A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting

•We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction acc...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 208; pp. 344 - 360
Main Authors Wang, Jianzhou, Du, Pei, Niu, Tong, Yang, Wendong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2017
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2017.10.031

Cover

Abstract •We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction accuracy and reliability. In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability.
AbstractList In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability.
•We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction accuracy and reliability. In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability.
Author Wang, Jianzhou
Yang, Wendong
Niu, Tong
Du, Pei
Author_xml – sequence: 1
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
– sequence: 2
  givenname: Pei
  surname: Du
  fullname: Du, Pei
  email: renshengdp@126.com
– sequence: 3
  givenname: Tong
  surname: Niu
  fullname: Niu, Tong
– sequence: 4
  givenname: Wendong
  surname: Yang
  fullname: Yang, Wendong
BookMark eNqFkE1u2zAQhYkiBeqkvULBZTdyOJRESUAXNYL-ASm8CdAlQZEjm4ZEqiTtwFm1d8gJe5LSdbPpJqvBPLz3BvNdkgvnHRLyFtgSGIjr3VLN6DBsjkvOoMnikpXwgiygbXjRAbQXZMFKJgouoHtFLmPcMcY4cLYgv1bU-QOOdHvsgzU0HmPCifYqoqHeUUUd3tM5-NmfFDVufLBpO_3--fhtPyZbrPsd6mQPSL9v1Yh0PSc72QeVbE6vnux08IHeW5cPzJh78opaxWTd5jV5Oagx4pt_84rcffp4d_OluF1__nqzui102fJUdDVUoq8qqKqeIzPlMCijAPqu07oahOCsNryFslWiZU3Ly9IYNMI0SgvRlVfk3bk2__JjjzHJyUaN46gc-n2UPCOpG4C6ztb3Z6sOPsaAg9Q2_X0oBWVHCUyewMudfAIvT-BPegaf4-K_-BzspMLx-eCHcxAzhoPFIKO26DQam2klabx9ruIPjtynYA
CitedBy_id crossref_primary_10_1002_cpe_4872
crossref_primary_10_1016_j_energy_2020_119016
crossref_primary_10_1016_j_eswa_2021_114974
crossref_primary_10_1016_j_enconman_2020_112824
crossref_primary_10_1016_j_engappai_2022_105559
crossref_primary_10_1016_j_future_2021_09_032
crossref_primary_10_1016_j_apenergy_2017_11_071
crossref_primary_10_1016_j_asoc_2023_110310
crossref_primary_10_1016_j_renene_2020_08_077
crossref_primary_10_1007_s00500_021_06101_9
crossref_primary_10_1016_j_tsep_2024_102402
crossref_primary_10_1002_for_2888
crossref_primary_10_1016_j_energy_2022_124288
crossref_primary_10_1016_j_eswa_2023_119636
crossref_primary_10_1155_2020_9601763
crossref_primary_10_1016_j_energy_2018_01_112
crossref_primary_10_1016_j_renene_2023_119097
crossref_primary_10_1016_j_renene_2018_11_061
crossref_primary_10_1016_j_renene_2019_04_157
crossref_primary_10_1016_j_knosys_2022_108687
crossref_primary_10_1007_s00500_021_06441_6
crossref_primary_10_1109_ACCESS_2019_2905009
crossref_primary_10_1109_JSEN_2022_3151932
crossref_primary_10_1016_j_eswa_2024_123965
crossref_primary_10_1109_TSTE_2020_2976038
crossref_primary_10_1016_j_jclepro_2019_03_036
crossref_primary_10_1016_j_jhydrol_2020_124977
crossref_primary_10_1109_ACCESS_2019_2938857
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_1002_2050_7038_12188
crossref_primary_10_1016_j_eswa_2024_123160
crossref_primary_10_1155_2020_1246920
crossref_primary_10_1016_j_jweia_2021_104550
crossref_primary_10_3390_su11020526
crossref_primary_10_1007_s10489_020_02018_2
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_1016_j_engappai_2019_103457
crossref_primary_10_1007_s10479_022_04781_6
crossref_primary_10_1007_s43452_024_00905_w
crossref_primary_10_1016_j_eswa_2023_119970
crossref_primary_10_1007_s00366_019_00917_8
crossref_primary_10_1007_s10489_018_1362_4
crossref_primary_10_3390_electronics10232975
crossref_primary_10_1007_s40998_020_00347_z
crossref_primary_10_1109_ACCESS_2020_3000770
crossref_primary_10_1016_j_jclepro_2020_124183
crossref_primary_10_1007_s13762_022_04525_w
crossref_primary_10_1016_j_enconman_2018_02_012
crossref_primary_10_1016_j_energy_2023_128225
crossref_primary_10_3390_en11040712
crossref_primary_10_1016_j_eswa_2022_116509
crossref_primary_10_1016_j_physa_2019_123094
crossref_primary_10_3390_en12132467
crossref_primary_10_3390_en16145281
crossref_primary_10_1016_j_apenergy_2021_116545
crossref_primary_10_1016_j_knosys_2021_107435
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1016_j_knosys_2018_10_036
crossref_primary_10_1016_j_asoc_2019_105937
crossref_primary_10_1177_0309524X211046382
crossref_primary_10_1007_s13748_024_00319_y
crossref_primary_10_1016_j_renene_2018_01_113
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1007_s40430_023_04632_w
crossref_primary_10_1016_j_energy_2021_121981
crossref_primary_10_1016_j_eswa_2023_122912
crossref_primary_10_1016_j_neucom_2024_127764
crossref_primary_10_3390_sym14102036
crossref_primary_10_1002_2050_7038_13010
crossref_primary_10_1109_TNSE_2022_3188881
crossref_primary_10_1016_j_asoc_2019_03_035
crossref_primary_10_1016_j_eswa_2023_121194
crossref_primary_10_1155_2021_8878686
crossref_primary_10_1007_s11063_020_10300_0
crossref_primary_10_1016_j_apenergy_2021_116458
crossref_primary_10_1016_j_enconman_2023_117763
crossref_primary_10_1016_j_engappai_2020_103733
crossref_primary_10_1016_j_renene_2020_09_110
crossref_primary_10_1016_j_physa_2018_12_017
crossref_primary_10_1002_ente_202100700
crossref_primary_10_1016_j_apenergy_2023_122341
crossref_primary_10_1016_j_knosys_2019_07_024
crossref_primary_10_3390_en11071712
crossref_primary_10_1016_j_apenergy_2018_02_070
crossref_primary_10_3390_sym10060210
crossref_primary_10_1016_j_eswa_2024_126361
crossref_primary_10_1016_j_jenvman_2024_122275
crossref_primary_10_1016_j_apenergy_2018_04_101
crossref_primary_10_1016_j_jclepro_2019_06_201
crossref_primary_10_1155_2020_9318308
crossref_primary_10_1016_j_knosys_2019_01_015
crossref_primary_10_1177_0309524X19882429
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1111_exsy_13620
crossref_primary_10_1016_j_enconman_2019_111914
crossref_primary_10_1016_j_apenergy_2024_124631
crossref_primary_10_1016_j_energy_2024_130927
crossref_primary_10_1016_j_asoc_2024_111435
crossref_primary_10_1016_j_apm_2020_07_019
crossref_primary_10_1155_2020_5071267
crossref_primary_10_1007_s00158_023_03639_0
crossref_primary_10_1016_j_ijhydene_2021_03_105
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1155_2020_8810759
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1016_j_asoc_2020_106116
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1016_j_asoc_2020_106917
crossref_primary_10_1016_j_eswa_2019_113018
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_1109_ACCESS_2019_2908200
crossref_primary_10_1109_ACCESS_2019_2951153
crossref_primary_10_1016_j_enconman_2018_12_020
crossref_primary_10_3390_electronics12122718
crossref_primary_10_1016_j_jenvman_2019_109855
crossref_primary_10_1002_cpe_5949
crossref_primary_10_3390_su10124601
crossref_primary_10_3390_atmos10040223
crossref_primary_10_1007_s11356_022_23773_4
crossref_primary_10_1016_j_eswa_2020_113237
crossref_primary_10_1016_j_enconman_2022_116022
crossref_primary_10_1016_j_measurement_2020_108373
crossref_primary_10_1016_j_enconman_2020_113500
crossref_primary_10_3390_en12010147
crossref_primary_10_1016_j_apenergy_2019_01_010
crossref_primary_10_1016_j_eswa_2019_112972
crossref_primary_10_1016_j_renene_2020_03_098
crossref_primary_10_1016_j_energy_2022_126179
crossref_primary_10_3390_en12081520
crossref_primary_10_1016_j_matcom_2021_07_010
crossref_primary_10_1016_j_swevo_2019_03_004
crossref_primary_10_1016_j_epsr_2022_108765
crossref_primary_10_1016_j_apenergy_2018_08_114
crossref_primary_10_1016_j_apenergy_2018_09_012
crossref_primary_10_1016_j_renene_2018_12_035
crossref_primary_10_1016_j_knosys_2021_107009
crossref_primary_10_1016_j_est_2025_116125
crossref_primary_10_1016_j_neucom_2020_12_065
crossref_primary_10_1016_j_apenergy_2019_01_063
crossref_primary_10_1007_s00202_020_00983_y
crossref_primary_10_3390_su17052172
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1007_s00521_020_04849_z
crossref_primary_10_3390_pr10020197
crossref_primary_10_1016_j_energy_2023_129618
crossref_primary_10_1016_j_ijepes_2022_108726
crossref_primary_10_3390_su12041489
crossref_primary_10_1007_s11042_020_09639_2
crossref_primary_10_1016_j_enconman_2022_116246
crossref_primary_10_1016_j_est_2024_110785
crossref_primary_10_1109_MCI_2021_3084416
crossref_primary_10_1109_ACCESS_2020_2989445
crossref_primary_10_1016_j_apenergy_2018_11_063
crossref_primary_10_1016_j_asoc_2020_106294
crossref_primary_10_1109_ACCESS_2019_2940897
crossref_primary_10_1016_j_energy_2024_132192
crossref_primary_10_1016_j_epsr_2022_108863
crossref_primary_10_1063_1_5064438
crossref_primary_10_3390_pr7110843
crossref_primary_10_1108_GS_08_2020_0101
crossref_primary_10_1016_j_heliyon_2023_e16671
crossref_primary_10_1016_j_enconman_2021_114667
crossref_primary_10_1007_s11276_022_03048_z
crossref_primary_10_1016_j_jclepro_2018_10_129
crossref_primary_10_1007_s13369_022_06655_2
crossref_primary_10_1080_0305215X_2019_1624740
crossref_primary_10_1016_j_resourpol_2020_101881
crossref_primary_10_1016_j_apenergy_2018_06_053
crossref_primary_10_1016_j_eswa_2024_124560
crossref_primary_10_1007_s10489_020_01816_y
crossref_primary_10_1016_j_energy_2019_06_075
crossref_primary_10_3390_math12071049
crossref_primary_10_1016_j_jclepro_2019_119082
crossref_primary_10_1016_j_seta_2023_103603
crossref_primary_10_1016_j_ijhydene_2021_10_154
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_1016_j_energy_2019_02_141
crossref_primary_10_1007_s00500_020_05183_1
crossref_primary_10_1016_j_enconman_2018_08_053
crossref_primary_10_1016_j_renene_2022_02_005
crossref_primary_10_1016_j_apenergy_2018_06_117
crossref_primary_10_3390_app9030423
crossref_primary_10_3390_risks12020018
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1016_j_energy_2023_129139
crossref_primary_10_1016_j_energy_2019_02_194
crossref_primary_10_1111_coin_12259
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_3390_su10113913
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1007_s00521_022_07303_4
crossref_primary_10_1016_j_solener_2023_112241
crossref_primary_10_1016_j_enconman_2024_118865
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_apenergy_2019_05_044
crossref_primary_10_1016_j_energy_2019_02_080
crossref_primary_10_1016_j_jwpe_2020_101487
crossref_primary_10_1016_j_ijpe_2019_03_001
crossref_primary_10_1016_j_bspc_2019_101728
crossref_primary_10_1109_ACCESS_2020_3001151
crossref_primary_10_1155_2019_7561398
crossref_primary_10_1016_j_engappai_2023_107034
crossref_primary_10_1016_j_iswa_2022_200138
crossref_primary_10_3233_JIFS_191747
crossref_primary_10_1007_s13369_021_06042_3
crossref_primary_10_1080_15397734_2024_2321971
crossref_primary_10_1109_TSTE_2019_2890875
crossref_primary_10_1007_s10462_020_09933_3
crossref_primary_10_1155_2019_8418369
crossref_primary_10_1186_s40537_021_00415_z
crossref_primary_10_1016_j_apenergy_2018_12_009
crossref_primary_10_1007_s11771_023_5432_3
crossref_primary_10_1007_s00170_022_09669_0
crossref_primary_10_1016_j_soildyn_2019_106012
crossref_primary_10_1016_j_asoc_2020_106620
crossref_primary_10_1088_1742_6596_1682_1_012009
crossref_primary_10_3390_en15249261
crossref_primary_10_1016_j_asoc_2020_106625
crossref_primary_10_3390_buildings12010054
crossref_primary_10_1016_j_apenergy_2018_03_180
crossref_primary_10_1007_s40565_019_00571_5
crossref_primary_10_1016_j_renene_2024_120350
crossref_primary_10_1016_j_knosys_2020_106642
crossref_primary_10_1016_j_apm_2019_07_001
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_3390_automation4030017
crossref_primary_10_1016_j_asoc_2018_07_022
crossref_primary_10_1016_j_est_2025_115706
crossref_primary_10_3390_en12101931
crossref_primary_10_3390_pr10061074
crossref_primary_10_1007_s11356_020_11065_8
crossref_primary_10_1007_s10489_018_1334_8
crossref_primary_10_1016_j_energy_2022_124957
Cites_doi 10.1016/j.eswa.2015.10.039
10.1142/S1793536910000422
10.1016/j.atmosenv.2016.08.012
10.1016/j.asoc.2013.04.005
10.1016/j.neucom.2006.01.032
10.1016/j.enconman.2017.04.012
10.1109/4235.585893
10.1016/j.renene.2014.11.011
10.1207/s15516709cog1402_1
10.1109/TSP.2013.2288675
10.1016/j.enconman.2016.05.024
10.1109/TMAG.2009.2012586
10.1021/ac00020a022
10.1016/j.enconman.2016.06.053
10.1109/ICASSP.2011.5947265
10.1016/j.apenergy.2016.03.096
10.1109/4235.996017
10.1098/rspa.1998.0193
10.1007/978-3-642-12538-6_6
10.1016/j.energy.2015.08.039
10.1016/j.ymssp.2015.03.002
10.1016/j.asoc.2017.01.033
10.1016/j.renene.2016.03.103
10.1016/j.atmosenv.2016.10.046
10.1016/j.apenergy.2016.08.108
10.1016/j.enconman.2016.02.013
10.1007/s00521-015-1920-1
10.1016/j.enconman.2015.04.057
10.1016/j.apenergy.2017.04.008
10.1016/j.enconman.2017.01.022
10.1016/j.rser.2013.12.054
10.1016/j.advengsoft.2016.01.008
10.1016/j.enconman.2016.08.086
10.1016/S0893-6080(97)00111-1
10.1016/j.rser.2014.03.033
10.1007/s10489-016-0825-8
10.1016/j.apenergy.2015.01.038
10.1016/j.enconman.2017.03.054
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.10.031
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 360
ExternalDocumentID 10_1016_j_apenergy_2017_10_031
S0306261917314307
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c382t-95146b44144b2e0d3ffada11b99cc4f66205d28138a68078233dded6d7ac6693
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sat Sep 27 20:49:52 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Thu Oct 09 00:29:11 EDT 2025
Fri Feb 23 02:31:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Forecasting accuracy and stability
Hybrid forecasting system
Multi-Objective Whale Optimization Algorithm
Wind speed forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-95146b44144b2e0d3ffada11b99cc4f66205d28138a68078233dded6d7ac6693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000571155
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2000571155
crossref_citationtrail_10_1016_j_apenergy_2017_10_031
crossref_primary_10_1016_j_apenergy_2017_10_031
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_031
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aghajani, Kazemzadeh, Ebrahimi (b0070) 2016; 121
Wang, Zhang, Wu, Wang (b0115) 2016; 94
Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE int conf acoust speech signal process, vol. 7; 2011, p. 4144–7. 10.1109/ICASSP.2011 5947265
Zhang, Morris (b0215) 1998; 11
Lange, Focken (b0045) 2006
Wang, Wang, Jiang (b0060) 2015; 143
Yeh, Shieh, Huang (b0190) 2010; 02
Elman (b0205) 1990; 14
Wang, Wang, Li, Peng, Liu (b0010) 2016; 182
Prakash, Lakshminarayana (b0180) 2016
Xiao, Qian, Shao (b0120) 2017; 143
Wang, Heng, Xiao, Wang (b0130) 2017
Jiang, Dong (b0065) 2017; 142
Punnathanam, Kotecha (b0150) 2016
Zhang, Qu, Zhang, Mao, Ma, Fan (b0040) 2017; 136
Wang, Wang, Wei (b0035) 2015; 91
Wang, Qin, Zhou, Jiang (b0050) 2015; 76
Mirjalili, Saremi, Mirjalili, Coelho (b0170) 2016; 47
Sun, Qiao, Wei, Wang (b0125) 2017; 197
Ardalani-farsa, Zolfaghari (b0210) 2010; 73
Huang, Shen, Long, Wu, Shih, Zheng (b0195) 1998; 454
Jung, Broadwater (b0030) 2014; 31
Okumus, Dinler (b0080) 2016; 123
Ma, Jin, Dong (b0100) 2017; 54
Meng, Ge, Yin, Chen (b0020) 2016; 114
Mirjalili (b0145) 2016; 27
Zhang, Wei, Zhao, Liu, Zhang (b0025) 2016; 126
Xue, Zhou, Xu, Zhu, Li (b0200) 2015; 62
Mirjalili, Jangir, Saremi (b0140) 2017; 46
Global Wind Energy Council (b0015) 2016
Mirjalili, Lewis (b0095) 2016; 95
Dragomiretskiy, Zosso (b0105) 2014; 62
Prasad, Gorai, Goyal (b0225) 2016; 142
Lu, Ireland (b0160) 2009; 45
Wolpert, Macready (b0165) 1997; 1
Liu, Tian, Li (b0075) 2015; 100
Xu, Yang, Wang (b0175) 2017; 148
Bureerat, Sriworamas (b0155) 2013; 13
Barbounis, Theocharis (b0055) 2007; 70
Zhao, Ye, Li, Song, Lang, Su (b0005) 2016; 177
Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence, vol. 284. Berlin: Springer Verlag; 2010. p. 65–74.
Deb, Pratap, Agarwal, Meyarivan (b0135) 2002; 6
Gemperline, Long, Gregoriou (b0220) 1991; 63
Tascikaraoglu, Uzunoglu (b0085) 2014; 34
El, Ewees, Hassanien (b0185) 2017
Lu (10.1016/j.apenergy.2017.10.031_b0160) 2009; 45
Barbounis (10.1016/j.apenergy.2017.10.031_b0055) 2007; 70
Lange (10.1016/j.apenergy.2017.10.031_b0045) 2006
Mirjalili (10.1016/j.apenergy.2017.10.031_b0140) 2017; 46
Yeh (10.1016/j.apenergy.2017.10.031_b0190) 2010; 02
Jung (10.1016/j.apenergy.2017.10.031_b0030) 2014; 31
Ardalani-farsa (10.1016/j.apenergy.2017.10.031_b0210) 2010; 73
Zhang (10.1016/j.apenergy.2017.10.031_b0025) 2016; 126
Tascikaraoglu (10.1016/j.apenergy.2017.10.031_b0085) 2014; 34
Wang (10.1016/j.apenergy.2017.10.031_b0060) 2015; 143
Ma (10.1016/j.apenergy.2017.10.031_b0100) 2017; 54
Huang (10.1016/j.apenergy.2017.10.031_b0195) 1998; 454
Okumus (10.1016/j.apenergy.2017.10.031_b0080) 2016; 123
Mirjalili (10.1016/j.apenergy.2017.10.031_b0095) 2016; 95
Wang (10.1016/j.apenergy.2017.10.031_b0130) 2017
Punnathanam (10.1016/j.apenergy.2017.10.031_b0150) 2016
El (10.1016/j.apenergy.2017.10.031_b0185) 2017
Zhang (10.1016/j.apenergy.2017.10.031_b0215) 1998; 11
Wang (10.1016/j.apenergy.2017.10.031_b0010) 2016; 182
Xiao (10.1016/j.apenergy.2017.10.031_b0120) 2017; 143
Meng (10.1016/j.apenergy.2017.10.031_b0020) 2016; 114
Prakash (10.1016/j.apenergy.2017.10.031_b0180) 2016
Xue (10.1016/j.apenergy.2017.10.031_b0200) 2015; 62
10.1016/j.apenergy.2017.10.031_b0110
Zhang (10.1016/j.apenergy.2017.10.031_b0040) 2017; 136
Liu (10.1016/j.apenergy.2017.10.031_b0075) 2015; 100
Gemperline (10.1016/j.apenergy.2017.10.031_b0220) 1991; 63
Bureerat (10.1016/j.apenergy.2017.10.031_b0155) 2013; 13
Sun (10.1016/j.apenergy.2017.10.031_b0125) 2017; 197
Wang (10.1016/j.apenergy.2017.10.031_b0035) 2015; 91
Aghajani (10.1016/j.apenergy.2017.10.031_b0070) 2016; 121
Deb (10.1016/j.apenergy.2017.10.031_b0135) 2002; 6
Mirjalili (10.1016/j.apenergy.2017.10.031_b0170) 2016; 47
Jiang (10.1016/j.apenergy.2017.10.031_b0065) 2017; 142
Dragomiretskiy (10.1016/j.apenergy.2017.10.031_b0105) 2014; 62
Elman (10.1016/j.apenergy.2017.10.031_b0205) 1990; 14
Prasad (10.1016/j.apenergy.2017.10.031_b0225) 2016; 142
Wolpert (10.1016/j.apenergy.2017.10.031_b0165) 1997; 1
Global Wind Energy Council (10.1016/j.apenergy.2017.10.031_b0015) 2016
Xu (10.1016/j.apenergy.2017.10.031_b0175) 2017; 148
Wang (10.1016/j.apenergy.2017.10.031_b0115) 2016; 94
Wang (10.1016/j.apenergy.2017.10.031_b0050) 2015; 76
10.1016/j.apenergy.2017.10.031_b0090
Zhao (10.1016/j.apenergy.2017.10.031_b0005) 2016; 177
Mirjalili (10.1016/j.apenergy.2017.10.031_b0145) 2016; 27
References_xml – volume: 126
  start-page: 1084
  year: 2016
  end-page: 1092
  ident: b0025
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers Manage
– volume: 13
  start-page: 3693
  year: 2013
  end-page: 3702
  ident: b0155
  article-title: Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm
  publication-title: Appl Soft Comput
– volume: 76
  start-page: 91
  year: 2015
  end-page: 101
  ident: b0050
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
  publication-title: Renew Energy
– year: 2017
  ident: b0185
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst Appl
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b0010
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
– volume: 197
  start-page: 151
  year: 2017
  end-page: 162
  ident: b0125
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl Energy
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0165
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b0115
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
– volume: 143
  start-page: 472
  year: 2015
  end-page: 488
  ident: b0060
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
– volume: 100
  start-page: 16
  year: 2015
  end-page: 22
  ident: b0075
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
– volume: 45
  start-page: 1072
  year: 2009
  end-page: 1075
  ident: b0160
  article-title: Lewis a. Multi-objective optimization in high frequency electromagnetics—an effective technique for smart mobile terminal antenna (SMTA) design
  publication-title: IEEE Trans Magn
– year: 2006
  ident: b0045
  publication-title: Physical approach to short-term wind power prediction
– volume: 142
  start-page: 370
  year: 2016
  ident: b0225
  article-title: Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time
  publication-title: Atmos Environ
– start-page: 2017
  year: 2016
  ident: b0015
  publication-title: Global wind statistics
– volume: 91
  start-page: 556
  year: 2015
  end-page: 572
  ident: b0035
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
  publication-title: Energy
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0135
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– year: 2016
  ident: b0180
  article-title: Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm
  publication-title: Alex Eng J
– year: 2016
  ident: b0150
  article-title: Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization
  publication-title: Energy Convers Manage
– volume: 121
  start-page: 232
  year: 2016
  end-page: 240
  ident: b0070
  article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
  publication-title: Energy Convers Manage
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0105
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0145
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– start-page: 125
  year: 2017
  ident: b0130
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b0140
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Intell
– volume: 63
  start-page: 2313
  year: 1991
  end-page: 2323
  ident: b0220
  article-title: Nonlinear multivariate calibration using principal components regression and artificial neural networks
  publication-title: Anal Chem
– volume: 143
  start-page: 410
  year: 2017
  end-page: 430
  ident: b0120
  article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
  publication-title: Energy Convers Manage
– volume: 11
  start-page: 65
  year: 1998
  end-page: 80
  ident: b0215
  article-title: A sequential learning approach for single hidden layer neural networks
  publication-title: Neural Netw
– volume: 114
  start-page: 75
  year: 2016
  end-page: 88
  ident: b0020
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
– volume: 136
  start-page: 439
  year: 2017
  end-page: 451
  ident: b0040
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
– volume: 177
  start-page: 793
  year: 2016
  end-page: 803
  ident: b0005
  article-title: A novel bidirectional mechanism based on time series model for wind power forecasting
  publication-title: Appl Energy
– volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b0085
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
– volume: 70
  start-page: 1525
  year: 2007
  end-page: 1542
  ident: b0055
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
– volume: 148
  start-page: 239
  year: 2017
  end-page: 257
  ident: b0175
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
– volume: 02
  start-page: 135
  year: 2010
  end-page: 156
  ident: b0190
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv Adapt Data Anal
– volume: 142
  start-page: 307
  year: 2017
  end-page: 321
  ident: b0065
  article-title: Forecast of hourly global horizontal irradiance based on structured Kernel Support Vector Machine: a case study of Tibet area in China
  publication-title: Energy Convers Manage
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b0170
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
– volume: 73
  start-page: 2540
  year: 2010
  end-page: 2553
  ident: b0210
  article-title: Neurocomputing Chaotic time series prediction with residual analysis method using hybrid Elman–NARX
  publication-title: Neural networks
– reference: Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE int conf acoust speech signal process, vol. 7; 2011, p. 4144–7. 10.1109/ICASSP.2011 5947265
– volume: 62
  start-page: 444
  year: 2015
  end-page: 459
  ident: b0200
  article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b0205
  article-title: Finding structure in time
  publication-title: Cogn Sci
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0095
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 123
  start-page: 362
  year: 2016
  end-page: 371
  ident: b0080
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
– reference: Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence, vol. 284. Berlin: Springer Verlag; 2010. p. 65–74.
– volume: 54
  start-page: 296
  year: 2017
  end-page: 312
  ident: b0100
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl Soft Comput
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: b0030
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0170
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 02
  start-page: 135
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.031_b0190
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv Adapt Data Anal
  doi: 10.1142/S1793536910000422
– volume: 142
  start-page: 370
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0225
  article-title: Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.08.012
– volume: 13
  start-page: 3693
  issue: 8
  year: 2013
  ident: 10.1016/j.apenergy.2017.10.031_b0155
  article-title: Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.04.005
– volume: 70
  start-page: 1525
  year: 2007
  ident: 10.1016/j.apenergy.2017.10.031_b0055
  article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.01.032
– volume: 143
  start-page: 410
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0120
  article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.012
– year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0180
  article-title: Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm
  publication-title: Alex Eng J
– year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0185
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst Appl
– year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0150
  article-title: Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization
  publication-title: Energy Convers Manage
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.apenergy.2017.10.031_b0165
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– year: 2006
  ident: 10.1016/j.apenergy.2017.10.031_b0045
– volume: 76
  start-page: 91
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.031_b0050
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.11.011
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.apenergy.2017.10.031_b0205
  article-title: Finding structure in time
  publication-title: Cogn Sci
  doi: 10.1207/s15516709cog1402_1
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.031_b0105
  article-title: Variational mode decomposition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 73
  start-page: 2540
  year: 2010
  ident: 10.1016/j.apenergy.2017.10.031_b0210
  article-title: Neurocomputing Chaotic time series prediction with residual analysis method using hybrid Elman–NARX
  publication-title: Neural networks
– volume: 121
  start-page: 232
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0070
  article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.05.024
– volume: 45
  start-page: 1072
  year: 2009
  ident: 10.1016/j.apenergy.2017.10.031_b0160
  article-title: Lewis a. Multi-objective optimization in high frequency electromagnetics—an effective technique for smart mobile terminal antenna (SMTA) design
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2009.2012586
– volume: 63
  start-page: 2313
  year: 1991
  ident: 10.1016/j.apenergy.2017.10.031_b0220
  article-title: Nonlinear multivariate calibration using principal components regression and artificial neural networks
  publication-title: Anal Chem
  doi: 10.1021/ac00020a022
– volume: 123
  start-page: 362
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0080
  article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.06.053
– ident: 10.1016/j.apenergy.2017.10.031_b0110
  doi: 10.1109/ICASSP.2011.5947265
– volume: 177
  start-page: 793
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0005
  article-title: A novel bidirectional mechanism based on time series model for wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.096
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.apenergy.2017.10.031_b0135
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.apenergy.2017.10.031_b0195
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– ident: 10.1016/j.apenergy.2017.10.031_b0090
  doi: 10.1007/978-3-642-12538-6_6
– volume: 91
  start-page: 556
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.031_b0035
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.039
– volume: 62
  start-page: 444
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.031_b0200
  article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.03.002
– start-page: 2017
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0015
  publication-title: Global wind statistics
– volume: 54
  start-page: 296
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0100
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.01.033
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0115
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 148
  start-page: 239
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0175
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.10.046
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0010
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 114
  start-page: 75
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0020
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.02.013
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0145
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– volume: 100
  start-page: 16
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.031_b0075
  article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.04.057
– volume: 197
  start-page: 151
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0125
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.008
– volume: 136
  start-page: 439
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0040
  article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.01.022
– volume: 31
  start-page: 762
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.031_b0030
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.054
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0095
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 126
  start-page: 1084
  year: 2016
  ident: 10.1016/j.apenergy.2017.10.031_b0025
  article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.086
– volume: 11
  start-page: 65
  year: 1998
  ident: 10.1016/j.apenergy.2017.10.031_b0215
  article-title: A sequential learning approach for single hidden layer neural networks
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(97)00111-1
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.apenergy.2017.10.031_b0085
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.033
– volume: 46
  start-page: 79
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0140
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0825-8
– volume: 143
  start-page: 472
  year: 2015
  ident: 10.1016/j.apenergy.2017.10.031_b0060
  article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.038
– volume: 142
  start-page: 307
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0065
  article-title: Forecast of hourly global horizontal irradiance based on structured Kernel Support Vector Machine: a case study of Tibet area in China
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.03.054
– start-page: 125
  year: 2017
  ident: 10.1016/j.apenergy.2017.10.031_b0130
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
SSID ssj0002120
Score 2.6272078
Snippet •We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed...
In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 344
SubjectTerms algorithms
Forecasting accuracy and stability
Hybrid forecasting system
managers
Multi-Objective Whale Optimization Algorithm
prediction
researchers
whales
wind speed
Wind speed forecasting
Title A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
URI https://dx.doi.org/10.1016/j.apenergy.2017.10.031
https://www.proquest.com/docview/2000571155
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QuMAB8RTjpSBx7bY2adoeJwQaIOAACG5VmmRs09ZW2wBxQfAf-IX8Euw25SUhDki9JLKrKk7sr4o_m5A9wBzaC0PjtABcOJx7Co6UhqFRXROa0A818p1Pz0Tnih_f-DczZL_iwmBapfX9pU8vvLWdadrVbOb9fvMC0S7ifzdgEPQLRjnnAXYxaDx9pnl4tjQjCDso_YUlPGjI3BQMO0zxChqY5cXc3wLUD1ddxJ_DRbJggSNtl9-2RGZMukzmv5QTXCZrB5-sNRC1x3ayQl7aNM3uzZD2HpGgRcvyzRQjmKZZSiUFcE1zbJiAM3J4m437097o7fm1IOg658mgdIz0ugcRhZ6DoxlZBidtV-IUADB9gJ98OskhKOLQKDnBxOpVcnl4cLnfcWzvBUex0Js6ALy4SAArcZ54pqVZtyu1dN0kipTiXSG8lg9GdlkoBZas9xgDR6mFDqQSImJrpJZmqVknNADEoFnkG64SeGBPAEIDXSa0MiLUdeJX6x0rW5cc22MM4yoBbRBXdorRTjgPdqqT5odeXlbm-FMjqswZf9tjMYSPP3V3K_vHcADxVkWmJrubYB9PwLwArP2Nf7x_k8zhCBNlXH-L1KbjO7MNcGea7BT7eYfMto9OOmfv3HUD9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIAD4ineBIlrt7VJ0_Y4IdB4HxiCW5UmGds02ooNEBcE_4FfyC_BblNeEuKA1EtSu6rqxP6i-rMJ2QHMob0wNE4DwIXDuadgS2kYGtUxoQn9UCPf-eRUtC744ZV_NUZ2Ky4MplVa31_69MJb25m6_Zr1vNernyPaRfzvBgyCPjLKJ7jvBXgCqz195nl4tjYjSDso_oUm3K_J3BQUO8zxCmqY5sXc3yLUD19dBKD9WTJjkSNtli83R8ZMOk-mv9QTnCdLe5-0NRC1-3a4QF6aNM3uzYB2H5GhRcv6zRRDmKZZSiUFdE1z7JiAM3Jwnd32Rt2bt-fXgqHrnCX90jPSyy6EFHoGnubGUjhpsxKngIDpA5zy6TCHqIhDo-QQM6sXSXt_r73bcmzzBUex0Bs5gLy4SAAscZ54pqFZpyO1dN0kipTiHSG8hg9WdlkoBdas9xgDT6mFDqQSImJLZDzNUrNMaACQQbPIN1wlcMGiAIgGukxoZUSoV4hffe9Y2cLk2B9jEFcZaP24slOMdsJ5sNMKqX_o5WVpjj81osqc8bdFFkP8-FN3u7J_DDsQf6vI1GR3Q2zkCaAXkLW_-o_nb5HJVvvkOD4-OD1aI1N4B7NmXH-djI9u78wGYJ9Rslms7XfKNgWJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+system+based+on+a+new+proposed+algorithm%E2%80%94Multi-Objective+Whale+Optimization+Algorithm+for+wind+speed+forecasting&rft.jtitle=Applied+energy&rft.au=Wang%2C+Jianzhou&rft.au=Du%2C+Pei&rft.au=Niu%2C+Tong&rft.au=Yang%2C+Wendong&rft.date=2017-12-15&rft.issn=0306-2619&rft.volume=208+p.344-360&rft.spage=344&rft.epage=360&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon