Advancing overbreak prediction in drilling and blasting tunnel using MVO, SSA and HHO-based SVM models with interpretability analysis
Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accura...
        Saved in:
      
    
          | Published in | Geomechanics and geophysics for geo-energy and geo-resources. Vol. 11; no. 1; pp. 53 - 41 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.12.2025
     Springer Nature B.V Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2363-8419 2363-8427 2363-8427  | 
| DOI | 10.1007/s40948-025-00963-1 | 
Cover
| Abstract | Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers.
Highlights
Proposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels.
HHO-SVM outperformed traditional models with high accuracy (test R
2
=0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data.
Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering.
Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios. | 
    
|---|---|
| AbstractList | Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers.HighlightsProposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels.HHO-SVM outperformed traditional models with high accuracy (test R2 =0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data.Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering.Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios. Abstract Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers. Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers. Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors. Existing models, including empirical, statistical, and machine learning approaches, often fall short in terms of generalizability and accuracy. Empirical methods lack universal applicability due to their reliance on specific project conditions, while statistical models struggle with inconsistent patterns across different datasets. Furthermore, traditional AI models, including single machine learning algorithms, often overlook the multifaceted nature of overbreak, and hybrid models lack comprehensive evaluation standards. To address these limitations, this research proposes three innovative hybrid models that integrate metaheuristic optimization algorithms with support vector machine (SVM): multi-verse optimizer-SVM (MVO-SVM), salp swarm algorithm-SVM (SSA-SVM), and Harris’s Hawk optimization-SVM (HHO-SVM). These models optimize SVM hyperparameters, enhancing its ability to handle high-dimensional, non-linear data with robustness to outliers and improving the prediction of overbreak. The study’s motivation stems from the need for more accurate and universally applicable overbreak prediction models that can also explain the relationship between input parameters and overbreak outcomes. By incorporating SHapley Additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), the research introduces interpretability to enhance model transparency. The results show that rock mass rating and hole depth are the most crucial factors influencing overbreak predictions. Compared to previous models, the proposed hybrid models demonstrate significant improvements, with the HHO-SVM model showing superior predictive performance across various metrics. This study lays the groundwork for more reliable overbreak predictions and offers a powerful tool for geotechnical engineers. Highlights Proposed three SVM-based models (MVO-SVM, SSA-SVM, HHO-SVM) using metaheuristic algorithms to improve overbreak prediction in drilling and blasting tunnels. HHO-SVM outperformed traditional models with high accuracy (test R 2 =0.9579, MAE = 0.2737), optimizing SVM hyperparameters for non-linear, high-dimensional data. Identified rock mass rating and hole depth as critical overbreak drivers via SHAP/LIME, enhancing model interpretability for practical engineering. Tested on 523 HXT Tunnel datasets, demonstrating robustness against outliers and effectiveness in real-world geotechnical scenarios.  | 
    
| ArticleNumber | 53 | 
    
| Author | Zhou, Jian Armaghani, Danial Jahed Zhang, Yulin Li, Jialu He, Biao Huang, Shuai  | 
    
| Author_xml | – sequence: 1 givenname: Yulin surname: Zhang fullname: Zhang, Yulin organization: School of Resources and Safety Engineering, Central South University – sequence: 2 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Jialu surname: Li fullname: Li, Jialu organization: ShanDong Provincial Communications Planning and Design Institute Group CO., LTD – sequence: 4 givenname: Biao surname: He fullname: He, Biao email: BHe@ucc.ie organization: Civil, Structural and Environmental Engineering, University College Cork – sequence: 5 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed organization: School of Civil and Environmental Engineering, University of Technology Sydney – sequence: 6 givenname: Shuai surname: Huang fullname: Huang, Shuai organization: School of Resources and Safety Engineering, Central South University  | 
    
| BookMark | eNqNkd9OHCEUhyfGJlrrC3hF0ttO5c8AM5cb07ommr3Y1lvCDGdWLMIWGM0-QN9bdsfYu6YXhHPIdz4Iv4_VsQ8equqC4K8EY3mZGtw1bY0przHuBKvJUXVKWSnahsrj95p0J9V5SrbHXAqKcdOdVn8W5ln7wfoNCs8Q-wj6F9pGMHbINnhkPTLROrcHtDeodzrlfZMn78GhKe2bu_vVF7ReLw7Icrmqe53AoPX9HXoKBlxCLzY_FFmGWORZ99bZvCu4drtk06fqw6hdgvO3_az6-f3bj6tlfbu6vrla3NYDa2muteGSUSwHyjsBDScDZqIB1nVGCik5lYI1hnXMtEAMpUJqrHnhx37QfcvZWXUze03Qj2ob7ZOOOxW0VYeDEDdKx2wHB4oxLGiDR8G7oeGi3MGAMAMgyxrbvrjY7Jr8Vu9etHPvQoLVPhg1B6NKMOoQjCJl6vM8tY3h9wQpq8cwxfINSTHKRctJS3Gh6EwNMaQUYfw_9duDUoH9BuJf9T-mXgHF964q | 
    
| Cites_doi | 10.1016/j.tust.2012.11.008 10.1016/j.tust.2019.04.014 10.1016/j.undsp.2023.05.009 10.1007/s00521-019-04629-4 10.1007/s10706-017-0336-3 10.1007/s00521-015-1870-7 10.1016/j.ssci.2010.09.004 10.1038/s41598-024-76971-0 10.1109/ICEMI.2017.8265997 10.1016/j.ssci.2019.05.046 10.1016/j.tust.2024.105586 10.1016/j.tust.2013.05.002 10.1007/978-3-030-12127-3_8 10.1016/j.eswa.2021.115736 10.1007/s00603-023-03522-w 10.1016/j.advengsoft.2017.07.002 10.1007/s11771-012-1409-3 10.1016/j.mstc.2011.02.025 10.1016/j.future.2019.02.028 10.1007/s00366-018-0658-7 10.1007/s10064-017-1116-2 10.1016/j.ijrmms.2014.09.012 10.1016/j.measurement.2019.107389 10.1007/s12665-019-8163-x 10.1007/s00366-017-0520-3 10.1007/s00603-012-0269-3 10.1007/s00603-025-04387-x 10.1038/s41598-023-31170-1 10.1016/j.tust.2004.05.004 10.1063/1.4887707 10.1109/TASL.2008.919072 10.1016/j.tust.2021.103854 10.1007/s00521-018-3613-z 10.1016/j.ijmst.2021.09.002 10.1007/s11053-019-09470-z 10.1007/978-1-4899-7641-3_9 10.1007/s00521-011-0631-5 10.1016/j.knosys.2017.07.018 10.1016/j.tust.2013.09.013 10.1007/s11440-023-01988-0 10.4028/www.scientific.net/AMM.29-32.1717 10.1007/s00521-020-04839-1 10.1155/2013/706491 10.1016/j.tust.2019.103060 10.1038/s41598-024-67088-5 10.1016/j.engappai.2020.104015 10.1007/s00521-021-05720-5 10.1007/s11771-024-5699-z 10.1016/j.eswa.2021.114778 10.1016/j.undsp.2019.12.002 10.1016/j.tust.2018.05.023 10.1007/978-3-030-12127-3_11 10.1016/j.ijrmms.2022.105290 10.1016/j.tust.2022.104979 10.1007/s00603-019-01947-w 10.1016/j.ijimpeng.2023.104784 10.1007/978-1-4757-3264-1 10.1007/s11053-024-10371-z 10.1038/s41598-024-76888-8 10.1016/j.jrmge.2024.09.002 10.1016/j.trgeo.2023.101022 10.1016/j.tust.2018.09.015 10.1016/j.ijrmms.2010.01.007 10.1016/j.undsp.2022.07.001 10.1007/s00603-024-03947-x 10.1016/j.tust.2020.103569 10.1007/s11440-022-01450-7 10.1016/j.undsp.2022.04.007 10.1016/j.undsp.2024.11.004 10.1007/s12145-023-01042-3 10.1155/2018/4543984 10.1016/j.undsp.2024.03.003 10.1007/s00603-013-0462-z 10.1109/5254.708428 10.1016/j.ijmst.2015.03.018 10.1007/978-981-16-9770-8_1 10.3390/electronics11121919 10.1007/s42452-020-03767-y 10.1038/nbt1206-1565 10.1007/s00366-020-01014-x 10.1016/j.eswa.2023.121616 10.1016/j.tust.2008.01.007 10.1007/s10706-008-9177-4 10.1214/088342306000000493 10.1016/j.conbuildmat.2022.127298 10.1016/j.ymssp.2006.12.007 10.1016/j.tust.2013.06.003 10.1016/j.tust.2020.103383 10.1016/j.tust.2011.09.004 10.3390/app14146164 10.1016/j.gsf.2020.11.005 10.1016/j.tust.2020.103475 10.19026/rjaset.5.4340 10.1016/j.eswa.2024.125909 10.1007/s00500-018-3253-3 10.1029/2000JD900719  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 7TN 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/s40948-025-00963-1 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics Geology  | 
    
| EISSN | 2363-8427 | 
    
| EndPage | 41 | 
    
| ExternalDocumentID | oai_doaj_org_article_3306240f659c4563993e13dee7deef8b 10.1007/s40948-025-00963-1 10_1007_s40948_025_00963_1  | 
    
| GrantInformation_xml | – fundername: Distinguished Youth Science Foundation of Hunan Province of China grantid: Grant No. 2022JJ10073 – fundername: University College Cork – fundername: National Natural Science Foundation Project of China grantid: Grant No. 42177164  | 
    
| GroupedDBID | 0R~ 203 AAHNG AAIAL AAJSJ AAKKN AANZL AARHV AARTL AASML AATVU AAUYE AAYQN ABDBE ABDZT ABECU ABEEZ ABFTV ABJOX ABKCH ABMQK ABQBU ABTMW ABXPI ACACY ACGFS ACIWK ACMLO ACOKC ACULB ACZOJ ADHHG ADKNI ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEOHA AEPYU AEXYK AFBBN AFGXO AFPKN AFQWF AGAYW AGDGC AGMZJ AGQMX AHBYD AHKAY AHSBF AIAKS AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD AYFIA BGNMA C24 C6C DNIVK EBLON EBS EIOEI EJD FERAY FINBP FNLPD FSGXE GGCAI GJIRD GROUPED_DOAJ IKXTQ IWAJR J-C JZLTJ KOV M4Y NQJWS NU0 O9J RLLFE SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAFWJ AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7TN 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c382t-ad573207c2596e451c0364e399d7677527634d393d8e1d2267a0a507cfbcab853 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2363-8419 2363-8427  | 
    
| IngestDate | Fri Oct 03 12:46:33 EDT 2025 Wed Oct 01 16:51:18 EDT 2025 Mon Oct 06 18:16:38 EDT 2025 Wed Oct 01 06:03:13 EDT 2025 Fri May 23 01:11:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Drilling and blasting tunnel Overbreak prediction Support vector machine Interpretability analysis Metaheuristic algorithms  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c382t-ad573207c2596e451c0364e399d7677527634d393d8e1d2267a0a507cfbcab853 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s40948-025-00963-1.pdf | 
    
| PQID | 3256851820 | 
    
| PQPubID | 2044450 | 
    
| PageCount | 41 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3306240f659c4563993e13dee7deef8b unpaywall_primary_10_1007_s40948_025_00963_1 proquest_journals_3256851820 crossref_primary_10_1007_s40948_025_00963_1 springer_journals_10_1007_s40948_025_00963_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-12-01 | 
    
| PublicationDateYYYYMMDD | 2025-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Heidelberg  | 
    
| PublicationTitle | Geomechanics and geophysics for geo-energy and geo-resources. | 
    
| PublicationTitleAbbrev | Geomech. Geophys. Geo-energ. Geo-resour | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer International Publishing Springer Nature B.V Springer  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer  | 
    
| References | RM Rizk-Allah (963_CR74) 2019; 31 Y Wu (963_CR89) 2022; 330 Y Qiu (963_CR70) 2024; 57 L Abualigah (963_CR2) 2020; 32 AK Raina (963_CR72) 2014; 73 B He (963_CR20) 2025; 264 J Zhou (963_CR107) 2023; 16 H Jang (963_CR30) 2013; 38 A Wu (963_CR90) 2023; 162 E Li (963_CR41) 2021; 37 M Mohammadi (963_CR60) 2015; 25 BZ Yao (963_CR92) 2010; 29 963_CR52 J Zhou (963_CR101) 2023; 41 963_CR53 B He (963_CR19) 2024; 237 963_CR59 AG Hussien (963_CR29) 2022; 11 T Chen (963_CR14) 2021; 31 Z Hong (963_CR25) 2023; 182 K Dey (963_CR15) 2012; 28 963_CR57 R Zhang (963_CR98) 2024; 14 R Zhang (963_CR93) 2024 M Khandelwal (963_CR33) 2013; 46 Y-l Zhang (963_CR97) 2024; 31 Y Qiu (963_CR67) 2023; 56 G Zheng (963_CR99) 2021; 6 963_CR64 K Hussain (963_CR28) 2021; 176 H Nguyen (963_CR65) 2020; 29 T Chen (963_CR13) 2021; 31 SK Mandal (963_CR51) 2008; 26 A Mottahedi (963_CR62) 2018; 80 H Jang (963_CR31) 2019; 92 H Rong (963_CR76) 2024; 14 S Mahdevari (963_CR47) 2013; 38 P Li (963_CR39) 2011; 21 A Widodo (963_CR88) 2007; 21 SK Mandal (963_CR50) 2009; 24 H Rong (963_CR75) 2023; 13 H Zhang (963_CR96) 2021; 111 963_CR71 L Abualigah (963_CR1) 2020; 32 WS Noble (963_CR66) 2006; 24 963_CR79 B Liu (963_CR44) 2019; 91 M Rezaei (963_CR73) 2011; 49 Y Kim (963_CR34) 2013; 35 W Liu (963_CR46) 2024; 145 963_CR85 A Mottahedi (963_CR63) 2018; 34 963_CR87 J Zhou (963_CR103) 2025; 22 963_CR82 H Moayedi (963_CR58) 2020; 152 SP Singh (963_CR81) 2005; 20 J Zhou (963_CR106) 2024; 14 S Mahdevari (963_CR48) 2014; 72 Q Zhang (963_CR94) 2019; 83 H Rong (963_CR77) 2024; 14 J Zhou (963_CR104) 2021; 97 SJ Li (963_CR40) 2012; 19 KE Taylor (963_CR86) 2001; 106 S Shiwei (963_CR80) 2013; 5 B He (963_CR18) 2023; 133 GM Foderà (963_CR17) 2020; 105 C Xie (963_CR91) 2021; 12 Ö Aydan (963_CR10) 2014; 47 963_CR16 AA Heidari (963_CR23) 2019; 97 J Zhou (963_CR105) 2023; 40 S Salcedo-Sanz (963_CR78) 2014; 4 S Mirjalili (963_CR54) 2016; 27 X Huo (963_CR27) 2020; 106 ZQ Li (963_CR42) 2023; 9 M Koopialipoor (963_CR38) 2019; 78 J Zhou (963_CR108) 2022; 17 S Bhandari (963_CR12) 1997 J Zhou (963_CR102) 2019; 118 963_CR9 963_CR21 MA Hearst (963_CR22) 1998; 13 H Amini (963_CR7) 2012; 21 W Song (963_CR83) 2024; 14 L Antwarg (963_CR8) 2021; 186 M Koopialipoor (963_CR37) 2019; 78 963_CR100 K Hou (963_CR26) 2018; 3 M Khandelwal (963_CR32) 2010; 47 Y Qiu (963_CR68) 2023; 18 A Afradi (963_CR3) 2020; 2 S Mirjalili (963_CR56) 2017; 114 Y Qiu (963_CR69) 2024; 19 ZX Liu (963_CR43) 2014; 40 J Benesty (963_CR11) 2008; 16 MA Mahtab (963_CR49) 1997; 34 Y Sun (963_CR84) 2018 HM Alabool (963_CR5) 2021; 33 963_CR35 P Zhang (963_CR95) 2020; 99 B Liu (963_CR45) 2020; 53 Z Hong (963_CR24) 2023; 8 M Koopialipoor (963_CR36) 2019; 35 S Mirjalili (963_CR55) 2017; 134 H Mohammadi (963_CR61) 2018; 36 963_CR6 963_CR4  | 
    
| References_xml | – volume: 35 start-page: 67 year: 2013 ident: 963_CR34 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2012.11.008 – volume: 91 year: 2019 ident: 963_CR44 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.04.014 – volume: 14 start-page: 70 year: 2024 ident: 963_CR106 publication-title: Underground Space doi: 10.1016/j.undsp.2023.05.009 – volume: 32 start-page: 11195 year: 2020 ident: 963_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04629-4 – volume: 36 start-page: 425 year: 2018 ident: 963_CR61 publication-title: Geotech Geol Eng doi: 10.1007/s10706-017-0336-3 – volume: 27 start-page: 495 year: 2016 ident: 963_CR54 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – volume: 49 start-page: 298 issue: 2 year: 2011 ident: 963_CR73 publication-title: Saf Sci doi: 10.1016/j.ssci.2010.09.004 – volume: 14 start-page: 26073 issue: 1 year: 2024 ident: 963_CR76 publication-title: Sci Rep doi: 10.1038/s41598-024-76971-0 – ident: 963_CR100 doi: 10.1109/ICEMI.2017.8265997 – volume: 118 start-page: 505 year: 2019 ident: 963_CR102 publication-title: Safety Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 145 year: 2024 ident: 963_CR46 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2024.105586 – volume: 38 start-page: 59 year: 2013 ident: 963_CR47 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.05.002 – ident: 963_CR6 doi: 10.1007/978-3-030-12127-3_8 – volume: 186 year: 2021 ident: 963_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115736 – volume: 56 start-page: 8745 issue: 12 year: 2023 ident: 963_CR67 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-023-03522-w – volume: 114 start-page: 163 year: 2017 ident: 963_CR56 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 19 start-page: 3311 issue: 11 year: 2012 ident: 963_CR40 publication-title: J Central South Univ doi: 10.1007/s11771-012-1409-3 – ident: 963_CR57 – volume: 21 start-page: 557 issue: 4 year: 2011 ident: 963_CR39 publication-title: Mining Sci Technol (China) doi: 10.1016/j.mstc.2011.02.025 – start-page: p388 volume-title: Engineering rock blasting operations year: 1997 ident: 963_CR12 – volume: 97 start-page: 849 year: 2019 ident: 963_CR23 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 35 start-page: 1191 year: 2019 ident: 963_CR36 publication-title: Eng Comput doi: 10.1007/s00366-018-0658-7 – volume: 78 start-page: 981 year: 2019 ident: 963_CR37 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-017-1116-2 – volume: 72 start-page: 214 year: 2014 ident: 963_CR48 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 152 year: 2020 ident: 963_CR58 publication-title: Measurement doi: 10.1016/j.measurement.2019.107389 – volume: 78 start-page: 1 year: 2019 ident: 963_CR38 publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8163-x – volume: 34 start-page: 45 year: 2018 ident: 963_CR63 publication-title: Eng Comput doi: 10.1007/s00366-017-0520-3 – volume: 46 start-page: 389 year: 2013 ident: 963_CR33 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0269-3 – ident: 963_CR71 doi: 10.1007/s00603-025-04387-x – volume: 13 start-page: 4136 issue: 1 year: 2023 ident: 963_CR75 publication-title: Sci Rep doi: 10.1038/s41598-023-31170-1 – volume: 20 start-page: 63 issue: 1 year: 2005 ident: 963_CR81 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2004.05.004 – ident: 963_CR4 doi: 10.1063/1.4887707 – volume: 16 start-page: 757 issue: 4 year: 2008 ident: 963_CR11 publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2008.919072 – volume: 111 year: 2021 ident: 963_CR96 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.103854 – volume: 31 start-page: 1641 year: 2019 ident: 963_CR74 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3613-z – ident: 963_CR52 – volume: 31 start-page: 975 issue: 5 year: 2021 ident: 963_CR14 publication-title: Int J Mining Sci Technol doi: 10.1016/j.ijmst.2021.09.002 – volume: 29 start-page: 691 year: 2020 ident: 963_CR65 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09470-z – volume: 31 start-page: 975 issue: 5 year: 2021 ident: 963_CR13 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2021.09.002 – ident: 963_CR85 doi: 10.1007/978-1-4899-7641-3_9 – volume: 21 start-page: 2077 year: 2012 ident: 963_CR7 publication-title: Neural Comput Appl doi: 10.1007/s00521-011-0631-5 – volume: 134 start-page: 50 year: 2017 ident: 963_CR55 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.07.018 – volume: 40 start-page: 95 year: 2014 ident: 963_CR43 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.09.013 – volume: 18 start-page: 6655 issue: 12 year: 2023 ident: 963_CR68 publication-title: Acta Geotech doi: 10.1007/s11440-023-01988-0 – volume: 29 start-page: 1717 year: 2010 ident: 963_CR92 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.29-32.1717 – volume: 40 start-page: 617 issue: 2 year: 2023 ident: 963_CR105 publication-title: Mining Metallur Explor – volume: 4 start-page: 234 issue: 3 year: 2014 ident: 963_CR78 publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 32 start-page: 12381 issue: 16 year: 2020 ident: 963_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04839-1 – ident: 963_CR79 doi: 10.1155/2013/706491 – volume: 92 year: 2019 ident: 963_CR31 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103060 – volume: 14 start-page: 16046 issue: 1 year: 2024 ident: 963_CR77 publication-title: Sci Rep doi: 10.1038/s41598-024-67088-5 – volume: 97 start-page: 104015 year: 2021 ident: 963_CR104 publication-title: Eng Appl Art Intel doi: 10.1016/j.engappai.2020.104015 – volume: 33 start-page: 8939 year: 2021 ident: 963_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05720-5 – volume: 34 start-page: 185 issue: 3–4 year: 1997 ident: 963_CR49 publication-title: Int J Rock Mech Min Sci – volume: 31 start-page: 2916 issue: 8 year: 2024 ident: 963_CR97 publication-title: J Central South Univ doi: 10.1007/s11771-024-5699-z – volume: 176 year: 2021 ident: 963_CR28 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114778 – volume: 6 start-page: 126 issue: 2 year: 2021 ident: 963_CR99 publication-title: Undergr Space doi: 10.1016/j.undsp.2019.12.002 – volume: 80 start-page: 1 year: 2018 ident: 963_CR62 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.05.023 – ident: 963_CR16 doi: 10.1007/978-3-030-12127-3_11 – ident: 963_CR35 – volume: 162 year: 2023 ident: 963_CR90 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2022.105290 – volume: 133 year: 2023 ident: 963_CR18 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2022.104979 – volume: 53 start-page: 799 year: 2020 ident: 963_CR45 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01947-w – volume: 182 year: 2023 ident: 963_CR25 publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2023.104784 – ident: 963_CR82 – ident: 963_CR87 doi: 10.1007/978-1-4757-3264-1 – ident: 963_CR9 doi: 10.1007/s11053-024-10371-z – volume: 14 start-page: 26270 issue: 1 year: 2024 ident: 963_CR83 publication-title: Sci Rep doi: 10.1038/s41598-024-76888-8 – year: 2024 ident: 963_CR93 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2024.09.002 – volume: 41 year: 2023 ident: 963_CR101 publication-title: Transport Geotech doi: 10.1016/j.trgeo.2023.101022 – ident: 963_CR53 – volume: 83 start-page: 73 year: 2019 ident: 963_CR94 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.09.015 – volume: 47 start-page: 509 issue: 3 year: 2010 ident: 963_CR32 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2010.01.007 – volume: 9 start-page: 76 year: 2023 ident: 963_CR42 publication-title: Underground Space doi: 10.1016/j.undsp.2022.07.001 – volume: 57 start-page: 7535 year: 2024 ident: 963_CR70 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-024-03947-x – ident: 963_CR64 – volume: 106 year: 2020 ident: 963_CR27 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103569 – volume: 17 start-page: 1343 issue: 4 year: 2022 ident: 963_CR108 publication-title: Acta Geotech doi: 10.1007/s11440-022-01450-7 – volume: 8 start-page: 61 year: 2023 ident: 963_CR24 publication-title: Underground Space doi: 10.1016/j.undsp.2022.04.007 – volume: 22 start-page: 241 year: 2025 ident: 963_CR103 publication-title: Underground Space doi: 10.1016/j.undsp.2024.11.004 – volume: 16 start-page: 2405 issue: 3 year: 2023 ident: 963_CR107 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01042-3 – year: 2018 ident: 963_CR84 publication-title: Adv Civil Eng doi: 10.1155/2018/4543984 – volume: 19 start-page: 101 year: 2024 ident: 963_CR69 publication-title: Undergr Space doi: 10.1016/j.undsp.2024.03.003 – volume: 47 start-page: 1255 year: 2014 ident: 963_CR10 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0462-z – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 963_CR22 publication-title: IEEE Intell Syst Their Appl doi: 10.1109/5254.708428 – volume: 25 start-page: 439 issue: 3 year: 2015 ident: 963_CR60 publication-title: Iran Int J Mining Sci Technol doi: 10.1016/j.ijmst.2015.03.018 – ident: 963_CR21 doi: 10.1007/978-981-16-9770-8_1 – volume: 3 start-page: 1 issue: 1 year: 2018 ident: 963_CR26 publication-title: Protect and Control Mod Power Syst – volume: 11 start-page: 1919 issue: 12 year: 2022 ident: 963_CR29 publication-title: Electronics doi: 10.3390/electronics11121919 – volume: 2 start-page: 1 year: 2020 ident: 963_CR3 publication-title: SN Appl Sci doi: 10.1007/s42452-020-03767-y – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 963_CR66 publication-title: Nat Biotechnol doi: 10.1038/nbt1206-1565 – volume: 37 start-page: 3519 year: 2021 ident: 963_CR41 publication-title: Eng Comput doi: 10.1007/s00366-020-01014-x – volume: 237 year: 2024 ident: 963_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121616 – volume: 24 start-page: 22 issue: 1 year: 2009 ident: 963_CR50 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2008.01.007 – volume: 26 start-page: 399 issue: 4 year: 2008 ident: 963_CR51 publication-title: Geotech Geol Eng doi: 10.1007/s10706-008-9177-4 – ident: 963_CR59 doi: 10.1214/088342306000000493 – volume: 330 year: 2022 ident: 963_CR89 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.127298 – volume: 21 start-page: 2560 issue: 6 year: 2007 ident: 963_CR88 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.12.007 – volume: 38 start-page: 161 year: 2013 ident: 963_CR30 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.06.003 – volume: 99 year: 2020 ident: 963_CR95 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103383 – volume: 28 start-page: 49 year: 2012 ident: 963_CR15 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2011.09.004 – volume: 14 start-page: 6164 issue: 14 year: 2024 ident: 963_CR98 publication-title: Appl Sci doi: 10.3390/app14146164 – volume: 12 issue: 3 year: 2021 ident: 963_CR91 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.11.005 – volume: 105 year: 2020 ident: 963_CR17 publication-title: Tunnell Underground Space Technology doi: 10.1016/j.tust.2020.103475 – volume: 5 start-page: 4905 issue: 20 year: 2013 ident: 963_CR80 publication-title: Res J Appl Sci Eng Technol doi: 10.19026/rjaset.5.4340 – volume: 264 year: 2025 ident: 963_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.125909 – volume: 73 start-page: 1199 year: 2014 ident: 963_CR72 publication-title: Bull Eng Geol Env doi: 10.1007/s00500-018-3253-3 – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 963_CR86 publication-title: J Geophys Res: Atm doi: 10.1029/2000JD900719  | 
    
| SSID | ssib057620049 ssib031263412 ssj0002147068 ssib053829962 ssib054421723  | 
    
| Score | 2.3199255 | 
    
| Snippet | Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing factors.... Abstract Overbreak prediction in drilling and blasting tunnel construction remains a significant challenge due to the complexity and variability of influencing...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 53 | 
    
| SubjectTerms | Accuracy Algorithms Blasting Data analysis Datasets Drilling Drilling & boring machinery Drilling and blasting tunnel Energy Engineering Environmental Science and Engineering Foundations Geoengineering Geology Geophysics/Geodesy Geotechnical engineering Geotechnical Engineering & Applied Earth Sciences Heuristic methods Hydraulics Interpretability analysis Machine learning Marine invertebrates Metaheuristic algorithms Optimization Optimization algorithms Optimization techniques Outliers (landforms) Outliers (statistics) Overbreak prediction Prediction models Robustness Rock mass rating Rocks Shear strength Statistical methods Statistical models Support vector machine Support vector machines Tunnel construction Tunnels  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYQEoIdEGygFcrkw26rtSZO4uQIiKqa1PXQgXqznNidqqGs6g9N_AH833zPSdP2AjtwyKWxqtjfZ7_v2c_vMfY1lkmuwBSB9VeJKAcWaWgCkSurwtD4jCYUbfEz6d9HP8bxeKvUF8WEVemBq4H7Dn87gdWZJHFWwNiTPXWBtM4pPJM0p9W3m2ZbzhSYJIMwkdHGcGNWY9ndJMaLo4gKMzXMhOgmtmTN7gxV7-n6e3QhHXSmUZDVN278vTtyilJBlWDJBZAi2LFqPvn_jmJtDlk_sMNVOTNP_8zj45Yd652w41qA8uuq46dsz5Uf2YEPBC0Wn9izL7Nc4G84BXfCYTZ_-GxOxzkEIZ-W3M6nPpE3N6XlOdQ3RU7z5YoiZjjF0f_mg4dhh49G175Jvz8UZCwtHz0MuC-9s-C0_8unTcSjD9F9QvMqRcoZu-_d_brti7pUgygwtEthbKxk2FUFvKnEAeCCzjcd0LIqUSoOsYxFVmbSpi6wkHzKdA2kaDHJC5NDMpyz_fJv6T4zntCelEltqpSEWoKgivAevIH2clBjLfZtPdR6VmXk0E3uZQ-MBjDaA6PR-obQaFpSNm3_Azima47ptzjWYu01lrqe4gstIRYhV6GgWqyzxnfz-rVP6jQc-I8eXLxHDy7ZUUh09XE4bba_nK_cFdTUMv_iJ84Lxq4Mow priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMeDKKI-iD9xOiUPvrng1rRN9zhFGYL6MBXfQtpkMhx17AfiH-D_7feyrlMR0Ye-pKG0vUvuk9zljrHjSMapgqYIzL9KhClkkQSmIVJlVRAYn9GEoi1u4vZ9ePUYPRZpcugszDf__emI1h-JoKKrRNtSYKWzBCMVe8dsfD7THUlN4dxUYxxjop2nwovCkEoxlboIzCb9aJb7MVSvp-5PzgXk2kzCRrM4Y_Pza3yxYz7d_xdGLd2qa2xlkg_M26vp9z9ZrssNtl4gJ29NdWSTLbh8i619SkS4xZZ9IGg22mbvvsxyhlZOwZ1YMJtnPhiSO4dEyHs5t8OeT-TNTW55CvqmyGk-nlDEDKc4-id-_XBb451Oy3dpt28FGUvLOw_X3JfeGXHa_-W9MuLRh-i-ofs0RcoOu7-8uDtvi6JUg8jwo8fC2EjJoK4yrKZiBwFn5N90oB-rYqWiANNYaGVT2sQ1LJBPmboBimbdNDMpkGGXLeYvudtjPKY9KZPYRCkJWgJQhbgPvQF7OdBYhZ3MfrweTDNy6DL3sheThpi0F5NG7zOSTdmTsmn7BiiZLganllg3gWy6cdTMAJTEbK4hrXMKVzdJK6w6k6wuhvhIS8AicBUEVWG1mbTnt397pVqpEX_4gv3_Pf2ArQakpj7ipsoWx8OJOwQ3jdMjP2A-AMq8AaE priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPrGjaeGCDMdHBJj_sjRponMTZY2FD1SRgUlfEniz_CqpAoWpTIXjn_-bO-bExTRPTHiJV8Smq7Yv9cfz1HcDHRKRGoqdwHH8ljw32RRbpPjfSySjSIaIJqS1O0uE4_nqenC_B5-YsTFC7N1uS1ZkGitJUlHtTl--1B99oVZJxSsVKDC44jjcufwbLaYJE3oHl8cm3wY-QVw4Lszjk96h_R7I-O_PnBz2an0IY_0fs2W6XrsCLRTHVtzf66uqXGenoFfimLpUQ5XJ3UZpde_dbmMf_rexrWK2RlQ0qH1uDJV-sw_MgHbXzN3AfEjNbfDojOSgusfUlm85oA4g6nU0K5maTEPqb6cIxg7xOWmtWLkhjw0h5f8GOz057bDQaBJPh8JTT9OrY6OyYhWQ9c0ZfjNmk1UgGUe8tmldBVTZgfPTl--GQ18kduBVZVHLtEimifWlx_ZV6dAlLO6IeecnJVMokwoEvduKTcJnvO4REqfc1wqvNjdUGIeMtdIrrwm8CS-krls5cJqVAvkIEi7EcPQ1pzSO_dWGn6VI1rWJ4qDZac2hchY2rQuMqtD6gXm8tKf52uHE9u1D166wErrSQhXL0N4sISpTn-8J5L_HKM9OF7cZnVD0ozJVAvETARebqQq_p9p_Ff_tLvdbXnlCDd_9mvgUvI3KuoNHZhk45W_j3SFql-VC_SA_rKxrN priority: 102 providerName: Unpaywall  | 
    
| Title | Advancing overbreak prediction in drilling and blasting tunnel using MVO, SSA and HHO-based SVM models with interpretability analysis | 
    
| URI | https://link.springer.com/article/10.1007/s40948-025-00963-1 https://www.proquest.com/docview/3256851820 https://link.springer.com/content/pdf/10.1007/s40948-025-00963-1.pdf https://doaj.org/article/3306240f659c4563993e13dee7deef8b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002147068 issn: 2363-8427 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib057620049 issn: 2363-8419 databaseCode: ADMLS dateStart: 20230725 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib054421723 issn: 2363-8419 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2363-8427 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147068 issn: 2363-8427 databaseCode: AFBBN dateStart: 20150801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002147068 issn: 2363-8427 databaseCode: AAJSJ dateStart: 20150801 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002147068 issn: 2363-8427 databaseCode: C6C dateStart: 20231201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2363-8427 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002147068 issn: 2363-8427 databaseCode: C24 dateStart: 20231201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trRDsAcEAURiVH3ijFo2dxOkDQl1ZVyHaTZRO4ylybHeqmNLSH0L9A_i_uXOTdHuZeGhUxZaS9s53353P9wG8j2ScKdQUjvZX8TBDWSRCBzxTVgmhfUcTqrYYxYNJ-PU6uj6AUXkWhsoqS5voDbWdG8qRf5TomxEdoMP6vPjNiTWKdldLCg1dUCvYT77F2CHUBXXGqkH99Gx0-b3UMBmIWIZ7h46rHc3xvmFeFIZE2FRpLIJx0qJOlbUhVp-2P18naAM0CYNOcRLHn8ejYCnhxBBLoYHkwT1v50kB7iHZavP1CB5v8oXe_tG3t3f8W_8ZPC2AKevuNOk5HLj8GI7utCs8hkfnngZ4i9984ahZvYC_npbZ4DijYlAMsPUvtljS9g-JnM1yZpcz3_ib6dyyDNE6VVqz9YYqbBjV3d-w4dVFi43HXT9lMLjg5FwtG18NmafqWTHKF7NZVSHpS3q3OH3XUuUlTPpnP3oDXlA7cIN_-ZprGykp2spg9BU7VAhD-6EO0ZJVsVKRQLMXWtmRNnGBRYiodFsjdDXTzOgMIcYrqOXz3L0GFlMOSyc2UUoiukIAFuI46hliNYforQEfShGki10Hj7Tq1ewFlqLAUi-wFGefkpSqmdR929-YL2_SYjGnEuMsRELTOOoYBKCE8VwgrXMKP9Mka8BJKeO0MAmrdK_ADWiVct8PP_RKrUo3_uMXvHn44W_hiSAF9RU5J1BbLzfuHeKqddaEw6R_3oR698vw27hZLB282xMhXeNe02cscGQyuuz-_AeI9RkH | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VrVDpoYICIrSAD3AiFll7d717qFALLSltUkTaqjfjXTtVRLUJ-VGVB-C1eDZmnN1Ne6m49BApih1loxnPfOP5-QDeRTLOFGoKR_ureJihLBJhAp4pq4QwfqIJVVt04_Z5-O0yulyBv1UvDJVVVjbRG2o7zOmO_KNE34zoAB3Wp9FvTqxRlF2tKDRMSa1gd_2IsbKx49jNbzCEm-wefUF5vxfi8ODsc5uXLAM8l4mYcmMjJUVL5RgIxA6fLafUnEPHbVWsVCTwBIZWptImLrCIVpRpGURReT_LTZYQawS6gLVQhikGf2v7B93vPyqNloHALy8BBFoXNP_LAX1RGBJBVH1CEPyT1qb1LRGxCLV8P5-ghGsSBmnZ-eP7_yg4Szgx0lIoInlwx7t6EoI7yLlO9m7A-qwYmfmNub6-5U8Pn8BmCYTZ3kJzn8KKK7Zg49Z4xC149NXTDs_xnS9UzSfP4I-ngc5xnVHxKQb05hcbjSndRCrGBgWz44EfNM5MYVmG0QFVdrPpjCp6GNX5X7HOxWmT9Xp7fku7fcrJmVvWu-gwTw00YXQ_zQZ1RaYvIZ7j9sUIl-dw_iBCfgGrxbBwL4HFdGdmEpsoJRHNIeALcR31GrGhQ7TYgA-VCPRoMTFE17OhvcA0Ckx7gWncvU9SqnfStG__wXB8pUvjoSXGdYi8-nGU5gh4CVO6QFrnFL76SdaAnUrGujRBE708MA1oVnJfLt_3SM1aN_7jH7y6_8ffwnr7rHOiT466x9vwWJCy-mqgHVidjmfuNWK6afamPDgMfj70Wf0HJ6ZNNQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMctNMRlDxMMJsoG-IE3aq2JnTh93DqqctmGVDbtzXJid6qYsqpNhfYB-N78j5uknYQQPPQlsaI059jnZ58bY-8TmeYamiKw_mqhcsgii20kcu10HNtQ0YSiLc7S0YX6fJVcbWTxh2j3xiW5ymmgKk1ldThzk8M28Y12JZmgVqzE4FJg__NQwbpRD4NBOmg0SkZxKtXagGN2Y_ldF8hLlKIGTa2GAr5Ja_rtKQ118emFfLqYHJ6Zivp15s2fX-OedQtNAO6Ra-ts3WZPluXM3v20Nzcb9mz4jO3UIMqPVprznD3w5S7b3ihPuMsehfDQYvGC_QrNlwtc5RTyiW20_cFnc3LykGD5tORuPg3lvbktHc_B5BRPzaslxdFwiq6_5qeX510-Hh-FIaPRuSAT6vj48pSHhjwLTqfCfNrGQYbA3TsMXxVOeckuhh-_D0aibuAgCnzoSliXaBn3dIE9Vuoh9oK8nh5M5HSqdRJjcVNO9qXLfOQAgtr2LAC1mOSFzQESe2yrvC39K8ZTOqmymcu0lmAoYJbCfWgTiMyD0TrsQ_PhzWxVp8O0FZmDmAzEZIKYDEYfk2zakVRjO1y4nV-besoaid0UeGeSJv0CmEkk5yPpvNf4TbK8ww4ayZp64i-MBEICYsFVHdZtpL2-_bdX6rYa8Q__4PX_Pf0de_ztZGi-fjr7ss-exqSxISTngG1V86V_A7Cq8rdh7vwGRVIM1w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPrGjaeGCDMdHBJj_sjRponMTZY2FD1SRgUlfEniz_CqpAoWpTIXjn_-bO-bExTRPTHiJV8Smq7Yv9cfz1HcDHRKRGoqdwHH8ljw32RRbpPjfSySjSIaIJqS1O0uE4_nqenC_B5-YsTFC7N1uS1ZkGitJUlHtTl--1B99oVZJxSsVKDC44jjcufwbLaYJE3oHl8cm3wY-QVw4Lszjk96h_R7I-O_PnBz2an0IY_0fs2W6XrsCLRTHVtzf66uqXGenoFfimLpUQ5XJ3UZpde_dbmMf_rexrWK2RlQ0qH1uDJV-sw_MgHbXzN3AfEjNbfDojOSgusfUlm85oA4g6nU0K5maTEPqb6cIxg7xOWmtWLkhjw0h5f8GOz057bDQaBJPh8JTT9OrY6OyYhWQ9c0ZfjNmk1UgGUe8tmldBVTZgfPTl--GQ18kduBVZVHLtEimifWlx_ZV6dAlLO6IeecnJVMokwoEvduKTcJnvO4REqfc1wqvNjdUGIeMtdIrrwm8CS-krls5cJqVAvkIEi7EcPQ1pzSO_dWGn6VI1rWJ4qDZac2hchY2rQuMqtD6gXm8tKf52uHE9u1D166wErrSQhXL0N4sISpTn-8J5L_HKM9OF7cZnVD0ozJVAvETARebqQq_p9p_Ff_tLvdbXnlCDd_9mvgUvI3KuoNHZhk45W_j3SFql-VC_SA_rKxrN | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+overbreak+prediction+in+drilling+and+blasting+tunnel+using+MVO%2C+SSA+and+HHO-based+SVM+models+with+interpretability+analysis&rft.jtitle=Geomechanics+and+geophysics+for+geo-energy+and+geo-resources.&rft.au=Zhang%2C+Yulin&rft.au=Zhou%2C+Jian&rft.au=Li%2C+Jialu&rft.au=He%2C+Biao&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2363-8419&rft.eissn=2363-8427&rft.volume=11&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs40948-025-00963-1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8419&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8419&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8419&client=summon |