Chiral Floquet Phases of Many-Body Localized Bosons

We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-bod...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 6; no. 4; p. 041070
Main Authors Po, Hoi Chun, Fidkowski, Lukasz, Morimoto, Takahiro, Potter, Andrew C., Vishwanath, Ashvin
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.12.2016
Subjects
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.6.041070

Cover

Abstract We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.
AbstractList We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.
ArticleNumber 041070
Author Vishwanath, Ashvin
Fidkowski, Lukasz
Po, Hoi Chun
Morimoto, Takahiro
Potter, Andrew C.
Author_xml – sequence: 1
  givenname: Hoi Chun
  surname: Po
  fullname: Po, Hoi Chun
– sequence: 2
  givenname: Lukasz
  surname: Fidkowski
  fullname: Fidkowski, Lukasz
– sequence: 3
  givenname: Takahiro
  surname: Morimoto
  fullname: Morimoto, Takahiro
– sequence: 4
  givenname: Andrew C.
  surname: Potter
  fullname: Potter, Andrew C.
– sequence: 5
  givenname: Ashvin
  surname: Vishwanath
  fullname: Vishwanath, Ashvin
BookMark eNp9UEtLAzEQDlLBWvsDvC143pps9pEcbbFaqCii4C1MXjZl3dRkK6y_3q1VEQ_OZYbhe8x8x2jQ-MYgdErwhBBMz-9WXbw3b0-TcoJzgit8gIYZKXFKKWaDX_MRGse4xn2VmORVNUR0tnIB6mRe-9etaZO7FUQTE2-TG2i6dOp1lyy9gtq9G51MffRNPEGHFupoxl99hB7nlw-z63R5e7WYXSxTRVnWpkByJqXRzGjMmLRM6ZJk2vKcVJSDkUVmqQLIOWNK2gyo1TqjGGxuSsotHaHFXld7WItNcC8QOuHBic-FD88CQutUbYTkFXClqJGZzbEhnBIlWWWtobyQGnqts73WJuweja1Y-21o-vNFVhS4KBgtSI8ie5QKPsZg7I8rwWIXtfiOWpRiH3XPqf5wlGuhdb5pA7j6H-YHcrOHcA
CitedBy_id crossref_primary_10_1103_PhysRevA_103_L020202
crossref_primary_10_1103_PhysRevLett_124_190601
crossref_primary_10_1103_PRXQuantum_5_010304
crossref_primary_10_1103_RevModPhys_91_021001
crossref_primary_10_1103_PhysRevA_109_052421
crossref_primary_10_1103_PhysRevB_96_195303
crossref_primary_10_1088_1361_6633_aac9ed
crossref_primary_10_1088_1361_648X_ad5acd
crossref_primary_10_1103_PhysRevResearch_3_023039
crossref_primary_10_1103_PhysRevB_96_054303
crossref_primary_10_21468_SciPostPhys_9_2_024
crossref_primary_10_1103_PhysRevB_95_195155
crossref_primary_10_1103_PhysRevB_98_054309
crossref_primary_10_1103_PhysRevLett_127_270601
crossref_primary_10_1103_PhysRevB_99_014307
crossref_primary_10_1103_PhysRevB_98_060301
crossref_primary_10_1103_PhysRevLett_121_036801
crossref_primary_10_1103_PhysRevB_105_245136
crossref_primary_10_1103_PhysRevB_97_245106
crossref_primary_10_1103_PhysRevX_13_031038
crossref_primary_10_1103_PhysRevB_96_115127
crossref_primary_10_1103_PhysRevB_100_165132
crossref_primary_10_1103_PhysRevX_7_031061
crossref_primary_10_1103_PhysRevB_110_155109
crossref_primary_10_1103_PhysRevB_107_115132
crossref_primary_10_1103_PhysRevB_95_155126
crossref_primary_10_1103_PhysRevB_109_184201
crossref_primary_10_1103_PhysRevB_110_184209
crossref_primary_10_1103_PhysRevLett_121_250601
crossref_primary_10_1103_PhysRevResearch_3_013117
crossref_primary_10_1103_PhysRevB_98_165116
crossref_primary_10_1103_PhysRevResearch_6_013094
crossref_primary_10_1103_PhysRevLett_121_196401
crossref_primary_10_1103_PhysRevLett_120_070602
crossref_primary_10_21468_SciPostPhys_10_2_049
crossref_primary_10_1103_PhysRevB_97_014311
crossref_primary_10_1103_PRXQuantum_6_010324
crossref_primary_10_1103_PhysRevB_102_205125
crossref_primary_10_1103_PhysRevLett_120_150601
crossref_primary_10_1103_PhysRevB_96_054207
crossref_primary_10_1103_PhysRevB_104_L081112
crossref_primary_10_1103_PhysRevX_8_011040
crossref_primary_10_21468_SciPostPhys_12_4_124
crossref_primary_10_1103_PhysRevX_10_031036
crossref_primary_10_1103_PhysRevResearch_3_023044
crossref_primary_10_1103_PhysRevResearch_2_043411
crossref_primary_10_1103_PRXQuantum_3_030326
crossref_primary_10_1103_PhysRevB_96_155118
crossref_primary_10_1103_PhysRevB_104_245130
crossref_primary_10_21468_SciPostPhys_10_6_128
crossref_primary_10_1088_1751_8121_aae0b1
crossref_primary_10_1103_PhysRevLett_120_216801
crossref_primary_10_1103_PhysRevResearch_4_043060
crossref_primary_10_1103_PhysRevResearch_7_013256
crossref_primary_10_1103_PhysRevB_102_014307
crossref_primary_10_1103_PhysRevB_103_054305
crossref_primary_10_1103_PhysRevB_108_214305
crossref_primary_10_1103_PhysRevLett_119_186801
crossref_primary_10_1103_PhysRevB_97_245133
crossref_primary_10_1103_PhysRevLett_125_190402
crossref_primary_10_1103_PhysRevA_106_012441
crossref_primary_10_1103_PhysRevB_108_094207
crossref_primary_10_1103_PhysRevLett_130_226701
crossref_primary_10_1103_PhysRevB_102_134307
crossref_primary_10_21468_SciPostPhys_16_1_014
crossref_primary_10_1103_PhysRevLett_131_130401
crossref_primary_10_1103_PhysRevB_105_195426
crossref_primary_10_22331_q_2020_11_30_368
crossref_primary_10_1103_PRXQuantum_2_030346
crossref_primary_10_1103_PhysRevB_98_045127
crossref_primary_10_1103_PhysRevLett_124_100402
crossref_primary_10_1103_PhysRevLett_120_040404
crossref_primary_10_1103_PhysRevB_111_075151
crossref_primary_10_1103_PhysRevB_97_224302
crossref_primary_10_1103_PhysRevResearch_2_033284
crossref_primary_10_1103_PhysRevLett_132_070401
crossref_primary_10_1103_PhysRevB_107_195135
crossref_primary_10_21468_SciPostPhys_13_4_082
crossref_primary_10_1103_PhysRevB_106_054307
crossref_primary_10_1103_PhysRevB_109_014309
crossref_primary_10_1103_PhysRevLett_126_160601
crossref_primary_10_1103_PhysRevB_111_125103
crossref_primary_10_1103_PhysRevB_104_155144
crossref_primary_10_1103_PhysRevB_103_L100302
crossref_primary_10_1103_PhysRevB_95_195128
crossref_primary_10_1103_PhysRevLett_118_115301
crossref_primary_10_1103_PhysRevB_101_041403
crossref_primary_10_1103_PhysRevB_106_L060305
crossref_primary_10_1103_PhysRevB_102_224204
crossref_primary_10_1103_PhysRevLett_121_093001
crossref_primary_10_1103_PhysRevB_101_224202
crossref_primary_10_1103_PhysRevB_96_245116
crossref_primary_10_1103_PhysRevB_99_195133
crossref_primary_10_1103_PhysRevResearch_6_033136
crossref_primary_10_1103_PhysRevB_96_020201
crossref_primary_10_1103_PhysRevB_109_075116
crossref_primary_10_1103_PhysRevD_103_056005
crossref_primary_10_1103_PhysRevB_107_235104
crossref_primary_10_1103_PhysRevA_100_052109
crossref_primary_10_1103_PhysRevB_108_195134
crossref_primary_10_1103_PhysRevLett_128_080602
crossref_primary_10_1103_PhysRevX_10_021032
crossref_primary_10_1103_PhysRevB_96_014201
crossref_primary_10_1103_PhysRevB_96_115108
crossref_primary_10_1103_PhysRevB_97_245401
crossref_primary_10_1103_PhysRevLett_123_170603
crossref_primary_10_1103_PhysRevB_100_020301
crossref_primary_10_1103_PhysRevX_12_011045
crossref_primary_10_1103_PhysRevB_103_064302
crossref_primary_10_1103_PhysRevB_105_144204
crossref_primary_10_1103_PhysRevX_12_031031
crossref_primary_10_1088_1742_5468_aa7e55
crossref_primary_10_1103_PhysRevB_99_235408
crossref_primary_10_1103_PRXQuantum_3_020331
crossref_primary_10_1103_PhysRevLett_125_086601
crossref_primary_10_1103_PhysRevB_99_085115
crossref_primary_10_1103_PhysRevLett_129_254301
crossref_primary_10_22331_q_2025_01_30_1615
crossref_primary_10_1103_PhysRevLett_133_036601
Cites_doi 10.1126/science.aaf8834
10.1038/nphys1926
10.1103/PhysRevLett.117.090402
10.1002/andp.201600181
10.1103/PhysRevLett.110.067204
10.1103/PhysRevX.3.031005
10.1103/PhysRevX.4.041048
10.1103/PhysRevB.94.144203
10.1126/science.1207239
10.1007/s00220-012-1423-1
10.1103/PhysRevLett.76.3192
10.1103/PhysRevB.93.201103
10.1103/PhysRevLett.111.127201
10.1016/j.aop.2016.03.010
10.1038/nphys2256
10.1103/PhysRevB.93.245146
10.1103/PhysRevLett.116.250401
10.1103/PhysRevB.82.174411
10.1126/science.1209019
10.1103/PhysRevLett.115.030402
10.1103/PhysRevB.87.155114
10.1103/PhysRevLett.114.140401
10.1103/PhysRevB.89.195130
10.1103/PhysRevLett.108.045305
10.1103/PhysRevB.89.144201
10.1103/PhysRevB.88.014206
10.1103/PhysRevB.93.174202
10.1103/PhysRevB.93.245145
10.1088/1367-2630/12/2/025012
10.1103/PhysRevB.94.085112
10.1103/PhysRevX.6.041001
10.1016/j.aop.2005.10.005
10.1103/PhysRevB.86.125119
10.1016/j.aop.2010.09.012
10.1103/PhysRevLett.114.083002
10.1103/PhysRevB.82.235114
10.1103/PhysRevB.94.125105
10.1103/PhysRevB.87.235131
10.1016/j.aop.2016.01.012
10.1126/sciadv.1500854
10.1103/PhysRevB.94.115115
10.1103/PhysRevB.90.174202
10.1007/BF01645779
10.1038/ncomms8341
10.1103/PhysRevB.90.195115
10.1103/PhysRevB.88.045131
10.1103/PhysRevX.6.021013
10.1103/PhysRevLett.114.056801
10.1103/PhysRevLett.115.256803
ContentType Journal Article
Copyright 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.6.041070
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda
10_1103_PhysRevX_6_041070
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c382t-a148bbed8ed088bf8cd612df941739aeb52f3caa4988cbf2a3fdd230af4e639f3
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 01:22:35 EDT 2025
Fri Jul 25 11:56:27 EDT 2025
Tue Jul 01 01:33:16 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-a148bbed8ed088bf8cd612df941739aeb52f3caa4988cbf2a3fdd230af4e639f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/b97a9cc3eb2f40e1931cb87ffe395bda
PQID 2550558351
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda
proquest_journals_2550558351
crossref_primary_10_1103_PhysRevX_6_041070
crossref_citationtrail_10_1103_PhysRevX_6_041070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2016
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.6.041070Cc45R1
PhysRevX.6.041070Cc47R1
PhysRevX.6.041070Cc49R1
PhysRevX.6.041070Cc26R1
PhysRevX.6.041070Cc24R1
PhysRevX.6.041070Cc22R1
PhysRevX.6.041070Cc20R1
PhysRevX.6.041070Cc62R1
PhysRevX.6.041070Cc19R1
PhysRevX.6.041070Cc17R1
PhysRevX.6.041070Cc32R1
PhysRevX.6.041070Cc53R1
PhysRevX.6.041070Cc34R1
PhysRevX.6.041070Cc57R1
PhysRevX.6.041070Cc38R1
PhysRevX.6.041070Cc15R1
PhysRevX.6.041070Cc13R1
PhysRevX.6.041070Cc11R1
PhysRevX.6.041070Cc30R1
PhysRevX.6.041070Cc51R1
PhysRevX.6.041070Cc2R1
PhysRevX.6.041070Cc29R1
PhysRevX.6.041070Cc6R1
PhysRevX.6.041070Cc4R1
PhysRevX.6.041070Cc8R1
PhysRevX.6.041070Cc42R1
PhysRevX.6.041070Cc44R1
PhysRevX.6.041070Cc48R1
PhysRevX.6.041070Cc27R1
PhysRevX.6.041070Cc25R1
PhysRevX.6.041070Cc23R1
PhysRevX.6.041070Cc61R1
PhysRevX.6.041070Cc21R1
PhysRevX.6.041070Cc63R1
PhysRevX.6.041070Cc18R1
PhysRevX.6.041070Cc39R1
PhysRevX.6.041070Cc31R1
PhysRevX.6.041070Cc56R1
PhysRevX.6.041070Cc35R1
PhysRevX.6.041070Cc58R1
PhysRevX.6.041070Cc16R1
PhysRevX.6.041070Cc50R1
PhysRevX.6.041070Cc10R1
PhysRevX.6.041070Cc52R1
PhysRevX.6.041070Cc3R1
PhysRevX.6.041070Cc28R1
PhysRevX.6.041070Cc7R1
PhysRevX.6.041070Cc5R1
PhysRevX.6.041070Cc9R1
References_xml – ident: PhysRevX.6.041070Cc53R1
  doi: 10.1126/science.aaf8834
– ident: PhysRevX.6.041070Cc25R1
  doi: 10.1038/nphys1926
– ident: PhysRevX.6.041070Cc57R1
  doi: 10.1103/PhysRevLett.117.090402
– ident: PhysRevX.6.041070Cc35R1
  doi: 10.1002/andp.201600181
– ident: PhysRevX.6.041070Cc9R1
  doi: 10.1103/PhysRevLett.110.067204
– ident: PhysRevX.6.041070Cc29R1
  doi: 10.1103/PhysRevX.3.031005
– ident: PhysRevX.6.041070Cc63R1
  doi: 10.1103/PhysRevX.4.041048
– ident: PhysRevX.6.041070Cc34R1
  doi: 10.1103/PhysRevB.94.144203
– ident: PhysRevX.6.041070Cc51R1
  doi: 10.1126/science.1207239
– ident: PhysRevX.6.041070Cc27R1
  doi: 10.1007/s00220-012-1423-1
– ident: PhysRevX.6.041070Cc2R1
  doi: 10.1103/PhysRevLett.76.3192
– ident: PhysRevX.6.041070Cc22R1
  doi: 10.1103/PhysRevB.93.201103
– ident: PhysRevX.6.041070Cc10R1
  doi: 10.1103/PhysRevLett.111.127201
– ident: PhysRevX.6.041070Cc19R1
  doi: 10.1016/j.aop.2016.03.010
– ident: PhysRevX.6.041070Cc50R1
  doi: 10.1038/nphys2256
– ident: PhysRevX.6.041070Cc56R1
  doi: 10.1103/PhysRevB.93.245146
– ident: PhysRevX.6.041070Cc20R1
  doi: 10.1103/PhysRevLett.116.250401
– ident: PhysRevX.6.041070Cc62R1
  doi: 10.1103/PhysRevB.82.174411
– ident: PhysRevX.6.041070Cc49R1
  doi: 10.1126/science.1209019
– ident: PhysRevX.6.041070Cc17R1
  doi: 10.1103/PhysRevLett.115.030402
– ident: PhysRevX.6.041070Cc32R1
  doi: 10.1103/PhysRevB.87.155114
– ident: PhysRevX.6.041070Cc18R1
  doi: 10.1103/PhysRevLett.114.140401
– ident: PhysRevX.6.041070Cc16R1
  doi: 10.1103/PhysRevB.89.195130
– ident: PhysRevX.6.041070Cc47R1
  doi: 10.1103/PhysRevLett.108.045305
– ident: PhysRevX.6.041070Cc7R1
  doi: 10.1103/PhysRevB.89.144201
– ident: PhysRevX.6.041070Cc8R1
  doi: 10.1103/PhysRevB.88.014206
– ident: PhysRevX.6.041070Cc61R1
  doi: 10.1103/PhysRevB.93.174202
– ident: PhysRevX.6.041070Cc21R1
  doi: 10.1103/PhysRevB.93.245145
– ident: PhysRevX.6.041070Cc44R1
  doi: 10.1088/1367-2630/12/2/025012
– ident: PhysRevX.6.041070Cc58R1
  doi: 10.1103/PhysRevB.94.085112
– ident: PhysRevX.6.041070Cc23R1
  doi: 10.1103/PhysRevX.6.041001
– ident: PhysRevX.6.041070Cc3R1
  doi: 10.1016/j.aop.2005.10.005
– ident: PhysRevX.6.041070Cc4R1
  doi: 10.1103/PhysRevB.86.125119
– ident: PhysRevX.6.041070Cc45R1
  doi: 10.1016/j.aop.2010.09.012
– ident: PhysRevX.6.041070Cc52R1
  doi: 10.1103/PhysRevLett.114.083002
– ident: PhysRevX.6.041070Cc28R1
  doi: 10.1103/PhysRevB.82.235114
– ident: PhysRevX.6.041070Cc24R1
  doi: 10.1103/PhysRevB.94.125105
– ident: PhysRevX.6.041070Cc26R1
  doi: 10.1103/PhysRevB.87.235131
– ident: PhysRevX.6.041070Cc39R1
  doi: 10.1016/j.aop.2016.01.012
– ident: PhysRevX.6.041070Cc48R1
  doi: 10.1126/sciadv.1500854
– ident: PhysRevX.6.041070Cc13R1
  doi: 10.1103/PhysRevB.94.115115
– ident: PhysRevX.6.041070Cc11R1
  doi: 10.1103/PhysRevB.90.174202
– ident: PhysRevX.6.041070Cc42R1
  doi: 10.1007/BF01645779
– ident: PhysRevX.6.041070Cc6R1
  doi: 10.1038/ncomms8341
– ident: PhysRevX.6.041070Cc15R1
  doi: 10.1103/PhysRevB.90.195115
– ident: PhysRevX.6.041070Cc5R1
  doi: 10.1103/PhysRevB.88.045131
– ident: PhysRevX.6.041070Cc31R1
  doi: 10.1103/PhysRevX.6.021013
– ident: PhysRevX.6.041070Cc30R1
  doi: 10.1103/PhysRevLett.114.056801
– ident: PhysRevX.6.041070Cc38R1
  doi: 10.1103/PhysRevLett.115.256803
SSID ssj0000601477
Score 2.5673485
Snippet We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 041070
SubjectTerms Atoms & subatomic particles
Bosons
Fermions
Hilbert space
Information flow
Laser cooling
Low temperature
Many body interactions
Particle physics
Phases
Quantum computing
Quantum entanglement
Quantum mechanics
Quantum phenomena
Thermalization (energy absorption)
Topology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9-IPgifuL8og8-CXVpk7bpkzhxiqiIONhbSC6JDsaq6xT0r_fSZRMRfG0SKJfc_X53udwRcqwRBHWhUNMYMzGHNI8RFkQsgBrgPkjo_Gvku_v8usdv-lk_BNzqkFY5s4mNoTYV-Bh5O_VUOkO-kJy9vsW-a5S_XQ0tNBbJcpIi1vqX4t2reYzF1xrhRREuMxPK2j6t8tF-9E_zU8rR86G_4Kip2v_HKDdI010na4EiRufTPd0gC3a0SVaaVE2otwi7eBmMcbw79Msn0cMLAlEdVS66Q8WOO5X5jG49Qg2-rIk6FRLqepv0updPF9dxaH0QAxPpJFbopWhtjbAGzYB2AgxSEeNKnhSsVFZnqWOgFC-FAO1SxZwx6E0oxy3KwbEdsjSqRnaXRFbxzGZcAeToOiihM8MBqBO5pg6AtQidSUBCqAvu21MMZeMfUCZnQpO5nAqtRU7mS16nRTH-m9zxYp1P9PWsmw_V-FkG9ZC6LFSJP4N-vuPUIqtMQIvCOcvKTBvVIgezTZFByWr5cyT2_h_eJ6vIc_JpFsoBWZqM3-0hcomJPmoOzDc82Mq6
  priority: 102
  providerName: ProQuest
Title Chiral Floquet Phases of Many-Body Localized Bosons
URI https://www.proquest.com/docview/2550558351
https://doaj.org/article/b97a9cc3eb2f40e1931cb87ffe395bda
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20IngRP7FaSw6ehLTb7CbZHG1pLWJLKRZ6W_aTFkojTRX01zubpKUi6MVrskvCTGbee8lkBqE7CSAoYwGRRoj2qQoiH2CB-Uxhrah7SWjd38iDYdSf0KdpON0Z9eVqwor2wIXhmjKJRaIUAQVoKTbAN1pKsthaQ5JQ6pwa4QTviKkiBwP1j-PyM2YLk6YrqByb92kjamAKmgd_A6K8X_-PdJxjTO8EHZfk0HsobuoU7ZnlGTrMizRVdo5IZzZfwfnewm1fe6MZQFDmpdYbQEj77VR_eM8Om-afRnvtFKh0doEmve5Lp--XQw98RViw9gXoEymNZkZDApCWKQ0kRNuEtmKSCCPDwBIlBE0YU9IGglitQUcISw2wDUsuUWWZLs0V8oygoQmpUCoC0SCYDDVVClsWSWzBpFWENxbgquwI7gZTLHiuDDDhG6PxiBdGq6L77ZbXoh3Gb4vbzqzbha6TdX4A_MtL__K__FtFtY1TeBleGQ-crgqBPLau_-MaN-gIeFBUVKnUUGW9ejO3wDXWso72We-xjg7a3eFoXM8fsi9D1tdl
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gxOiLEdR4grIP8kKy0Nt2d7sPxnjoecAdMQaSe6vttBUScgu3pwb_KP9Gp_txxpDwxuv2I5vpTH-_aaczAG8NgaDJNVka5zYWmGQxwYKMJTKLIhwS-vAaeXKSjc7E0TSdrsCf7i1MCKvs9sR6o7YlhjPy_SRQ6ZT4Qv_91XUcqkaF29WuhEajFsfu5he5bNW7w4-0vjtJMvx0ejCK26oCMXKZLGJNDoAxzkpnycKMl2gJ5a0vRD_nhXYmTTxHrUUhJRqfaO6tJaKuvXAE557TvA9gTXDOQwihHH5enumE3CYiz9vL0z7j-yGM86v7Od3L9pggT4v9B391lYBbIFAj2_ApPGkpafSh0aF1WHGzDXhYh4Zi9Qz4wfnFnNqHl2H4IvpyTsBXRaWPJrSRxIPS3kTjgIgXv52NBiUR-Oo5nN2LUF7A6qycuZcQOS1SlwqNmJGroqVJrUBkXmaGeUTeA9ZJQGGbhzyUw7hUtT_CuOqEpjLVCK0Hu8shV00Sjrs6D4JYlx1D_uz6Qzn_rlpzVKbIdUE_40ziBXPEYvtoZO6940VqrO7BVrcoqjXqSv1TwVd3N2_Do9HpZKzGhyfHm_CYOFbWRMBswepi_sO9Jh6zMG9q5Yng231r61_dPwoh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Floquet+Phases+of+Many-Body+Localized+Bosons&rft.jtitle=Physical+review.+X&rft.au=Hoi+Chun+Po&rft.au=Lukasz+Fidkowski&rft.au=Takahiro+Morimoto&rft.au=Andrew+C.+Potter&rft.date=2016-12-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=6&rft.issue=4&rft.spage=041070&rft_id=info:doi/10.1103%2FPhysRevX.6.041070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b97a9cc3eb2f40e1931cb87ffe395bda
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon