Advancing overbreak prediction in drilling and blasting tunnel using MVO, SSA and HHO-based SVM models with interpretability analysis

Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accura...

Full description

Saved in:
Bibliographic Details
Published inGeomechanics and geophysics for geo-energy and geo-resources. Vol. 11; no. 1; pp. 53 - 41
Main Authors Zhang, Yulin, Zhou, Jian, Li, Jialu, He, Biao, Armaghani, Danial Jahed, Huang, Shuai
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2363-8419
2363-8427
2363-8427
DOI10.1007/s40948-025-00963-1

Cover

Abstract Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers. Highlights Proposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels. HHO-SVM outperformed traditional models with high accuracy (test R 2 =0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data. Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering. Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios.
AbstractList Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers.HighlightsProposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels.HHO-SVM outperformed traditional models with high accuracy (test R2 =0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data.Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering.Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios.
Abstract Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers.
Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers.
Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers. Highlights Proposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels. HHO-SVM outperformed traditional models with high accuracy (test R 2 =0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data. Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering. Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios.
ArticleNumber 53
Author Zhou, Jian
Armaghani, Danial Jahed
Zhang, Yulin
Li, Jialu
He, Biao
Huang, Shuai
Author_xml – sequence: 1
  givenname: Yulin
  surname: Zhang
  fullname: Zhang, Yulin
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Jialu
  surname: Li
  fullname: Li, Jialu
  organization: ShanDong Provincial Communications Planning and Design Institute Group CO., LTD
– sequence: 4
  givenname: Biao
  surname: He
  fullname: He, Biao
  email: BHe@ucc.ie
  organization: Civil, Structural and Environmental Engineering, University College Cork
– sequence: 5
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
– sequence: 6
  givenname: Shuai
  surname: Huang
  fullname: Huang, Shuai
  organization: School of Resources and Safety Engineering, Central South University
BookMark eNqNkd9OHCEUhyfGJlrrC3hF0ttO5c8AM5cb07ommr3Y1lvCDGdWLMIWGM0-QN9bdsfYu6YXhHPIdz4Iv4_VsQ8equqC4K8EY3mZGtw1bY0przHuBKvJUXVKWSnahsrj95p0J9V5SrbHXAqKcdOdVn8W5ln7wfoNCs8Q-wj6F9pGMHbINnhkPTLROrcHtDeodzrlfZMn78GhKe2bu_vVF7ReLw7Icrmqe53AoPX9HXoKBlxCLzY_FFmGWORZ99bZvCu4drtk06fqw6hdgvO3_az6-f3bj6tlfbu6vrla3NYDa2muteGSUSwHyjsBDScDZqIB1nVGCik5lYI1hnXMtEAMpUJqrHnhx37QfcvZWXUze03Qj2ob7ZOOOxW0VYeDEDdKx2wHB4oxLGiDR8G7oeGi3MGAMAMgyxrbvrjY7Jr8Vu9etHPvQoLVPhg1B6NKMOoQjCJl6vM8tY3h9wQpq8cwxfINSTHKRctJS3Gh6EwNMaQUYfw_9duDUoH9BuJf9T-mXgHF964q
Cites_doi 10.1016/j.tust.2012.11.008
10.1016/j.tust.2019.04.014
10.1016/j.undsp.2023.05.009
10.1007/s00521-019-04629-4
10.1007/s10706-017-0336-3
10.1007/s00521-015-1870-7
10.1016/j.ssci.2010.09.004
10.1038/s41598-024-76971-0
10.1109/ICEMI.2017.8265997
10.1016/j.ssci.2019.05.046
10.1016/j.tust.2024.105586
10.1016/j.tust.2013.05.002
10.1007/978-3-030-12127-3_8
10.1016/j.eswa.2021.115736
10.1007/s00603-023-03522-w
10.1016/j.advengsoft.2017.07.002
10.1007/s11771-012-1409-3
10.1016/j.mstc.2011.02.025
10.1016/j.future.2019.02.028
10.1007/s00366-018-0658-7
10.1007/s10064-017-1116-2
10.1016/j.ijrmms.2014.09.012
10.1016/j.measurement.2019.107389
10.1007/s12665-019-8163-x
10.1007/s00366-017-0520-3
10.1007/s00603-012-0269-3
10.1007/s00603-025-04387-x
10.1038/s41598-023-31170-1
10.1016/j.tust.2004.05.004
10.1063/1.4887707
10.1109/TASL.2008.919072
10.1016/j.tust.2021.103854
10.1007/s00521-018-3613-z
10.1016/j.ijmst.2021.09.002
10.1007/s11053-019-09470-z
10.1007/978-1-4899-7641-3_9
10.1007/s00521-011-0631-5
10.1016/j.knosys.2017.07.018
10.1016/j.tust.2013.09.013
10.1007/s11440-023-01988-0
10.4028/www.scientific.net/AMM.29-32.1717
10.1007/s00521-020-04839-1
10.1155/2013/706491
10.1016/j.tust.2019.103060
10.1038/s41598-024-67088-5
10.1016/j.engappai.2020.104015
10.1007/s00521-021-05720-5
10.1007/s11771-024-5699-z
10.1016/j.eswa.2021.114778
10.1016/j.undsp.2019.12.002
10.1016/j.tust.2018.05.023
10.1007/978-3-030-12127-3_11
10.1016/j.ijrmms.2022.105290
10.1016/j.tust.2022.104979
10.1007/s00603-019-01947-w
10.1016/j.ijimpeng.2023.104784
10.1007/978-1-4757-3264-1
10.1007/s11053-024-10371-z
10.1038/s41598-024-76888-8
10.1016/j.jrmge.2024.09.002
10.1016/j.trgeo.2023.101022
10.1016/j.tust.2018.09.015
10.1016/j.ijrmms.2010.01.007
10.1016/j.undsp.2022.07.001
10.1007/s00603-024-03947-x
10.1016/j.tust.2020.103569
10.1007/s11440-022-01450-7
10.1016/j.undsp.2022.04.007
10.1016/j.undsp.2024.11.004
10.1007/s12145-023-01042-3
10.1155/2018/4543984
10.1016/j.undsp.2024.03.003
10.1007/s00603-013-0462-z
10.1109/5254.708428
10.1016/j.ijmst.2015.03.018
10.1007/978-981-16-9770-8_1
10.3390/electronics11121919
10.1007/s42452-020-03767-y
10.1038/nbt1206-1565
10.1007/s00366-020-01014-x
10.1016/j.eswa.2023.121616
10.1016/j.tust.2008.01.007
10.1007/s10706-008-9177-4
10.1214/088342306000000493
10.1016/j.conbuildmat.2022.127298
10.1016/j.ymssp.2006.12.007
10.1016/j.tust.2013.06.003
10.1016/j.tust.2020.103383
10.1016/j.tust.2011.09.004
10.3390/app14146164
10.1016/j.gsf.2020.11.005
10.1016/j.tust.2020.103475
10.19026/rjaset.5.4340
10.1016/j.eswa.2024.125909
10.1007/s00500-018-3253-3
10.1029/2000JD900719
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TN
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1007/s40948-025-00963-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Geology
EISSN 2363-8427
EndPage 41
ExternalDocumentID oai_doaj_org_article_3306240f659c4563993e13dee7deef8b
10.1007/s40948-025-00963-1
10_1007_s40948_025_00963_1
GrantInformation_xml – fundername: Distinguished Youth Science Foundation of Hunan Province of China
  grantid: Grant No. 2022JJ10073
– fundername: University College Cork
– fundername: National Natural Science Foundation Project of China
  grantid: Grant No. 42177164
GroupedDBID 0R~
203
AAHNG
AAIAL
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAYQN
ABDBE
ABDZT
ABECU
ABEEZ
ABFTV
ABJOX
ABKCH
ABMQK
ABQBU
ABTMW
ABXPI
ACACY
ACGFS
ACIWK
ACMLO
ACOKC
ACULB
ACZOJ
ADHHG
ADKNI
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEOHA
AEPYU
AEXYK
AFBBN
AFGXO
AFPKN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQMX
AHBYD
AHKAY
AHSBF
AIAKS
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
BGNMA
C24
C6C
DNIVK
EBLON
EBS
EIOEI
EJD
FERAY
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
GROUPED_DOAJ
IKXTQ
IWAJR
J-C
JZLTJ
KOV
M4Y
NQJWS
NU0
O9J
RLLFE
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAFWJ
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7TN
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
ID FETCH-LOGICAL-c382t-ad573207c2596e451c0364e399d7677527634d393d8e1d2267a0a507cfbcab853
IEDL.DBID BENPR
ISSN 2363-8419
2363-8427
IngestDate Fri Oct 03 12:46:33 EDT 2025
Wed Oct 01 16:51:18 EDT 2025
Mon Oct 06 18:16:38 EDT 2025
Wed Oct 01 06:03:13 EDT 2025
Fri May 23 01:11:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Drilling and blasting tunnel
Overbreak prediction
Support vector machine
Interpretability analysis
Metaheuristic algorithms
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-ad573207c2596e451c0364e399d7677527634d393d8e1d2267a0a507cfbcab853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s40948-025-00963-1.pdf
PQID 3256851820
PQPubID 2044450
PageCount 41
ParticipantIDs doaj_primary_oai_doaj_org_article_3306240f659c4563993e13dee7deef8b
unpaywall_primary_10_1007_s40948_025_00963_1
proquest_journals_3256851820
crossref_primary_10_1007_s40948_025_00963_1
springer_journals_10_1007_s40948_025_00963_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Geomechanics and geophysics for geo-energy and geo-resources.
PublicationTitleAbbrev Geomech. Geophys. Geo-energ. Geo-resour
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References RM Rizk-Allah (963_CR74) 2019; 31
Y Wu (963_CR89) 2022; 330
Y Qiu (963_CR70) 2024; 57
L Abualigah (963_CR2) 2020; 32
AK Raina (963_CR72) 2014; 73
B He (963_CR20) 2025; 264
J Zhou (963_CR107) 2023; 16
H Jang (963_CR30) 2013; 38
A Wu (963_CR90) 2023; 162
E Li (963_CR41) 2021; 37
M Mohammadi (963_CR60) 2015; 25
BZ Yao (963_CR92) 2010; 29
963_CR52
J Zhou (963_CR101) 2023; 41
963_CR53
B He (963_CR19) 2024; 237
963_CR59
AG Hussien (963_CR29) 2022; 11
T Chen (963_CR14) 2021; 31
Z Hong (963_CR25) 2023; 182
K Dey (963_CR15) 2012; 28
963_CR57
R Zhang (963_CR98) 2024; 14
R Zhang (963_CR93) 2024
M Khandelwal (963_CR33) 2013; 46
Y-l Zhang (963_CR97) 2024; 31
Y Qiu (963_CR67) 2023; 56
G Zheng (963_CR99) 2021; 6
963_CR64
K Hussain (963_CR28) 2021; 176
H Nguyen (963_CR65) 2020; 29
T Chen (963_CR13) 2021; 31
SK Mandal (963_CR51) 2008; 26
A Mottahedi (963_CR62) 2018; 80
H Jang (963_CR31) 2019; 92
H Rong (963_CR76) 2024; 14
S Mahdevari (963_CR47) 2013; 38
P Li (963_CR39) 2011; 21
A Widodo (963_CR88) 2007; 21
SK Mandal (963_CR50) 2009; 24
H Rong (963_CR75) 2023; 13
H Zhang (963_CR96) 2021; 111
963_CR71
L Abualigah (963_CR1) 2020; 32
WS Noble (963_CR66) 2006; 24
963_CR79
B Liu (963_CR44) 2019; 91
M Rezaei (963_CR73) 2011; 49
Y Kim (963_CR34) 2013; 35
W Liu (963_CR46) 2024; 145
963_CR85
A Mottahedi (963_CR63) 2018; 34
963_CR87
J Zhou (963_CR103) 2025; 22
963_CR82
H Moayedi (963_CR58) 2020; 152
SP Singh (963_CR81) 2005; 20
J Zhou (963_CR106) 2024; 14
S Mahdevari (963_CR48) 2014; 72
Q Zhang (963_CR94) 2019; 83
H Rong (963_CR77) 2024; 14
J Zhou (963_CR104) 2021; 97
SJ Li (963_CR40) 2012; 19
KE Taylor (963_CR86) 2001; 106
S Shiwei (963_CR80) 2013; 5
B He (963_CR18) 2023; 133
GM Foderà (963_CR17) 2020; 105
C Xie (963_CR91) 2021; 12
Ö Aydan (963_CR10) 2014; 47
963_CR16
AA Heidari (963_CR23) 2019; 97
J Zhou (963_CR105) 2023; 40
S Salcedo-Sanz (963_CR78) 2014; 4
S Mirjalili (963_CR54) 2016; 27
X Huo (963_CR27) 2020; 106
ZQ Li (963_CR42) 2023; 9
M Koopialipoor (963_CR38) 2019; 78
J Zhou (963_CR108) 2022; 17
S Bhandari (963_CR12) 1997
J Zhou (963_CR102) 2019; 118
963_CR9
963_CR21
MA Hearst (963_CR22) 1998; 13
H Amini (963_CR7) 2012; 21
W Song (963_CR83) 2024; 14
L Antwarg (963_CR8) 2021; 186
M Koopialipoor (963_CR37) 2019; 78
963_CR100
K Hou (963_CR26) 2018; 3
M Khandelwal (963_CR32) 2010; 47
Y Qiu (963_CR68) 2023; 18
A Afradi (963_CR3) 2020; 2
S Mirjalili (963_CR56) 2017; 114
Y Qiu (963_CR69) 2024; 19
ZX Liu (963_CR43) 2014; 40
J Benesty (963_CR11) 2008; 16
MA Mahtab (963_CR49) 1997; 34
Y Sun (963_CR84) 2018
HM Alabool (963_CR5) 2021; 33
963_CR35
P Zhang (963_CR95) 2020; 99
B Liu (963_CR45) 2020; 53
Z Hong (963_CR24) 2023; 8
M Koopialipoor (963_CR36) 2019; 35
S Mirjalili (963_CR55) 2017; 134
H Mohammadi (963_CR61) 2018; 36
963_CR6
963_CR4
References_xml – volume: 35
  start-page: 67
  year: 2013
  ident: 963_CR34
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2012.11.008
– volume: 91
  year: 2019
  ident: 963_CR44
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.04.014
– volume: 14
  start-page: 70
  year: 2024
  ident: 963_CR106
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2023.05.009
– volume: 32
  start-page: 11195
  year: 2020
  ident: 963_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04629-4
– volume: 36
  start-page: 425
  year: 2018
  ident: 963_CR61
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0336-3
– volume: 27
  start-page: 495
  year: 2016
  ident: 963_CR54
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– volume: 49
  start-page: 298
  issue: 2
  year: 2011
  ident: 963_CR73
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2010.09.004
– volume: 14
  start-page: 26073
  issue: 1
  year: 2024
  ident: 963_CR76
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-76971-0
– ident: 963_CR100
  doi: 10.1109/ICEMI.2017.8265997
– volume: 118
  start-page: 505
  year: 2019
  ident: 963_CR102
  publication-title: Safety Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 145
  year: 2024
  ident: 963_CR46
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2024.105586
– volume: 38
  start-page: 59
  year: 2013
  ident: 963_CR47
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.05.002
– ident: 963_CR6
  doi: 10.1007/978-3-030-12127-3_8
– volume: 186
  year: 2021
  ident: 963_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115736
– volume: 56
  start-page: 8745
  issue: 12
  year: 2023
  ident: 963_CR67
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-023-03522-w
– volume: 114
  start-page: 163
  year: 2017
  ident: 963_CR56
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 19
  start-page: 3311
  issue: 11
  year: 2012
  ident: 963_CR40
  publication-title: J Central South Univ
  doi: 10.1007/s11771-012-1409-3
– ident: 963_CR57
– volume: 21
  start-page: 557
  issue: 4
  year: 2011
  ident: 963_CR39
  publication-title: Mining Sci Technol (China)
  doi: 10.1016/j.mstc.2011.02.025
– start-page: p388
  volume-title: Engineering rock blasting operations
  year: 1997
  ident: 963_CR12
– volume: 97
  start-page: 849
  year: 2019
  ident: 963_CR23
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 35
  start-page: 1191
  year: 2019
  ident: 963_CR36
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0658-7
– volume: 78
  start-page: 981
  year: 2019
  ident: 963_CR37
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-017-1116-2
– volume: 72
  start-page: 214
  year: 2014
  ident: 963_CR48
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 152
  year: 2020
  ident: 963_CR58
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107389
– volume: 78
  start-page: 1
  year: 2019
  ident: 963_CR38
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8163-x
– volume: 34
  start-page: 45
  year: 2018
  ident: 963_CR63
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0520-3
– volume: 46
  start-page: 389
  year: 2013
  ident: 963_CR33
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0269-3
– ident: 963_CR71
  doi: 10.1007/s00603-025-04387-x
– volume: 13
  start-page: 4136
  issue: 1
  year: 2023
  ident: 963_CR75
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-31170-1
– volume: 20
  start-page: 63
  issue: 1
  year: 2005
  ident: 963_CR81
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2004.05.004
– ident: 963_CR4
  doi: 10.1063/1.4887707
– volume: 16
  start-page: 757
  issue: 4
  year: 2008
  ident: 963_CR11
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2008.919072
– volume: 111
  year: 2021
  ident: 963_CR96
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.103854
– volume: 31
  start-page: 1641
  year: 2019
  ident: 963_CR74
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3613-z
– ident: 963_CR52
– volume: 31
  start-page: 975
  issue: 5
  year: 2021
  ident: 963_CR14
  publication-title: Int J Mining Sci Technol
  doi: 10.1016/j.ijmst.2021.09.002
– volume: 29
  start-page: 691
  year: 2020
  ident: 963_CR65
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09470-z
– volume: 31
  start-page: 975
  issue: 5
  year: 2021
  ident: 963_CR13
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2021.09.002
– ident: 963_CR85
  doi: 10.1007/978-1-4899-7641-3_9
– volume: 21
  start-page: 2077
  year: 2012
  ident: 963_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0631-5
– volume: 134
  start-page: 50
  year: 2017
  ident: 963_CR55
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.07.018
– volume: 40
  start-page: 95
  year: 2014
  ident: 963_CR43
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.09.013
– volume: 18
  start-page: 6655
  issue: 12
  year: 2023
  ident: 963_CR68
  publication-title: Acta Geotech
  doi: 10.1007/s11440-023-01988-0
– volume: 29
  start-page: 1717
  year: 2010
  ident: 963_CR92
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.29-32.1717
– volume: 40
  start-page: 617
  issue: 2
  year: 2023
  ident: 963_CR105
  publication-title: Mining Metallur Explor
– volume: 4
  start-page: 234
  issue: 3
  year: 2014
  ident: 963_CR78
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 32
  start-page: 12381
  issue: 16
  year: 2020
  ident: 963_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04839-1
– ident: 963_CR79
  doi: 10.1155/2013/706491
– volume: 92
  year: 2019
  ident: 963_CR31
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103060
– volume: 14
  start-page: 16046
  issue: 1
  year: 2024
  ident: 963_CR77
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-67088-5
– volume: 97
  start-page: 104015
  year: 2021
  ident: 963_CR104
  publication-title: Eng Appl Art Intel
  doi: 10.1016/j.engappai.2020.104015
– volume: 33
  start-page: 8939
  year: 2021
  ident: 963_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-05720-5
– volume: 34
  start-page: 185
  issue: 3–4
  year: 1997
  ident: 963_CR49
  publication-title: Int J Rock Mech Min Sci
– volume: 31
  start-page: 2916
  issue: 8
  year: 2024
  ident: 963_CR97
  publication-title: J Central South Univ
  doi: 10.1007/s11771-024-5699-z
– volume: 176
  year: 2021
  ident: 963_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114778
– volume: 6
  start-page: 126
  issue: 2
  year: 2021
  ident: 963_CR99
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.002
– volume: 80
  start-page: 1
  year: 2018
  ident: 963_CR62
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.05.023
– ident: 963_CR16
  doi: 10.1007/978-3-030-12127-3_11
– ident: 963_CR35
– volume: 162
  year: 2023
  ident: 963_CR90
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2022.105290
– volume: 133
  year: 2023
  ident: 963_CR18
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2022.104979
– volume: 53
  start-page: 799
  year: 2020
  ident: 963_CR45
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01947-w
– volume: 182
  year: 2023
  ident: 963_CR25
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2023.104784
– ident: 963_CR82
– ident: 963_CR87
  doi: 10.1007/978-1-4757-3264-1
– ident: 963_CR9
  doi: 10.1007/s11053-024-10371-z
– volume: 14
  start-page: 26270
  issue: 1
  year: 2024
  ident: 963_CR83
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-76888-8
– year: 2024
  ident: 963_CR93
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2024.09.002
– volume: 41
  year: 2023
  ident: 963_CR101
  publication-title: Transport Geotech
  doi: 10.1016/j.trgeo.2023.101022
– ident: 963_CR53
– volume: 83
  start-page: 73
  year: 2019
  ident: 963_CR94
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.09.015
– volume: 47
  start-page: 509
  issue: 3
  year: 2010
  ident: 963_CR32
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2010.01.007
– volume: 9
  start-page: 76
  year: 2023
  ident: 963_CR42
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2022.07.001
– volume: 57
  start-page: 7535
  year: 2024
  ident: 963_CR70
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-024-03947-x
– ident: 963_CR64
– volume: 106
  year: 2020
  ident: 963_CR27
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103569
– volume: 17
  start-page: 1343
  issue: 4
  year: 2022
  ident: 963_CR108
  publication-title: Acta Geotech
  doi: 10.1007/s11440-022-01450-7
– volume: 8
  start-page: 61
  year: 2023
  ident: 963_CR24
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2022.04.007
– volume: 22
  start-page: 241
  year: 2025
  ident: 963_CR103
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2024.11.004
– volume: 16
  start-page: 2405
  issue: 3
  year: 2023
  ident: 963_CR107
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01042-3
– year: 2018
  ident: 963_CR84
  publication-title: Adv Civil Eng
  doi: 10.1155/2018/4543984
– volume: 19
  start-page: 101
  year: 2024
  ident: 963_CR69
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2024.03.003
– volume: 47
  start-page: 1255
  year: 2014
  ident: 963_CR10
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0462-z
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 963_CR22
  publication-title: IEEE Intell Syst Their Appl
  doi: 10.1109/5254.708428
– volume: 25
  start-page: 439
  issue: 3
  year: 2015
  ident: 963_CR60
  publication-title: Iran Int J Mining Sci Technol
  doi: 10.1016/j.ijmst.2015.03.018
– ident: 963_CR21
  doi: 10.1007/978-981-16-9770-8_1
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  ident: 963_CR26
  publication-title: Protect and Control Mod Power Syst
– volume: 11
  start-page: 1919
  issue: 12
  year: 2022
  ident: 963_CR29
  publication-title: Electronics
  doi: 10.3390/electronics11121919
– volume: 2
  start-page: 1
  year: 2020
  ident: 963_CR3
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-03767-y
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 963_CR66
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1206-1565
– volume: 37
  start-page: 3519
  year: 2021
  ident: 963_CR41
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01014-x
– volume: 237
  year: 2024
  ident: 963_CR19
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121616
– volume: 24
  start-page: 22
  issue: 1
  year: 2009
  ident: 963_CR50
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2008.01.007
– volume: 26
  start-page: 399
  issue: 4
  year: 2008
  ident: 963_CR51
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-008-9177-4
– ident: 963_CR59
  doi: 10.1214/088342306000000493
– volume: 330
  year: 2022
  ident: 963_CR89
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.127298
– volume: 21
  start-page: 2560
  issue: 6
  year: 2007
  ident: 963_CR88
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 38
  start-page: 161
  year: 2013
  ident: 963_CR30
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.06.003
– volume: 99
  year: 2020
  ident: 963_CR95
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103383
– volume: 28
  start-page: 49
  year: 2012
  ident: 963_CR15
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2011.09.004
– volume: 14
  start-page: 6164
  issue: 14
  year: 2024
  ident: 963_CR98
  publication-title: Appl Sci
  doi: 10.3390/app14146164
– volume: 12
  issue: 3
  year: 2021
  ident: 963_CR91
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.11.005
– volume: 105
  year: 2020
  ident: 963_CR17
  publication-title: Tunnell Underground Space Technology
  doi: 10.1016/j.tust.2020.103475
– volume: 5
  start-page: 4905
  issue: 20
  year: 2013
  ident: 963_CR80
  publication-title: Res J Appl Sci Eng Technol
  doi: 10.19026/rjaset.5.4340
– volume: 264
  year: 2025
  ident: 963_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125909
– volume: 73
  start-page: 1199
  year: 2014
  ident: 963_CR72
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s00500-018-3253-3
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 963_CR86
  publication-title: J Geophys Res: Atm
  doi: 10.1029/2000JD900719
SSID ssib057620049
ssib031263412
ssj0002147068
ssib053829962
ssib054421723
Score 2.3199255
Snippet Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors....
Abstract Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 53
SubjectTerms Accuracy
Algorithms
Blasting
Data analysis
Datasets
Drilling
Drilling & boring machinery
Drilling and blasting tunnel
Energy
Engineering
Environmental Science and Engineering
Foundations
Geoengineering
Geology
Geophysics/Geodesy
Geotechnical engineering
Geotechnical Engineering & Applied Earth Sciences
Heuristic methods
Hydraulics
Interpretability analysis
Machine learning
Marine invertebrates
Metaheuristic algorithms
Optimization
Optimization algorithms
Optimization techniques
Outliers (landforms)
Outliers (statistics)
Overbreak prediction
Prediction models
Robustness
Rock mass rating
Rocks
Shear strength
Statistical methods
Statistical models
Support vector machine
Support vector machines
Tunnel construction
Tunnels
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQEoIdEGygFcrkw26rtSZO4uQIiKqa1PXQgXqznNidqqGs6g9N_AH833zPSdP2AjtwyKWxqtjfZ7_v2c_vMfY1lkmuwBSB9VeJKAcWaWgCkSurwtD4jCYUbfEz6d9HP8bxeKvUF8WEVemBq4H7Dn87gdWZJHFWwNiTPXWBtM4pPJM0p9W3m2ZbzhSYJIMwkdHGcGNWY9ndJMaLo4gKMzXMhOgmtmTN7gxV7-n6e3QhHXSmUZDVN278vTtyilJBlWDJBZAi2LFqPvn_jmJtDlk_sMNVOTNP_8zj45Yd652w41qA8uuq46dsz5Uf2YEPBC0Wn9izL7Nc4G84BXfCYTZ_-GxOxzkEIZ-W3M6nPpE3N6XlOdQ3RU7z5YoiZjjF0f_mg4dhh49G175Jvz8UZCwtHz0MuC-9s-C0_8unTcSjD9F9QvMqRcoZu-_d_brti7pUgygwtEthbKxk2FUFvKnEAeCCzjcd0LIqUSoOsYxFVmbSpi6wkHzKdA2kaDHJC5NDMpyz_fJv6T4zntCelEltqpSEWoKgivAevIH2clBjLfZtPdR6VmXk0E3uZQ-MBjDaA6PR-obQaFpSNm3_Azima47ptzjWYu01lrqe4gstIRYhV6GgWqyzxnfz-rVP6jQc-I8eXLxHDy7ZUUh09XE4bba_nK_cFdTUMv_iJ84Lxq4Mow
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMeDKKI-iD9xOiUPvrng1rRN9zhFGYL6MBXfQtpkMhx17AfiH-D_7feyrlMR0Ye-pKG0vUvuk9zljrHjSMapgqYIzL9KhClkkQSmIVJlVRAYn9GEoi1u4vZ9ePUYPRZpcugszDf__emI1h-JoKKrRNtSYKWzBCMVe8dsfD7THUlN4dxUYxxjop2nwovCkEoxlboIzCb9aJb7MVSvp-5PzgXk2kzCRrM4Y_Pza3yxYz7d_xdGLd2qa2xlkg_M26vp9z9ZrssNtl4gJ29NdWSTLbh8i619SkS4xZZ9IGg22mbvvsxyhlZOwZ1YMJtnPhiSO4dEyHs5t8OeT-TNTW55CvqmyGk-nlDEDKc4-id-_XBb451Oy3dpt28FGUvLOw_X3JfeGXHa_-W9MuLRh-i-ofs0RcoOu7-8uDtvi6JUg8jwo8fC2EjJoK4yrKZiBwFn5N90oB-rYqWiANNYaGVT2sQ1LJBPmboBimbdNDMpkGGXLeYvudtjPKY9KZPYRCkJWgJQhbgPvQF7OdBYhZ3MfrweTDNy6DL3sheThpi0F5NG7zOSTdmTsmn7BiiZLganllg3gWy6cdTMAJTEbK4hrXMKVzdJK6w6k6wuhvhIS8AicBUEVWG1mbTnt397pVqpEX_4gv3_Pf2ArQakpj7ipsoWx8OJOwQ3jdMjP2A-AMq8AaE
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPrGjaeGCDMdHBJj_sjRponMTZY2FD1SRgUlfEniz_CqpAoWpTIXjn_-bO-bExTRPTHiJV8Smq7Yv9cfz1HcDHRKRGoqdwHH8ljw32RRbpPjfSySjSIaIJqS1O0uE4_nqenC_B5-YsTFC7N1uS1ZkGitJUlHtTl--1B99oVZJxSsVKDC44jjcufwbLaYJE3oHl8cm3wY-QVw4Lszjk96h_R7I-O_PnBz2an0IY_0fs2W6XrsCLRTHVtzf66uqXGenoFfimLpUQ5XJ3UZpde_dbmMf_rexrWK2RlQ0qH1uDJV-sw_MgHbXzN3AfEjNbfDojOSgusfUlm85oA4g6nU0K5maTEPqb6cIxg7xOWmtWLkhjw0h5f8GOz057bDQaBJPh8JTT9OrY6OyYhWQ9c0ZfjNmk1UgGUe8tmldBVTZgfPTl--GQ18kduBVZVHLtEimifWlx_ZV6dAlLO6IeecnJVMokwoEvduKTcJnvO4REqfc1wqvNjdUGIeMtdIrrwm8CS-krls5cJqVAvkIEi7EcPQ1pzSO_dWGn6VI1rWJ4qDZac2hchY2rQuMqtD6gXm8tKf52uHE9u1D166wErrSQhXL0N4sISpTn-8J5L_HKM9OF7cZnVD0ozJVAvETARebqQq_p9p_Ff_tLvdbXnlCDd_9mvgUvI3KuoNHZhk45W_j3SFql-VC_SA_rKxrN
  priority: 102
  providerName: Unpaywall
Title Advancing overbreak prediction in drilling and blasting tunnel using MVO, SSA and HHO-based SVM models with interpretability analysis
URI https://link.springer.com/article/10.1007/s40948-025-00963-1
https://www.proquest.com/docview/3256851820
https://link.springer.com/content/pdf/10.1007/s40948-025-00963-1.pdf
https://doaj.org/article/3306240f659c4563993e13dee7deef8b
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002147068
  issn: 2363-8427
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib057620049
  issn: 2363-8419
  databaseCode: ADMLS
  dateStart: 20230725
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib054421723
  issn: 2363-8419
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147068
  issn: 2363-8427
  databaseCode: AFBBN
  dateStart: 20150801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002147068
  issn: 2363-8427
  databaseCode: AAJSJ
  dateStart: 20150801
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002147068
  issn: 2363-8427
  databaseCode: C6C
  dateStart: 20231201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2363-8427
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002147068
  issn: 2363-8427
  databaseCode: C24
  dateStart: 20231201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trRDsAcEAURiVH3ijFo2dxOkDQl1ZVyHaTZRO4ylybHeqmNLSH0L9A_i_uXOTdHuZeGhUxZaS9s53353P9wG8j2ScKdQUjvZX8TBDWSRCBzxTVgmhfUcTqrYYxYNJ-PU6uj6AUXkWhsoqS5voDbWdG8qRf5TomxEdoMP6vPjNiTWKdldLCg1dUCvYT77F2CHUBXXGqkH99Gx0-b3UMBmIWIZ7h46rHc3xvmFeFIZE2FRpLIJx0qJOlbUhVp-2P18naAM0CYNOcRLHn8ejYCnhxBBLoYHkwT1v50kB7iHZavP1CB5v8oXe_tG3t3f8W_8ZPC2AKevuNOk5HLj8GI7utCs8hkfnngZ4i9984ahZvYC_npbZ4DijYlAMsPUvtljS9g-JnM1yZpcz3_ib6dyyDNE6VVqz9YYqbBjV3d-w4dVFi43HXT9lMLjg5FwtG18NmafqWTHKF7NZVSHpS3q3OH3XUuUlTPpnP3oDXlA7cIN_-ZprGykp2spg9BU7VAhD-6EO0ZJVsVKRQLMXWtmRNnGBRYiodFsjdDXTzOgMIcYrqOXz3L0GFlMOSyc2UUoiukIAFuI46hliNYforQEfShGki10Hj7Tq1ewFlqLAUi-wFGefkpSqmdR929-YL2_SYjGnEuMsRELTOOoYBKCE8VwgrXMKP9Mka8BJKeO0MAmrdK_ADWiVct8PP_RKrUo3_uMXvHn44W_hiSAF9RU5J1BbLzfuHeKqddaEw6R_3oR698vw27hZLB282xMhXeNe02cscGQyuuz-_AeI9RkH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VrVDpoYICIrSAD3AiFll7d717qFALLSltUkTaqjfjXTtVRLUJ-VGVB-C1eDZmnN1Ne6m49BApih1loxnPfOP5-QDeRTLOFGoKR_ureJihLBJhAp4pq4QwfqIJVVt04_Z5-O0yulyBv1UvDJVVVjbRG2o7zOmO_KNE34zoAB3Wp9FvTqxRlF2tKDRMSa1gd_2IsbKx49jNbzCEm-wefUF5vxfi8ODsc5uXLAM8l4mYcmMjJUVL5RgIxA6fLafUnEPHbVWsVCTwBIZWptImLrCIVpRpGURReT_LTZYQawS6gLVQhikGf2v7B93vPyqNloHALy8BBFoXNP_LAX1RGBJBVH1CEPyT1qb1LRGxCLV8P5-ghGsSBmnZ-eP7_yg4Szgx0lIoInlwx7t6EoI7yLlO9m7A-qwYmfmNub6-5U8Pn8BmCYTZ3kJzn8KKK7Zg49Z4xC149NXTDs_xnS9UzSfP4I-ngc5xnVHxKQb05hcbjSndRCrGBgWz44EfNM5MYVmG0QFVdrPpjCp6GNX5X7HOxWmT9Xp7fku7fcrJmVvWu-gwTw00YXQ_zQZ1RaYvIZ7j9sUIl-dw_iBCfgGrxbBwL4HFdGdmEpsoJRHNIeALcR31GrGhQ7TYgA-VCPRoMTFE17OhvcA0Ckx7gWncvU9SqnfStG__wXB8pUvjoSXGdYi8-nGU5gh4CVO6QFrnFL76SdaAnUrGujRBE708MA1oVnJfLt_3SM1aN_7jH7y6_8ffwnr7rHOiT466x9vwWJCy-mqgHVidjmfuNWK6afamPDgMfj70Wf0HJ6ZNNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMctNMRlDxMMJsoG-IE3aq2JnTh93DqqctmGVDbtzXJid6qYsqpNhfYB-N78j5uknYQQPPQlsaI059jnZ58bY-8TmeYamiKw_mqhcsgii20kcu10HNtQ0YSiLc7S0YX6fJVcbWTxh2j3xiW5ymmgKk1ldThzk8M28Y12JZmgVqzE4FJg__NQwbpRD4NBOmg0SkZxKtXagGN2Y_ldF8hLlKIGTa2GAr5Ja_rtKQ118emFfLqYHJ6Zivp15s2fX-OedQtNAO6Ra-ts3WZPluXM3v20Nzcb9mz4jO3UIMqPVprznD3w5S7b3ihPuMsehfDQYvGC_QrNlwtc5RTyiW20_cFnc3LykGD5tORuPg3lvbktHc_B5BRPzaslxdFwiq6_5qeX510-Hh-FIaPRuSAT6vj48pSHhjwLTqfCfNrGQYbA3TsMXxVOeckuhh-_D0aibuAgCnzoSliXaBn3dIE9Vuoh9oK8nh5M5HSqdRJjcVNO9qXLfOQAgtr2LAC1mOSFzQESe2yrvC39K8ZTOqmymcu0lmAoYJbCfWgTiMyD0TrsQ_PhzWxVp8O0FZmDmAzEZIKYDEYfk2zakVRjO1y4nV-besoaid0UeGeSJv0CmEkk5yPpvNf4TbK8ww4ayZp64i-MBEICYsFVHdZtpL2-_bdX6rYa8Q__4PX_Pf0de_ztZGi-fjr7ss-exqSxISTngG1V86V_A7Cq8rdh7vwGRVIM1w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPrGjaeGCDMdHBJj_sjRponMTZY2FD1SRgUlfEniz_CqpAoWpTIXjn_-bO-bExTRPTHiJV8Smq7Yv9cfz1HcDHRKRGoqdwHH8ljw32RRbpPjfSySjSIaIJqS1O0uE4_nqenC_B5-YsTFC7N1uS1ZkGitJUlHtTl--1B99oVZJxSsVKDC44jjcufwbLaYJE3oHl8cm3wY-QVw4Lszjk96h_R7I-O_PnBz2an0IY_0fs2W6XrsCLRTHVtzf66uqXGenoFfimLpUQ5XJ3UZpde_dbmMf_rexrWK2RlQ0qH1uDJV-sw_MgHbXzN3AfEjNbfDojOSgusfUlm85oA4g6nU0K5maTEPqb6cIxg7xOWmtWLkhjw0h5f8GOz057bDQaBJPh8JTT9OrY6OyYhWQ9c0ZfjNmk1UgGUe8tmldBVTZgfPTl--GQ18kduBVZVHLtEimifWlx_ZV6dAlLO6IeecnJVMokwoEvduKTcJnvO4REqfc1wqvNjdUGIeMtdIrrwm8CS-krls5cJqVAvkIEi7EcPQ1pzSO_dWGn6VI1rWJ4qDZac2hchY2rQuMqtD6gXm8tKf52uHE9u1D166wErrSQhXL0N4sISpTn-8J5L_HKM9OF7cZnVD0ozJVAvETARebqQq_p9p_Ff_tLvdbXnlCDd_9mvgUvI3KuoNHZhk45W_j3SFql-VC_SA_rKxrN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+overbreak+prediction+in+drilling+and+blasting+tunnel+using+MVO%2C+SSA+and+HHO-based+SVM+models+with+interpretability+analysis&rft.jtitle=Geomechanics+and+geophysics+for+geo-energy+and+geo-resources.&rft.au=Zhang%2C+Yulin&rft.au=Zhou%2C+Jian&rft.au=Li%2C+Jialu&rft.au=He%2C+Biao&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-8419&rft.eissn=2363-8427&rft.volume=11&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs40948-025-00963-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8419&client=summon