedings of the IEEE international conference on systems engineering, Dayton, pp 277–280
KhandelwalMKumarDLYellishettyMApplication of soft computing to predict blast-induced ground vibrationEng Comput201127211712510.1007/s00366-009-0157-y
Shah H, Ghazali R, Nawi NM (2012) Hybrid ant bee colony algorithm for volcano temperature prediction. In: Emerging trends and applications in information communication technologies. Springer, Berlin, pp 453–465
VasovićDKostićSRavilićMTrajkovićSEnvironmental impact of blasting at Drenovac limestone quarry (Serbia)Environ Earth Sci201472103915392810.1007/s12665-014-3280-z
KhandelwalMBlast-induced ground vibration prediction using support vector machineEng Comput20112719320010.1007/s00366-010-0190-x
OrnekMLamanMDemirAYildizAPrediction of bearing capacity of circular footings on soft clay stabilized with granular soilSoil Found201252698010.1016/j.sandf.2012.01.002
Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania
AticiUPrediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural networkExpert Syst Appl2011389609961810.1016/j.eswa.2011.01.156
DaviesBFarmerIWAttewellPBGround vibrations from shallow sub-surface blasts1964LondonThe Engineer553559
Jahed ArmaghaniDHasanipanahMMohamadETA combination of the ICA-ANN model to predict air overpressure resulting from blastingEng Comput201632115517110.1007/s00366-015-0408-z
MomeniEJahed ArmaghaniDHajihassaniMAminMFMPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075
SonmezHGokceogluCNefesliogluHAKayabasiAEstimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equationInt J Rock Mech Min Sci20064322423510.1016/j.ijrmms.2005.06.007
WangXGTangZTamuraHIshiiMSunWDAn improved backpropagation algorithm to avoid the local minima problemNeurocomputing20045645546010.1016/j.neucom.2003.08.006
VermaAKSinghTNIntelligent systems for ground vibration measurement: a comparative studyEng Comput201127322523310.1007/s00366-010-0193-7
SinghTNVermaAKSensitivity of total charge and maximum charge per delay on ground vibrationGeomat Nat Hazards Risk20101325927210.1080/19475705.2010.488352
KaastraIBoydMDesigning a neural network for forecasting financial and economic time seriesNeurocomputing19961021523610.1016/0925-2312(95)00039-9
SwinglerKApplying neural networks: a practical guide1996New YorkAcademic Press
EbrahimiEMonjeziMKhalesiMRJahed ArmaghaniDPrediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithmBull Eng Geol Environ2015
GevaSJoaquinSA constructive method for multivariate function approximation by multilayer perceptronsNeural Netw IEEE Trans1992362162410.1109/72.143376
GiraudiACarduMKecojevicVAn assessment of blasting vibration: a case study on quarry operationAm J Environ Sci20095446347310.3844/ajessp.2009.468.474
HasanipanahMMonjeziMShahnazarAJahed ArmaghaniDFarazmandAFeasibility of indirect determination of blast induced ground vibration based on support vector machineMeasurement20157528929710.1016/j.measurement.2015.07.019
GhasemiEAtaeiMHashemolhosseiniHDevelopment of a fuzzy model for predicting ground vibration caused by rock blasting in surface miningJ Vib Control201319575577010.1177/1077546312437002
SaadatMKhandelwalMMonjeziMAn ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, IranJ Rock Mech Geotech Eng20146677610.1016/j.jrmge.2013.11.001
SinghTNKanchanRVermaAKPrediction of blast induced ground vibration and frequency using an artificial intelligent techniqueNoise Vib Worldw2004351171510.1260/0957456042880192
Hustrulid W (1999) Blasting principles for open pit mining: general design concepts, vol 1. Balkema, Rotterdam
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks, San Diego, pp 11–14
VermaAKSinghTNComparative study of cognitive systems for ground vibration measurementsNeural Comput Appl20132234135010.1007/s00521-012-0845-1
IpharMYavuzMAkHakanPrediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference systemEnviron Geol2008569710710.1007/s00254-007-1143-6
HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal ApproximatorsNeural Netw1989235936610.1016/0893-6080(89)90020-8
Duvall WI, Petkof B (1959) Spherical propagation of explosion generated strain pulses in rock. US Bureau of Mines Report of Investigation 5483
CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals Syst198924303314101567010.1007/BF025512740679.94019
HasanipanahMNoorian-BidgoliMJahed ArmaghaniDKhamesiHFeasibility of PSO-ANN model for predicting surface settlement caused by tunnelingEng Comput2016
Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, The University of Arizona
HajihassaniMJahed ArmaghaniDMartoAMohamadETGround vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithmBull Eng Geol Environ20157487388610.1007/s10064-014-0657-x
SharmaLKUmraoRKSinghRAhmadMSinghTNGeotechnical characterization of road cut hill slope forming unconsolidated geo-materials: a case studyGeotech Geol Eng2016
MonjeziMHasanipanahMKhandelwalMEvaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural networkNeural Comput Appl2013221637164310.1007/s00521-012-0856-y
Adhikari R, Agrawal RK (2011) Effectiveness of PSO based neural network for seasonal time series forecasting. In: Indian international conference on artificial intelligence (IICAI), Tumkur, India, pp 232–244
KisiOOzkanCAkayBModeling discharge—sediment relationship using neural networks with artificial bee colony algorithmJ Hydrol20124289410310.1016/j.jhydrol.2012.01.026
MohamedMTPerformance of fuzzy logic and artificial neural network in prediction of ground and air vibrationsInt J Rock Mech Min Sci20114884585110.1016/j.ijrmms.2011.04.016
Ghosh A, Daemen JK (1983) A simple new blast vibration predictor. In: Proceedings of the 24th US symposium on rock mechanics, Texas, pp 151–161
MastersTPractical neural network recipes in C++1994BostonAcademic0818.68049
Jahed ArmaghaniDHajihassaniMMonjeziMMohamadETMartoAMoghaddamMRApplication of two intelligent systems in predicting environmental impacts of quarry blastingArab J Geosci20158119647966510.1007/s12517-015-1908-2
AmbraseysNRHendronAJDynamic behavior of rock masses: rock mechanics in engineering practices1968LondonWiley
KanellopoulasIWilkinsonGGStrategies and best practice for neural network image classificationInt J Remote Sens199718471172510.1080/014311697218719
KhandelwalMSinghTNPrediction of blast induced ground vibrations and frequency in opencast mine-a neural network approachJ Sound Vib200628971172510.1016/j.jsv.2005.02.044
KuzuCThe importance of site-specific characters in prediction models for blast-induced ground vibrationsSoil Dyn Earthq Eng20082840541410.1016/j.soildyn.2007.06.013
RaiRSinghTNA new predictor for ground vibration prediction and its comparison with other predictorsIndian J Eng Mater Sci2004113178184
HasanipanahMShirani FaradonbehRBakhshandeh AmniehHJahed ArmaghaniDMonjeziMForecasting blast-induced ground vibration developing a CART modelEng Comput2016
BaheerISelection of methodology for modeling hysteresis behavior of soils using neural networksJ Comput Aid Civil Infrastruct Eng2000544546310.1111/0885-9507.00206
HasanipanahMJahed ArmaghaniDKhamesiHBakhshandeh AmniehHGhorabaSSeveral non-linear models in estimating air-overpressure resulting from mine blastingEng Comput2015
YagizSGokceogluCSezerEIplikciSApplication of two non-linear prediction tools to the estimation of tunnel boring machine performanceEng Appl Artif Intel200922480881410.1016/j.engappai.2009.03.007
KhandelwalMSinghTNEvaluation of blast-induced ground vibration predictorsSoil Dyn Earthq Eng20072711612510.1016/j.soildyn.2006.06.004
KhandelwalMSinghTNPrediction of blasting induced ground vibration using artificial neural networkInt J Rock Mech Min Sci2009461214122210.1016/j.ijrmms.2009.03.004
Indian Standards Institute (1973) Criteria for safety and design of structures subjected to underground blast. ISI Bull
NR Ambraseys (497_CR22) 1968
O Kisi (497_CR47) 2012; 428
497_CR60
BD Ripley (497_CR58) 1993
497_CR8
I Kanellopoulas (497_CR51) 1997; 18
497_CR25
497_CR24
497_CR1
A Giraudi (497_CR9) 2009; 5
497_CR21
LK Sharma (497_CR36) 2016
D Jahed Armaghani (497_CR34) 2016; 32
K Swingler (497_CR49) 1996
M Monjezi (497_CR27) 2013; 22
497_CR59
M Khandelwal (497_CR26) 2007; 27
M Saadat (497_CR10) 2014; 6
A Saghatforoush (497_CR38) 2015
497_CR50
M Hasanipanah (497_CR6) 2016
M Khandelwal (497_CR15) 2011; 27
497_CR55
TN Singh (497_CR29) 2004; 113
M Hasanipanah (497_CR16) 2015; 75
MA Shahin (497_CR40) 2002; 128
AK Verma (497_CR13) 2013; 22
M Khandelwal (497_CR17) 2006; 289
H Sonmez (497_CR57) 2006; 43
D Vasović (497_CR63) 2014; 72
S Geva (497_CR42) 1992; 3
XG Wang (497_CR44) 2004; 56
M Iphar (497_CR14) 2008; 56
AK Verma (497_CR18) 2011; 27
K Hornik (497_CR41) 1989; 2
497_CR45
E Momeni (497_CR54) 2015; 60
T Masters (497_CR61) 1994
E Ghasemi (497_CR4) 2013; 19
497_CR46
LK Sharma (497_CR7) 2016
TN Singh (497_CR12) 2010; 1
S Yagiz (497_CR31) 2009; 22
M Khandelwal (497_CR3) 2013; 46
M Khandelwal (497_CR2) 2011; 27
E Ebrahimi (497_CR35) 2015
G Cybenko (497_CR43) 1989; 2
U Atici (497_CR52) 2011; 38
TN Singh (497_CR28) 2004; 35
497_CR39
MT Mohamed (497_CR5) 2011; 48
I Kaastra (497_CR62) 1996; 10
H Shah (497_CR48) 2011; 3
M Ornek (497_CR53) 2012; 52
B Davies (497_CR23) 1964
M Hasanipanah (497_CR33) 2016
R Rai (497_CR11) 2004; 11
M Hasanipanah (497_CR32) 2015
C Kuzu (497_CR19) 2008; 28
D Jahed Armaghani (497_CR64) 2015; 8
M Khandelwal (497_CR20) 2009; 46
TN Singh (497_CR30) 2005; 23
M Hajihassani (497_CR37) 2015; 74
I Baheer (497_CR56) 2000; 5
References_xml – reference: ShahinMAMaierHRJaksaMBPredicting settlement of shallow foundations using neural networksJ Geotech Geoenviron Eng200212878579310.1061/(ASCE)1090-0241(2002)128:9(785)
– reference: SwinglerKApplying neural networks: a practical guide1996New YorkAcademic Press
– reference: SonmezHGokceogluCNefesliogluHAKayabasiAEstimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equationInt J Rock Mech Min Sci20064322423510.1016/j.ijrmms.2005.06.007
– reference: MonjeziMHasanipanahMKhandelwalMEvaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural networkNeural Comput Appl2013221637164310.1007/s00521-012-0856-y
– reference: Shah H, Ghazali R, Nawi NM (2012) Hybrid ant bee colony algorithm for volcano temperature prediction. In: Emerging trends and applications in information communication technologies. Springer, Berlin, pp 453–465
– reference: KhandelwalMSinghTNPrediction of blast induced ground vibrations and frequency in opencast mine-a neural network approachJ Sound Vib200628971172510.1016/j.jsv.2005.02.044
– reference: KisiOOzkanCAkayBModeling discharge—sediment relationship using neural networks with artificial bee colony algorithmJ Hydrol20124289410310.1016/j.jhydrol.2012.01.026
– reference: MastersTPractical neural network recipes in C++1994BostonAcademic0818.68049
– reference: GhasemiEAtaeiMHashemolhosseiniHDevelopment of a fuzzy model for predicting ground vibration caused by rock blasting in surface miningJ Vib Control201319575577010.1177/1077546312437002
– reference: KhandelwalMKumarDLYellishettyMApplication of soft computing to predict blast-induced ground vibrationEng Comput201127211712510.1007/s00366-009-0157-y
– reference: SharmaLKSinghRUmraoRKSharmaKMSinghTNEvaluating the modulus of elasticity of soil using soft computing systemEng Comput2016
– reference: KhandelwalMSinghTNPrediction of blasting induced ground vibration using artificial neural networkInt J Rock Mech Min Sci2009461214122210.1016/j.ijrmms.2009.03.004
– reference: DaviesBFarmerIWAttewellPBGround vibrations from shallow sub-surface blasts1964LondonThe Engineer553559
– reference: Indian Standards Institute (1973) Criteria for safety and design of structures subjected to underground blast. ISI Bull, IS-6922
– reference: KhandelwalMSinghTNApplication of an expert system to predict maximum explosive charge used per delay in surface miningRock Mech Rock Eng20134661551155810.1007/s00603-013-0368-9
– reference: VermaAKSinghTNComparative study of cognitive systems for ground vibration measurementsNeural Comput Appl20132234135010.1007/s00521-012-0845-1
– reference: AticiUPrediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural networkExpert Syst Appl2011389609961810.1016/j.eswa.2011.01.156
– reference: Jahed ArmaghaniDHajihassaniMMonjeziMMohamadETMartoAMoghaddamMRApplication of two intelligent systems in predicting environmental impacts of quarry blastingArab J Geosci20158119647966510.1007/s12517-015-1908-2
– reference: Ghosh A, Daemen JK (1983) A simple new blast vibration predictor. In: Proceedings of the 24th US symposium on rock mechanics, Texas, pp 151–161
– reference: HajihassaniMJahed ArmaghaniDMartoAMohamadETGround vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithmBull Eng Geol Environ20157487388610.1007/s10064-014-0657-x
– reference: Duvall WI, Petkof B (1959) Spherical propagation of explosion generated strain pulses in rock. US Bureau of Mines Report of Investigation 5483
– reference: EbrahimiEMonjeziMKhalesiMRJahed ArmaghaniDPrediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithmBull Eng Geol Environ2015
– reference: KuzuCThe importance of site-specific characters in prediction models for blast-induced ground vibrationsSoil Dyn Earthq Eng20082840541410.1016/j.soildyn.2007.06.013
– reference: Adhikari R, Agrawal RK (2011) Effectiveness of PSO based neural network for seasonal time series forecasting. In: Indian international conference on artificial intelligence (IICAI), Tumkur, India, pp 232–244
– reference: HasanipanahMMonjeziMShahnazarAJahed ArmaghaniDFarazmandAFeasibility of indirect determination of blast induced ground vibration based on support vector machineMeasurement20157528929710.1016/j.measurement.2015.07.019
– reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal ApproximatorsNeural Netw1989235936610.1016/0893-6080(89)90020-8
– reference: SinghTNArtificial neural network approach for prediction and control of ground vibrations in minesMin Technol2004113425125610.1179/037178404225006137
– reference: Hustrulid W (1999) Blasting principles for open pit mining: general design concepts, vol 1. Balkema, Rotterdam
– reference: Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the first IEEE international conference on neural networks, San Diego, pp 11–14
– reference: GiraudiACarduMKecojevicVAn assessment of blasting vibration: a case study on quarry operationAm J Environ Sci20095446347310.3844/ajessp.2009.468.474
– reference: SharmaLKUmraoRKSinghRAhmadMSinghTNGeotechnical characterization of road cut hill slope forming unconsolidated geo-materials: a case studyGeotech Geol Eng2016
– reference: MomeniEJahed ArmaghaniDHajihassaniMAminMFMPrediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networksMeasurement201560506310.1016/j.measurement.2014.09.075
– reference: KhandelwalMBlast-induced ground vibration prediction using support vector machineEng Comput20112719320010.1007/s00366-010-0190-x
– reference: ShahHGhazaliRNawiNMUsing artificial bee colony algorithm for MLP training on earthquake time series data predictionJ Comput201136135142
– reference: HasanipanahMJahed ArmaghaniDKhamesiHBakhshandeh AmniehHGhorabaSSeveral non-linear models in estimating air-overpressure resulting from mine blastingEng Comput2015
– reference: KaastraIBoydMDesigning a neural network for forecasting financial and economic time seriesNeurocomputing19961021523610.1016/0925-2312(95)00039-9
– reference: Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania
– reference: GevaSJoaquinSA constructive method for multivariate function approximation by multilayer perceptronsNeural Netw IEEE Trans1992362162410.1109/72.143376
– reference: SinghTNKanchanRVermaAKPrediction of blast induced ground vibration and frequency using an artificial intelligent techniqueNoise Vib Worldw2004351171510.1260/0957456042880192
– reference: RipleyBDBarndoff-NeilsenOEJensenJLKendallWSStatistical aspects of neural networksNetworks and chaos-statistical and probabilistic aspects1993LondonChapman & Hall4012310.1007/978-1-4899-3099-6_2
– reference: OrnekMLamanMDemirAYildizAPrediction of bearing capacity of circular footings on soft clay stabilized with granular soilSoil Found201252698010.1016/j.sandf.2012.01.002
– reference: HasanipanahMNoorian-BidgoliMJahed ArmaghaniDKhamesiHFeasibility of PSO-ANN model for predicting surface settlement caused by tunnelingEng Comput2016
– reference: AmbraseysNRHendronAJDynamic behavior of rock masses: rock mechanics in engineering practices1968LondonWiley
– reference: SaghatforoushAMonjeziMShirani FaradonbehRJahed ArmaghaniDCombination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blastingEng Comput2015
– reference: Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, The University of Arizona
– reference: IpharMYavuzMAkHakanPrediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference systemEnviron Geol2008569710710.1007/s00254-007-1143-6
– reference: Jahed ArmaghaniDHasanipanahMMohamadETA combination of the ICA-ANN model to predict air overpressure resulting from blastingEng Comput201632115517110.1007/s00366-015-0408-z
– reference: RaiRSinghTNA new predictor for ground vibration prediction and its comparison with other predictorsIndian J Eng Mater Sci2004113178184
– reference: SinghTNVermaAKSensitivity of total charge and maximum charge per delay on ground vibrationGeomat Nat Hazards Risk20101325927210.1080/19475705.2010.488352
– reference: VasovićDKostićSRavilićMTrajkovićSEnvironmental impact of blasting at Drenovac limestone quarry (Serbia)Environ Earth Sci201472103915392810.1007/s12665-014-3280-z
– reference: KanellopoulasIWilkinsonGGStrategies and best practice for neural network image classificationInt J Remote Sens199718471172510.1080/014311697218719
– reference: BaheerISelection of methodology for modeling hysteresis behavior of soils using neural networksJ Comput Aid Civil Infrastruct Eng2000544546310.1111/0885-9507.00206
– reference: SinghTNSinghVAn intelligent approach to prediction and control ground vibration in minesGeotech Geol Eng20052324926210.1007/s10706-004-7068-x
– reference: Singh TN, Singh R, Singh B, Sharma LK, Singh R, Ansari MK (2016) Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India. Nat Hazards. doi:10.1007/s11069-016-2241-0
– reference: VermaAKSinghTNIntelligent systems for ground vibration measurement: a comparative studyEng Comput201127322523310.1007/s00366-010-0193-7
– reference: MohamedMTPerformance of fuzzy logic and artificial neural network in prediction of ground and air vibrationsInt J Rock Mech Min Sci20114884585110.1016/j.ijrmms.2011.04.016
– reference: Hush DR (1989) Classification with neural networks: a performance analysis. In: Proceedings of the IEEE international conference on systems engineering, Dayton, pp 277–280
– reference: HasanipanahMShirani FaradonbehRBakhshandeh AmniehHJahed ArmaghaniDMonjeziMForecasting blast-induced ground vibration developing a CART modelEng Comput2016
– reference: CybenkoGApproximation by superpositions of a sigmoidal functionMath Control Signals Syst198924303314101567010.1007/BF025512740679.94019
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
– reference: KhandelwalMSinghTNEvaluation of blast-induced ground vibration predictorsSoil Dyn Earthq Eng20072711612510.1016/j.soildyn.2006.06.004
– reference: WangXGTangZTamuraHIshiiMSunWDAn improved backpropagation algorithm to avoid the local minima problemNeurocomputing20045645546010.1016/j.neucom.2003.08.006
– reference: SaadatMKhandelwalMMonjeziMAn ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, IranJ Rock Mech Geotech Eng20146677610.1016/j.jrmge.2013.11.001
– reference: YagizSGokceogluCSezerEIplikciSApplication of two non-linear prediction tools to the estimation of tunnel boring machine performanceEng Appl Artif Intel200922480881410.1016/j.engappai.2009.03.007
– volume: 5
  start-page: 463
  issue: 4
  year: 2009
  ident: 497_CR9
  publication-title: Am J Environ Sci
  doi: 10.3844/ajessp.2009.468.474
– volume: 11
  start-page: 178
  issue: 3
  year: 2004
  ident: 497_CR11
  publication-title: Indian J Eng Mater Sci
– start-page: 40
  volume-title: Networks and chaos-statistical and probabilistic aspects
  year: 1993
  ident: 497_CR58
  doi: 10.1007/978-1-4899-3099-6_2
– volume: 56
  start-page: 455
  year: 2004
  ident: 497_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.08.006
– volume: 75
  start-page: 289
  year: 2015
  ident: 497_CR16
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– volume: 46
  start-page: 1551
  issue: 6
  year: 2013
  ident: 497_CR3
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0368-9
– volume: 48
  start-page: 845
  year: 2011
  ident: 497_CR5
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.04.016
– year: 2016
  ident: 497_CR33
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0447-0
– volume-title: Practical neural network recipes in C++
  year: 1994
  ident: 497_CR61
– volume: 2
  start-page: 359
  year: 1989
  ident: 497_CR41
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– ident: 497_CR45
– volume: 27
  start-page: 193
  year: 2011
  ident: 497_CR2
  publication-title: Eng Comput
  doi: 10.1007/s00366-010-0190-x
– volume-title: Dynamic behavior of rock masses: rock mechanics in engineering practices
  year: 1968
  ident: 497_CR22
– volume: 1
  start-page: 259
  issue: 3
  year: 2010
  ident: 497_CR12
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1080/19475705.2010.488352
– volume: 52
  start-page: 69
  year: 2012
  ident: 497_CR53
  publication-title: Soil Found
  doi: 10.1016/j.sandf.2012.01.002
– year: 2016
  ident: 497_CR36
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0486-6
– ident: 497_CR59
– ident: 497_CR55
– year: 2015
  ident: 497_CR32
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0425-y
– volume: 10
  start-page: 215
  year: 1996
  ident: 497_CR62
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(95)00039-9
– ident: 497_CR60
– volume: 289
  start-page: 711
  year: 2006
  ident: 497_CR17
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.02.044
– start-page: 553
  volume-title: Ground vibrations from shallow sub-surface blasts
  year: 1964
  ident: 497_CR23
– volume-title: Applying neural networks: a practical guide
  year: 1996
  ident: 497_CR49
– volume: 35
  start-page: 7
  issue: 11
  year: 2004
  ident: 497_CR28
  publication-title: Noise Vib Worldw
  doi: 10.1260/0957456042880192
– volume: 32
  start-page: 155
  issue: 1
  year: 2016
  ident: 497_CR34
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0408-z
– volume: 56
  start-page: 97
  year: 2008
  ident: 497_CR14
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-1143-6
– year: 2015
  ident: 497_CR35
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0720-2
– year: 2015
  ident: 497_CR38
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0415-0
– volume: 46
  start-page: 1214
  year: 2009
  ident: 497_CR20
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 113
  start-page: 251
  issue: 4
  year: 2004
  ident: 497_CR29
  publication-title: Min Technol
  doi: 10.1179/037178404225006137
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 497_CR43
  publication-title: Math Control Signals Syst
  doi: 10.1007/BF02551274
– volume: 27
  start-page: 117
  issue: 2
  year: 2011
  ident: 497_CR15
  publication-title: Eng Comput
  doi: 10.1007/s00366-009-0157-y
– ident: 497_CR8
  doi: 10.1007/s11069-016-2241-0
– ident: 497_CR50
  doi: 10.1109/ICSYSE.1989.48672
– volume: 38
  start-page: 9609
  year: 2011
  ident: 497_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.156
– volume: 74
  start-page: 873
  year: 2015
  ident: 497_CR37
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0657-x
– volume: 128
  start-page: 785
  year: 2002
  ident: 497_CR40
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2002)128:9(785)
– year: 2016
  ident: 497_CR6
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0475-9
– ident: 497_CR24
– volume: 22
  start-page: 808
  issue: 4
  year: 2009
  ident: 497_CR31
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2009.03.007
– volume: 23
  start-page: 249
  year: 2005
  ident: 497_CR30
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-004-7068-x
– volume: 27
  start-page: 116
  year: 2007
  ident: 497_CR26
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2006.06.004
– volume: 18
  start-page: 711
  issue: 4
  year: 1997
  ident: 497_CR51
  publication-title: Int J Remote Sens
  doi: 10.1080/014311697218719
– volume: 5
  start-page: 445
  year: 2000
  ident: 497_CR56
  publication-title: J Comput Aid Civil Infrastruct Eng
  doi: 10.1111/0885-9507.00206
– year: 2016
  ident: 497_CR7
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-016-0093-8
– volume: 428
  start-page: 94
  year: 2012
  ident: 497_CR47
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.01.026
– volume: 6
  start-page: 67
  year: 2014
  ident: 497_CR10
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2013.11.001
– volume: 27
  start-page: 225
  issue: 3
  year: 2011
  ident: 497_CR18
  publication-title: Eng Comput
  doi: 10.1007/s00366-010-0193-7
– volume: 72
  start-page: 3915
  issue: 10
  year: 2014
  ident: 497_CR63
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3280-z
– volume: 19
  start-page: 755
  issue: 5
  year: 2013
  ident: 497_CR4
  publication-title: J Vib Control
  doi: 10.1177/1077546312437002
– volume: 60
  start-page: 50
  year: 2015
  ident: 497_CR54
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 22
  start-page: 1637
  year: 2013
  ident: 497_CR27
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0856-y
– ident: 497_CR25
– ident: 497_CR1
– volume: 3
  start-page: 621
  year: 1992
  ident: 497_CR42
  publication-title: Neural Netw IEEE Trans
  doi: 10.1109/72.143376
– ident: 497_CR39
  doi: 10.1007/978-3-642-28962-0_43
– ident: 497_CR46
– ident: 497_CR21
– volume: 28
  start-page: 405
  year: 2008
  ident: 497_CR19
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2007.06.013
– volume: 3
  start-page: 135
  issue: 6
  year: 2011
  ident: 497_CR48
  publication-title: J Comput
– volume: 22
  start-page: 341
  year: 2013
  ident: 497_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0845-1
– volume: 43
  start-page: 224
  year: 2006
  ident: 497_CR57
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2005.06.007
– volume: 8
  start-page: 9647
  issue: 11
  year: 2015
  ident: 497_CR64
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
SSID ssj0013009
Score 2.4965982
Snippet Drilling and blasting is an inseparable part of the rock fragmentation process in open-pit mines. Prediction of blast-produced ground vibration is considered...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 689
SubjectTerms Artificial neural networks
Blasting
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Ground motion
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Neural networks
Open pit mining
Optimization
Original Article
Prediction models
Search algorithms
Swarm intelligence
Systems Theory
Vibration measurement
Vibration monitoring
Weight
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3rwURWrVXLwpAT20c1mj0UsIujJQm_LJptYoW5Ldy303zuT3bRVVPAQFvJiyUySb5iZL4Rc54DCjVQe06HKwUARCUMYwThXGhQozCKO2chPz_xh2HscRaMmj7t00e7OJWlP6lWyG1KnoPULpZfAztgmOxGyeYESD4P-2nXg1XEdfoxxXTx2rsyfpvh6Ga0R5jenqL1rBodkvwGJtF9L9Yhs6aJNDhrASJvtWEKVe5PB1bXJ3gbB4DFZ9Ol4iTlZFDWkJougUmuKXNXFkmaT1-n8rRq_s412pLi0HxsgTgHVYtEqKzFEmgJipBIwd8Vmli0W_ghTQ4qcLtD0RkGfkOHg_uXugTUvLTAViqBicMjBqimFPkGjpRFRkitMdJLa10bwhCfG034gwwzMuZ5RkZIKsFpi4IrNAhOeklYxLfQZobnUgNe1AFzp9-LYEwpRmg_z60jwOOwQzy15qhoacnwNY5KuCJStlFIMPUMppTDkZjVkVnNw_NW56-SYNtuxTP1EINSD06pDbp1sN5p_m-z8X70vyG6Al74N5u2SVjX_0JcAWSp5ZVX0EygM464
  priority: 102
  providerName: Springer Nature
Title A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
URI https://link.springer.com/article/10.1007/s00366-016-0497-3
https://www.proquest.com/docview/1982505048
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1435-5663
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: 8FG
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vejBR1Wsj7IHT8piHs0mOYhU6QPFImJBTyG72dhDTauNgv_emW3SVkEPIZDHhmRmd77JzHwDcJIgCk-lsrh2VYIOShByghFcCKVRgdzYE1SNfNcXvUHz5sl7WoF-WQtDaZXlmmgW6mSs6B_5OTrHZK1R4S4nb5y6RlF0tWyhERetFZILQzG2ClWHmLEqUL1q9-8fFnEFa5b0YfuU9CX8Ms5pGVpRV5B3jVszxJn301It4OeviKkxRJ0t2CgQJGvNRL4NKzqrwWaBJlkxV6c1WF-iGtyBzxYbflF1FiNdmdFGMKk1I9bq7IvFoxd823z4ypfOE9ml2ZlUcYb4ljat4iklSzPEjkwi-s75xPDG4uOpSCRL2Cc54STyXRh02o_XPV70XODKDZyc43KHn0gpig6mWqaBFyaKSp6ktnUaiFCEqaVtR7oxOnbNVHlKKkRtYYrGNnZSdw8q2TjT-8ASqRG56wARpt30fStQhNdsHF97gfDdOljl941UQUhOfTFG0ZxK2YgkoiQ0EkmEt5zOb5nM2Dj-u_ioFFpUTMxptFCjOpyVglw6_ddgB_8PdghrDtl7k8d7BJX8_UMfI1rJZQNWg063AdVW9_m23SgUEo8OnNY30oTqww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcigcoNCi8qwPcCmymsSJkxwQ4qnltaoQSNzS2HHKAbILG0D75_htzHgddlup3DhYOTh2JM_Y_iYz8w3ARoEovFTa40boAg2UJOUEI7iU2qACiTySlI183pHtq_DkOrqegJcmF4bCKpsz0R7URVfTP_KfaBzTbY0Kt9O751Q1iryrTQmN3JVWKLYtxZhL7Dg1g2c04frbxwco780gODq83G9zV2WAa5EENccNjjhDa_KHlUaVSZQWmpJ8lPFNmchUpqVn_ECJHE2ZsNSRVhpxSlri9ZIHpcB5J2EqFGGKxt_U3mHn18XIj-ENg0z8mILMZNz4VT1LYyokWfPYcCgXf9-MI7j7j4fWXnxHn2HWIVa2O1SxeZgw1QLMOfTK3NnQX4CZMWrDL_C0y24GlA3GSDeHNBVMGcOIJbsasPz2D65ufXPHx_qJXNM-bGg6QzxNzei8T8HZDLEqU4j2a96zPLX4eUpKqQr2REY_qdhXuPqQ1V-EVtWtzDdghTJoKZgEEa0fxrGXaMKHPs5vokTGYgm8Zn0z7QjQqQ7HbfZG3WxFklHQG4kkwyE_3ob0huwf77282ggtcwdBPxup7RJsNYIc6_7fZMvvT_YdPrUvz8-ys-PO6QpMB4Q1bAzxKrTqh0ezhkipVutOHRn8_ugd8ApegCZ_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xSAgKbsSNC2hAFjk2TlIghIDlRhQg0YXYsdkCwsIG0P4aX8eMk7ALEnQUVgonjuR5sd9kZp4B1jNk4UYqh2tfZeigRDEnGsGFUBoB5KeBoGrki0txfNM4vQ1uB-CjroWhtMp6TbQLdfak6B_5NjrHtFuTzKyp0iKuDpq77WdOJ0hRpLU-TqOEyJnuvqP71tk5OUBbb3he8_B6_5hXJwxw5UdewfHjRo6hFMXCjJYmCuJMUYGP1K42kYhFbBztetJP0Y1pGBUoqZCjxAa3ltQzPo47CMMhqbhTlXrzqBfBcMr0Ejek9DIR1hFVxwqY-oL8eGyNGL_x73tij-j-iM3aLa85CeMVV2V7JbimYEDn0zBR8VZWrQqdaRjrEzWcgbc91upSHRgjVJYCFUxqzUgfO--y9OEe57JoPfK-fpLVtBeblM6QSVPTKu1QWjZDlsok8vyCt61CLb6eylHyjL2Ru0_gmoWbf5n7ORjKn3I9DyyTGn0EHSGXdRth6ESKmKGL4-sgEqG_AE49v4mqpM_pBI6H5Eu02ZokoXQ3MkmCj2x-PdIudT_-unm5NlpSLQGdpAfYBdiqDdnX_dtgi38PtgYjiPvk_OTybAlGPSIZNnl4GYaKl1e9ghSpkKsWiwzu_hv8n1WcJBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+artificial+bee+colony+algorithm-artificial+neural+network+for+forecasting+the+blast-produced+ground+vibration&rft.jtitle=Engineering+with+computers&rft.au=Taheri%2C+Khalil&rft.au=Hasanipanah%2C+Mahdi&rft.au=Golzar%2C+Saeid+Bagheri&rft.au=Majid%2C+Muhd+Zaimi+Abd&rft.date=2017-07-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=33&rft.issue=3&rft.spage=689&rft.epage=700&rft_id=info:doi/10.1007%2Fs00366-016-0497-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_016_0497_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon