Chiral Floquet Phases of Many-Body Localized Bosons
We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-bod...
Saved in:
Published in | Physical review. X Vol. 6; no. 4; p. 041070 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2160-3308 2160-3308 |
DOI | 10.1103/PhysRevX.6.041070 |
Cover
Abstract | We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases. |
---|---|
AbstractList | We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases. |
ArticleNumber | 041070 |
Author | Vishwanath, Ashvin Fidkowski, Lukasz Po, Hoi Chun Morimoto, Takahiro Potter, Andrew C. |
Author_xml | – sequence: 1 givenname: Hoi Chun surname: Po fullname: Po, Hoi Chun – sequence: 2 givenname: Lukasz surname: Fidkowski fullname: Fidkowski, Lukasz – sequence: 3 givenname: Takahiro surname: Morimoto fullname: Morimoto, Takahiro – sequence: 4 givenname: Andrew C. surname: Potter fullname: Potter, Andrew C. – sequence: 5 givenname: Ashvin surname: Vishwanath fullname: Vishwanath, Ashvin |
BookMark | eNp9UEtLAzEQDlLBWvsDvC143pps9pEcbbFaqCii4C1MXjZl3dRkK6y_3q1VEQ_OZYbhe8x8x2jQ-MYgdErwhBBMz-9WXbw3b0-TcoJzgit8gIYZKXFKKWaDX_MRGse4xn2VmORVNUR0tnIB6mRe-9etaZO7FUQTE2-TG2i6dOp1lyy9gtq9G51MffRNPEGHFupoxl99hB7nlw-z63R5e7WYXSxTRVnWpkByJqXRzGjMmLRM6ZJk2vKcVJSDkUVmqQLIOWNK2gyo1TqjGGxuSsotHaHFXld7WItNcC8QOuHBic-FD88CQutUbYTkFXClqJGZzbEhnBIlWWWtobyQGnqts73WJuweja1Y-21o-vNFVhS4KBgtSI8ie5QKPsZg7I8rwWIXtfiOWpRiH3XPqf5wlGuhdb5pA7j6H-YHcrOHcA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_103_L020202 crossref_primary_10_1103_PhysRevLett_124_190601 crossref_primary_10_1103_PRXQuantum_5_010304 crossref_primary_10_1103_RevModPhys_91_021001 crossref_primary_10_1103_PhysRevA_109_052421 crossref_primary_10_1103_PhysRevB_96_195303 crossref_primary_10_1088_1361_6633_aac9ed crossref_primary_10_1088_1361_648X_ad5acd crossref_primary_10_1103_PhysRevResearch_3_023039 crossref_primary_10_1103_PhysRevB_96_054303 crossref_primary_10_21468_SciPostPhys_9_2_024 crossref_primary_10_1103_PhysRevB_95_195155 crossref_primary_10_1103_PhysRevB_98_054309 crossref_primary_10_1103_PhysRevLett_127_270601 crossref_primary_10_1103_PhysRevB_99_014307 crossref_primary_10_1103_PhysRevB_98_060301 crossref_primary_10_1103_PhysRevLett_121_036801 crossref_primary_10_1103_PhysRevB_105_245136 crossref_primary_10_1103_PhysRevB_97_245106 crossref_primary_10_1103_PhysRevX_13_031038 crossref_primary_10_1103_PhysRevB_96_115127 crossref_primary_10_1103_PhysRevB_100_165132 crossref_primary_10_1103_PhysRevX_7_031061 crossref_primary_10_1103_PhysRevB_110_155109 crossref_primary_10_1103_PhysRevB_107_115132 crossref_primary_10_1103_PhysRevB_95_155126 crossref_primary_10_1103_PhysRevB_109_184201 crossref_primary_10_1103_PhysRevB_110_184209 crossref_primary_10_1103_PhysRevLett_121_250601 crossref_primary_10_1103_PhysRevResearch_3_013117 crossref_primary_10_1103_PhysRevB_98_165116 crossref_primary_10_1103_PhysRevResearch_6_013094 crossref_primary_10_1103_PhysRevLett_121_196401 crossref_primary_10_1103_PhysRevLett_120_070602 crossref_primary_10_21468_SciPostPhys_10_2_049 crossref_primary_10_1103_PhysRevB_97_014311 crossref_primary_10_1103_PRXQuantum_6_010324 crossref_primary_10_1103_PhysRevB_102_205125 crossref_primary_10_1103_PhysRevLett_120_150601 crossref_primary_10_1103_PhysRevB_96_054207 crossref_primary_10_1103_PhysRevB_104_L081112 crossref_primary_10_1103_PhysRevX_8_011040 crossref_primary_10_21468_SciPostPhys_12_4_124 crossref_primary_10_1103_PhysRevX_10_031036 crossref_primary_10_1103_PhysRevResearch_3_023044 crossref_primary_10_1103_PhysRevResearch_2_043411 crossref_primary_10_1103_PRXQuantum_3_030326 crossref_primary_10_1103_PhysRevB_96_155118 crossref_primary_10_1103_PhysRevB_104_245130 crossref_primary_10_21468_SciPostPhys_10_6_128 crossref_primary_10_1088_1751_8121_aae0b1 crossref_primary_10_1103_PhysRevLett_120_216801 crossref_primary_10_1103_PhysRevResearch_4_043060 crossref_primary_10_1103_PhysRevResearch_7_013256 crossref_primary_10_1103_PhysRevB_102_014307 crossref_primary_10_1103_PhysRevB_103_054305 crossref_primary_10_1103_PhysRevB_108_214305 crossref_primary_10_1103_PhysRevLett_119_186801 crossref_primary_10_1103_PhysRevB_97_245133 crossref_primary_10_1103_PhysRevLett_125_190402 crossref_primary_10_1103_PhysRevA_106_012441 crossref_primary_10_1103_PhysRevB_108_094207 crossref_primary_10_1103_PhysRevLett_130_226701 crossref_primary_10_1103_PhysRevB_102_134307 crossref_primary_10_21468_SciPostPhys_16_1_014 crossref_primary_10_1103_PhysRevLett_131_130401 crossref_primary_10_1103_PhysRevB_105_195426 crossref_primary_10_22331_q_2020_11_30_368 crossref_primary_10_1103_PRXQuantum_2_030346 crossref_primary_10_1103_PhysRevB_98_045127 crossref_primary_10_1103_PhysRevLett_124_100402 crossref_primary_10_1103_PhysRevLett_120_040404 crossref_primary_10_1103_PhysRevB_111_075151 crossref_primary_10_1103_PhysRevB_97_224302 crossref_primary_10_1103_PhysRevResearch_2_033284 crossref_primary_10_1103_PhysRevLett_132_070401 crossref_primary_10_1103_PhysRevB_107_195135 crossref_primary_10_21468_SciPostPhys_13_4_082 crossref_primary_10_1103_PhysRevB_106_054307 crossref_primary_10_1103_PhysRevB_109_014309 crossref_primary_10_1103_PhysRevLett_126_160601 crossref_primary_10_1103_PhysRevB_111_125103 crossref_primary_10_1103_PhysRevB_104_155144 crossref_primary_10_1103_PhysRevB_103_L100302 crossref_primary_10_1103_PhysRevB_95_195128 crossref_primary_10_1103_PhysRevLett_118_115301 crossref_primary_10_1103_PhysRevB_101_041403 crossref_primary_10_1103_PhysRevB_106_L060305 crossref_primary_10_1103_PhysRevB_102_224204 crossref_primary_10_1103_PhysRevLett_121_093001 crossref_primary_10_1103_PhysRevB_101_224202 crossref_primary_10_1103_PhysRevB_96_245116 crossref_primary_10_1103_PhysRevB_99_195133 crossref_primary_10_1103_PhysRevResearch_6_033136 crossref_primary_10_1103_PhysRevB_96_020201 crossref_primary_10_1103_PhysRevB_109_075116 crossref_primary_10_1103_PhysRevD_103_056005 crossref_primary_10_1103_PhysRevB_107_235104 crossref_primary_10_1103_PhysRevA_100_052109 crossref_primary_10_1103_PhysRevB_108_195134 crossref_primary_10_1103_PhysRevLett_128_080602 crossref_primary_10_1103_PhysRevX_10_021032 crossref_primary_10_1103_PhysRevB_96_014201 crossref_primary_10_1103_PhysRevB_96_115108 crossref_primary_10_1103_PhysRevB_97_245401 crossref_primary_10_1103_PhysRevLett_123_170603 crossref_primary_10_1103_PhysRevB_100_020301 crossref_primary_10_1103_PhysRevX_12_011045 crossref_primary_10_1103_PhysRevB_103_064302 crossref_primary_10_1103_PhysRevB_105_144204 crossref_primary_10_1103_PhysRevX_12_031031 crossref_primary_10_1088_1742_5468_aa7e55 crossref_primary_10_1103_PhysRevB_99_235408 crossref_primary_10_1103_PRXQuantum_3_020331 crossref_primary_10_1103_PhysRevLett_125_086601 crossref_primary_10_1103_PhysRevB_99_085115 crossref_primary_10_1103_PhysRevLett_129_254301 crossref_primary_10_22331_q_2025_01_30_1615 crossref_primary_10_1103_PhysRevLett_133_036601 |
Cites_doi | 10.1126/science.aaf8834 10.1038/nphys1926 10.1103/PhysRevLett.117.090402 10.1002/andp.201600181 10.1103/PhysRevLett.110.067204 10.1103/PhysRevX.3.031005 10.1103/PhysRevX.4.041048 10.1103/PhysRevB.94.144203 10.1126/science.1207239 10.1007/s00220-012-1423-1 10.1103/PhysRevLett.76.3192 10.1103/PhysRevB.93.201103 10.1103/PhysRevLett.111.127201 10.1016/j.aop.2016.03.010 10.1038/nphys2256 10.1103/PhysRevB.93.245146 10.1103/PhysRevLett.116.250401 10.1103/PhysRevB.82.174411 10.1126/science.1209019 10.1103/PhysRevLett.115.030402 10.1103/PhysRevB.87.155114 10.1103/PhysRevLett.114.140401 10.1103/PhysRevB.89.195130 10.1103/PhysRevLett.108.045305 10.1103/PhysRevB.89.144201 10.1103/PhysRevB.88.014206 10.1103/PhysRevB.93.174202 10.1103/PhysRevB.93.245145 10.1088/1367-2630/12/2/025012 10.1103/PhysRevB.94.085112 10.1103/PhysRevX.6.041001 10.1016/j.aop.2005.10.005 10.1103/PhysRevB.86.125119 10.1016/j.aop.2010.09.012 10.1103/PhysRevLett.114.083002 10.1103/PhysRevB.82.235114 10.1103/PhysRevB.94.125105 10.1103/PhysRevB.87.235131 10.1016/j.aop.2016.01.012 10.1126/sciadv.1500854 10.1103/PhysRevB.94.115115 10.1103/PhysRevB.90.174202 10.1007/BF01645779 10.1038/ncomms8341 10.1103/PhysRevB.90.195115 10.1103/PhysRevB.88.045131 10.1103/PhysRevX.6.021013 10.1103/PhysRevLett.114.056801 10.1103/PhysRevLett.115.256803 |
ContentType | Journal Article |
Copyright | 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.6.041070 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database (ProQuest) Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda 10_1103_PhysRevX_6_041070 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c382t-a148bbed8ed088bf8cd612df941739aeb52f3caa4988cbf2a3fdd230af4e639f3 |
IEDL.DBID | DOA |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:22:35 EDT 2025 Fri Jul 25 11:56:27 EDT 2025 Tue Jul 01 01:33:16 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-a148bbed8ed088bf8cd612df941739aeb52f3caa4988cbf2a3fdd230af4e639f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/b97a9cc3eb2f40e1931cb87ffe395bda |
PQID | 2550558351 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda proquest_journals_2550558351 crossref_primary_10_1103_PhysRevX_6_041070 crossref_citationtrail_10_1103_PhysRevX_6_041070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2016 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevX.6.041070Cc45R1 PhysRevX.6.041070Cc47R1 PhysRevX.6.041070Cc49R1 PhysRevX.6.041070Cc26R1 PhysRevX.6.041070Cc24R1 PhysRevX.6.041070Cc22R1 PhysRevX.6.041070Cc20R1 PhysRevX.6.041070Cc62R1 PhysRevX.6.041070Cc19R1 PhysRevX.6.041070Cc17R1 PhysRevX.6.041070Cc32R1 PhysRevX.6.041070Cc53R1 PhysRevX.6.041070Cc34R1 PhysRevX.6.041070Cc57R1 PhysRevX.6.041070Cc38R1 PhysRevX.6.041070Cc15R1 PhysRevX.6.041070Cc13R1 PhysRevX.6.041070Cc11R1 PhysRevX.6.041070Cc30R1 PhysRevX.6.041070Cc51R1 PhysRevX.6.041070Cc2R1 PhysRevX.6.041070Cc29R1 PhysRevX.6.041070Cc6R1 PhysRevX.6.041070Cc4R1 PhysRevX.6.041070Cc8R1 PhysRevX.6.041070Cc42R1 PhysRevX.6.041070Cc44R1 PhysRevX.6.041070Cc48R1 PhysRevX.6.041070Cc27R1 PhysRevX.6.041070Cc25R1 PhysRevX.6.041070Cc23R1 PhysRevX.6.041070Cc61R1 PhysRevX.6.041070Cc21R1 PhysRevX.6.041070Cc63R1 PhysRevX.6.041070Cc18R1 PhysRevX.6.041070Cc39R1 PhysRevX.6.041070Cc31R1 PhysRevX.6.041070Cc56R1 PhysRevX.6.041070Cc35R1 PhysRevX.6.041070Cc58R1 PhysRevX.6.041070Cc16R1 PhysRevX.6.041070Cc50R1 PhysRevX.6.041070Cc10R1 PhysRevX.6.041070Cc52R1 PhysRevX.6.041070Cc3R1 PhysRevX.6.041070Cc28R1 PhysRevX.6.041070Cc7R1 PhysRevX.6.041070Cc5R1 PhysRevX.6.041070Cc9R1 |
References_xml | – ident: PhysRevX.6.041070Cc53R1 doi: 10.1126/science.aaf8834 – ident: PhysRevX.6.041070Cc25R1 doi: 10.1038/nphys1926 – ident: PhysRevX.6.041070Cc57R1 doi: 10.1103/PhysRevLett.117.090402 – ident: PhysRevX.6.041070Cc35R1 doi: 10.1002/andp.201600181 – ident: PhysRevX.6.041070Cc9R1 doi: 10.1103/PhysRevLett.110.067204 – ident: PhysRevX.6.041070Cc29R1 doi: 10.1103/PhysRevX.3.031005 – ident: PhysRevX.6.041070Cc63R1 doi: 10.1103/PhysRevX.4.041048 – ident: PhysRevX.6.041070Cc34R1 doi: 10.1103/PhysRevB.94.144203 – ident: PhysRevX.6.041070Cc51R1 doi: 10.1126/science.1207239 – ident: PhysRevX.6.041070Cc27R1 doi: 10.1007/s00220-012-1423-1 – ident: PhysRevX.6.041070Cc2R1 doi: 10.1103/PhysRevLett.76.3192 – ident: PhysRevX.6.041070Cc22R1 doi: 10.1103/PhysRevB.93.201103 – ident: PhysRevX.6.041070Cc10R1 doi: 10.1103/PhysRevLett.111.127201 – ident: PhysRevX.6.041070Cc19R1 doi: 10.1016/j.aop.2016.03.010 – ident: PhysRevX.6.041070Cc50R1 doi: 10.1038/nphys2256 – ident: PhysRevX.6.041070Cc56R1 doi: 10.1103/PhysRevB.93.245146 – ident: PhysRevX.6.041070Cc20R1 doi: 10.1103/PhysRevLett.116.250401 – ident: PhysRevX.6.041070Cc62R1 doi: 10.1103/PhysRevB.82.174411 – ident: PhysRevX.6.041070Cc49R1 doi: 10.1126/science.1209019 – ident: PhysRevX.6.041070Cc17R1 doi: 10.1103/PhysRevLett.115.030402 – ident: PhysRevX.6.041070Cc32R1 doi: 10.1103/PhysRevB.87.155114 – ident: PhysRevX.6.041070Cc18R1 doi: 10.1103/PhysRevLett.114.140401 – ident: PhysRevX.6.041070Cc16R1 doi: 10.1103/PhysRevB.89.195130 – ident: PhysRevX.6.041070Cc47R1 doi: 10.1103/PhysRevLett.108.045305 – ident: PhysRevX.6.041070Cc7R1 doi: 10.1103/PhysRevB.89.144201 – ident: PhysRevX.6.041070Cc8R1 doi: 10.1103/PhysRevB.88.014206 – ident: PhysRevX.6.041070Cc61R1 doi: 10.1103/PhysRevB.93.174202 – ident: PhysRevX.6.041070Cc21R1 doi: 10.1103/PhysRevB.93.245145 – ident: PhysRevX.6.041070Cc44R1 doi: 10.1088/1367-2630/12/2/025012 – ident: PhysRevX.6.041070Cc58R1 doi: 10.1103/PhysRevB.94.085112 – ident: PhysRevX.6.041070Cc23R1 doi: 10.1103/PhysRevX.6.041001 – ident: PhysRevX.6.041070Cc3R1 doi: 10.1016/j.aop.2005.10.005 – ident: PhysRevX.6.041070Cc4R1 doi: 10.1103/PhysRevB.86.125119 – ident: PhysRevX.6.041070Cc45R1 doi: 10.1016/j.aop.2010.09.012 – ident: PhysRevX.6.041070Cc52R1 doi: 10.1103/PhysRevLett.114.083002 – ident: PhysRevX.6.041070Cc28R1 doi: 10.1103/PhysRevB.82.235114 – ident: PhysRevX.6.041070Cc24R1 doi: 10.1103/PhysRevB.94.125105 – ident: PhysRevX.6.041070Cc26R1 doi: 10.1103/PhysRevB.87.235131 – ident: PhysRevX.6.041070Cc39R1 doi: 10.1016/j.aop.2016.01.012 – ident: PhysRevX.6.041070Cc48R1 doi: 10.1126/sciadv.1500854 – ident: PhysRevX.6.041070Cc13R1 doi: 10.1103/PhysRevB.94.115115 – ident: PhysRevX.6.041070Cc11R1 doi: 10.1103/PhysRevB.90.174202 – ident: PhysRevX.6.041070Cc42R1 doi: 10.1007/BF01645779 – ident: PhysRevX.6.041070Cc6R1 doi: 10.1038/ncomms8341 – ident: PhysRevX.6.041070Cc15R1 doi: 10.1103/PhysRevB.90.195115 – ident: PhysRevX.6.041070Cc5R1 doi: 10.1103/PhysRevB.88.045131 – ident: PhysRevX.6.041070Cc31R1 doi: 10.1103/PhysRevX.6.021013 – ident: PhysRevX.6.041070Cc30R1 doi: 10.1103/PhysRevLett.114.056801 – ident: PhysRevX.6.041070Cc38R1 doi: 10.1103/PhysRevLett.115.256803 |
SSID | ssj0000601477 |
Score | 2.5673485 |
Snippet | We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 041070 |
SubjectTerms | Atoms & subatomic particles Bosons Fermions Hilbert space Information flow Laser cooling Low temperature Many body interactions Particle physics Phases Quantum computing Quantum entanglement Quantum mechanics Quantum phenomena Thermalization (energy absorption) Topology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-IPgifuL8og8-CXVpk7bpkzhxiqiIONhbSC6JDsaq6xT0r_fSZRMRfG0SKJfc_X53udwRcqwRBHWhUNMYMzGHNI8RFkQsgBrgPkjo_Gvku_v8usdv-lk_BNzqkFY5s4mNoTYV-Bh5O_VUOkO-kJy9vsW-a5S_XQ0tNBbJcpIi1vqX4t2reYzF1xrhRREuMxPK2j6t8tF-9E_zU8rR86G_4Kip2v_HKDdI010na4EiRufTPd0gC3a0SVaaVE2otwi7eBmMcbw79Msn0cMLAlEdVS66Q8WOO5X5jG49Qg2-rIk6FRLqepv0updPF9dxaH0QAxPpJFbopWhtjbAGzYB2AgxSEeNKnhSsVFZnqWOgFC-FAO1SxZwx6E0oxy3KwbEdsjSqRnaXRFbxzGZcAeToOiihM8MBqBO5pg6AtQidSUBCqAvu21MMZeMfUCZnQpO5nAqtRU7mS16nRTH-m9zxYp1P9PWsmw_V-FkG9ZC6LFSJP4N-vuPUIqtMQIvCOcvKTBvVIgezTZFByWr5cyT2_h_eJ6vIc_JpFsoBWZqM3-0hcomJPmoOzDc82Mq6 priority: 102 providerName: ProQuest |
Title | Chiral Floquet Phases of Many-Body Localized Bosons |
URI | https://www.proquest.com/docview/2550558351 https://doaj.org/article/b97a9cc3eb2f40e1931cb87ffe395bda |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IngRP7FaSw6ehLTb7CbZHG1pLWJLKRZ6W_aTFkojTRX01zubpKUi6MVrskvCTGbee8lkBqE7CSAoYwGRRoj2qQoiH2CB-Uxhrah7SWjd38iDYdSf0KdpON0Z9eVqwor2wIXhmjKJRaIUAQVoKTbAN1pKsthaQ5JQ6pwa4QTviKkiBwP1j-PyM2YLk6YrqByb92kjamAKmgd_A6K8X_-PdJxjTO8EHZfk0HsobuoU7ZnlGTrMizRVdo5IZzZfwfnewm1fe6MZQFDmpdYbQEj77VR_eM8Om-afRnvtFKh0doEmve5Lp--XQw98RViw9gXoEymNZkZDApCWKQ0kRNuEtmKSCCPDwBIlBE0YU9IGglitQUcISw2wDUsuUWWZLs0V8oygoQmpUCoC0SCYDDVVClsWSWzBpFWENxbgquwI7gZTLHiuDDDhG6PxiBdGq6L77ZbXoh3Gb4vbzqzbha6TdX4A_MtL__K__FtFtY1TeBleGQ-crgqBPLau_-MaN-gIeFBUVKnUUGW9ejO3wDXWso72We-xjg7a3eFoXM8fsi9D1tdl |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gxOiLEdR4grIP8kKy0Nt2d7sPxnjoecAdMQaSe6vttBUScgu3pwb_KP9Gp_txxpDwxuv2I5vpTH-_aaczAG8NgaDJNVka5zYWmGQxwYKMJTKLIhwS-vAaeXKSjc7E0TSdrsCf7i1MCKvs9sR6o7YlhjPy_SRQ6ZT4Qv_91XUcqkaF29WuhEajFsfu5he5bNW7w4-0vjtJMvx0ejCK26oCMXKZLGJNDoAxzkpnycKMl2gJ5a0vRD_nhXYmTTxHrUUhJRqfaO6tJaKuvXAE557TvA9gTXDOQwihHH5enumE3CYiz9vL0z7j-yGM86v7Od3L9pggT4v9B391lYBbIFAj2_ApPGkpafSh0aF1WHGzDXhYh4Zi9Qz4wfnFnNqHl2H4IvpyTsBXRaWPJrSRxIPS3kTjgIgXv52NBiUR-Oo5nN2LUF7A6qycuZcQOS1SlwqNmJGroqVJrUBkXmaGeUTeA9ZJQGGbhzyUw7hUtT_CuOqEpjLVCK0Hu8shV00Sjrs6D4JYlx1D_uz6Qzn_rlpzVKbIdUE_40ziBXPEYvtoZO6940VqrO7BVrcoqjXqSv1TwVd3N2_Do9HpZKzGhyfHm_CYOFbWRMBswepi_sO9Jh6zMG9q5Yng231r61_dPwoh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Floquet+Phases+of+Many-Body+Localized+Bosons&rft.jtitle=Physical+review.+X&rft.au=Hoi+Chun+Po&rft.au=Lukasz+Fidkowski&rft.au=Takahiro+Morimoto&rft.au=Andrew+C.+Potter&rft.date=2016-12-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=6&rft.issue=4&rft.spage=041070&rft_id=info:doi/10.1103%2FPhysRevX.6.041070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |