A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting
•We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction acc...
Saved in:
| Published in | Applied energy Vol. 208; pp. 344 - 360 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2017.10.031 |
Cover
| Abstract | •We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction accuracy and reliability.
In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability. |
|---|---|
| AbstractList | In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability. •We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed forecasting.•The new proposed model is compared to sixteen models for wind speed prediction.•The proposed hybrid system demonstrates higher prediction accuracy and reliability. In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power dispatching and power grid security. However, most previous research has focused only on enhancing either accuracy or stability, with few studies addressing the two issues, simultaneously. This task is challenging due to the intermittency and complex fluctuations of wind speed. Therefore, we proposed a novel hybrid system based on a newly proposed called the MOWOA, which includes four modules: a data preprocessing module, optimization module, forecasting module, and evaluation module. An effective decomposing technique is also applied to eliminate redundant noise and extract the primary characteristics of wind speed data. In order to obtain high accuracy, and stability for wind speed prediction simultaneously, and overcome the weaknesses of single objective optimization algorithms, the optimization module of the proposed MOWOA is utilized to optimize the weights and thresholds of the Elman neutral network used in the forecasting module. Finally, the evaluation module, which includes hypothesis testing, evaluation criteria, and three experiments, is introduced perform comprehensive evaluation on the system. The results indicate that the proposed MOWOA performs better than the two recently developed MOALO and MODA algorithms, and that the proposed hybrid model outperforms all sixteen models used for comparison, which demonstrates its superior ability to generate forecasts in terms of forecasting accuracy and stability. |
| Author | Wang, Jianzhou Yang, Wendong Niu, Tong Du, Pei |
| Author_xml | – sequence: 1 givenname: Jianzhou surname: Wang fullname: Wang, Jianzhou – sequence: 2 givenname: Pei surname: Du fullname: Du, Pei email: renshengdp@126.com – sequence: 3 givenname: Tong surname: Niu fullname: Niu, Tong – sequence: 4 givenname: Wendong surname: Yang fullname: Yang, Wendong |
| BookMark | eNqFkE1u2zAQhYkiBeqkvULBZTdyOJRESUAXNYL-ASm8CdAlQZEjm4ZEqiTtwFm1d8gJe5LSdbPpJqvBPLz3BvNdkgvnHRLyFtgSGIjr3VLN6DBsjkvOoMnikpXwgiygbXjRAbQXZMFKJgouoHtFLmPcMcY4cLYgv1bU-QOOdHvsgzU0HmPCifYqoqHeUUUd3tM5-NmfFDVufLBpO_3--fhtPyZbrPsd6mQPSL9v1Yh0PSc72QeVbE6vnux08IHeW5cPzJh78opaxWTd5jV5Oagx4pt_84rcffp4d_OluF1__nqzui102fJUdDVUoq8qqKqeIzPlMCijAPqu07oahOCsNryFslWiZU3Ly9IYNMI0SgvRlVfk3bk2__JjjzHJyUaN46gc-n2UPCOpG4C6ztb3Z6sOPsaAg9Q2_X0oBWVHCUyewMudfAIvT-BPegaf4-K_-BzspMLx-eCHcxAzhoPFIKO26DQam2klabx9ruIPjtynYA |
| CitedBy_id | crossref_primary_10_1002_cpe_4872 crossref_primary_10_1016_j_energy_2020_119016 crossref_primary_10_1016_j_eswa_2021_114974 crossref_primary_10_1016_j_enconman_2020_112824 crossref_primary_10_1016_j_engappai_2022_105559 crossref_primary_10_1016_j_future_2021_09_032 crossref_primary_10_1016_j_apenergy_2017_11_071 crossref_primary_10_1016_j_asoc_2023_110310 crossref_primary_10_1016_j_renene_2020_08_077 crossref_primary_10_1007_s00500_021_06101_9 crossref_primary_10_1016_j_tsep_2024_102402 crossref_primary_10_1002_for_2888 crossref_primary_10_1016_j_energy_2022_124288 crossref_primary_10_1016_j_eswa_2023_119636 crossref_primary_10_1155_2020_9601763 crossref_primary_10_1016_j_energy_2018_01_112 crossref_primary_10_1016_j_renene_2023_119097 crossref_primary_10_1016_j_renene_2018_11_061 crossref_primary_10_1016_j_renene_2019_04_157 crossref_primary_10_1016_j_knosys_2022_108687 crossref_primary_10_1007_s00500_021_06441_6 crossref_primary_10_1109_ACCESS_2019_2905009 crossref_primary_10_1109_JSEN_2022_3151932 crossref_primary_10_1016_j_eswa_2024_123965 crossref_primary_10_1109_TSTE_2020_2976038 crossref_primary_10_1016_j_jclepro_2019_03_036 crossref_primary_10_1016_j_jhydrol_2020_124977 crossref_primary_10_1109_ACCESS_2019_2938857 crossref_primary_10_1007_s11831_024_10182_8 crossref_primary_10_1002_2050_7038_12188 crossref_primary_10_1016_j_eswa_2024_123160 crossref_primary_10_1155_2020_1246920 crossref_primary_10_1016_j_jweia_2021_104550 crossref_primary_10_3390_su11020526 crossref_primary_10_1007_s10489_020_02018_2 crossref_primary_10_1016_j_apenergy_2019_05_016 crossref_primary_10_1016_j_engappai_2019_103457 crossref_primary_10_1007_s10479_022_04781_6 crossref_primary_10_1007_s43452_024_00905_w crossref_primary_10_1016_j_eswa_2023_119970 crossref_primary_10_1007_s00366_019_00917_8 crossref_primary_10_1007_s10489_018_1362_4 crossref_primary_10_3390_electronics10232975 crossref_primary_10_1007_s40998_020_00347_z crossref_primary_10_1109_ACCESS_2020_3000770 crossref_primary_10_1016_j_jclepro_2020_124183 crossref_primary_10_1007_s13762_022_04525_w crossref_primary_10_1016_j_enconman_2018_02_012 crossref_primary_10_1016_j_energy_2023_128225 crossref_primary_10_3390_en11040712 crossref_primary_10_1016_j_eswa_2022_116509 crossref_primary_10_1016_j_physa_2019_123094 crossref_primary_10_3390_en12132467 crossref_primary_10_3390_en16145281 crossref_primary_10_1016_j_apenergy_2021_116545 crossref_primary_10_1016_j_knosys_2021_107435 crossref_primary_10_1016_j_jclepro_2020_124628 crossref_primary_10_1016_j_knosys_2018_10_036 crossref_primary_10_1016_j_asoc_2019_105937 crossref_primary_10_1177_0309524X211046382 crossref_primary_10_1007_s13748_024_00319_y crossref_primary_10_1016_j_renene_2018_01_113 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1007_s40430_023_04632_w crossref_primary_10_1016_j_energy_2021_121981 crossref_primary_10_1016_j_eswa_2023_122912 crossref_primary_10_1016_j_neucom_2024_127764 crossref_primary_10_3390_sym14102036 crossref_primary_10_1002_2050_7038_13010 crossref_primary_10_1109_TNSE_2022_3188881 crossref_primary_10_1016_j_asoc_2019_03_035 crossref_primary_10_1016_j_eswa_2023_121194 crossref_primary_10_1155_2021_8878686 crossref_primary_10_1007_s11063_020_10300_0 crossref_primary_10_1016_j_apenergy_2021_116458 crossref_primary_10_1016_j_enconman_2023_117763 crossref_primary_10_1016_j_engappai_2020_103733 crossref_primary_10_1016_j_renene_2020_09_110 crossref_primary_10_1016_j_physa_2018_12_017 crossref_primary_10_1002_ente_202100700 crossref_primary_10_1016_j_apenergy_2023_122341 crossref_primary_10_1016_j_knosys_2019_07_024 crossref_primary_10_3390_en11071712 crossref_primary_10_1016_j_apenergy_2018_02_070 crossref_primary_10_3390_sym10060210 crossref_primary_10_1016_j_eswa_2024_126361 crossref_primary_10_1016_j_jenvman_2024_122275 crossref_primary_10_1016_j_apenergy_2018_04_101 crossref_primary_10_1016_j_jclepro_2019_06_201 crossref_primary_10_1155_2020_9318308 crossref_primary_10_1016_j_knosys_2019_01_015 crossref_primary_10_1177_0309524X19882429 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1111_exsy_13620 crossref_primary_10_1016_j_enconman_2019_111914 crossref_primary_10_1016_j_apenergy_2024_124631 crossref_primary_10_1016_j_energy_2024_130927 crossref_primary_10_1016_j_asoc_2024_111435 crossref_primary_10_1016_j_apm_2020_07_019 crossref_primary_10_1155_2020_5071267 crossref_primary_10_1007_s00158_023_03639_0 crossref_primary_10_1016_j_ijhydene_2021_03_105 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1155_2020_8810759 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1016_j_asoc_2020_106116 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_1016_j_asoc_2020_106917 crossref_primary_10_1016_j_eswa_2019_113018 crossref_primary_10_1016_j_apenergy_2019_03_097 crossref_primary_10_1109_ACCESS_2019_2908200 crossref_primary_10_1109_ACCESS_2019_2951153 crossref_primary_10_1016_j_enconman_2018_12_020 crossref_primary_10_3390_electronics12122718 crossref_primary_10_1016_j_jenvman_2019_109855 crossref_primary_10_1002_cpe_5949 crossref_primary_10_3390_su10124601 crossref_primary_10_3390_atmos10040223 crossref_primary_10_1007_s11356_022_23773_4 crossref_primary_10_1016_j_eswa_2020_113237 crossref_primary_10_1016_j_enconman_2022_116022 crossref_primary_10_1016_j_measurement_2020_108373 crossref_primary_10_1016_j_enconman_2020_113500 crossref_primary_10_3390_en12010147 crossref_primary_10_1016_j_apenergy_2019_01_010 crossref_primary_10_1016_j_eswa_2019_112972 crossref_primary_10_1016_j_renene_2020_03_098 crossref_primary_10_1016_j_energy_2022_126179 crossref_primary_10_3390_en12081520 crossref_primary_10_1016_j_matcom_2021_07_010 crossref_primary_10_1016_j_swevo_2019_03_004 crossref_primary_10_1016_j_epsr_2022_108765 crossref_primary_10_1016_j_apenergy_2018_08_114 crossref_primary_10_1016_j_apenergy_2018_09_012 crossref_primary_10_1016_j_renene_2018_12_035 crossref_primary_10_1016_j_knosys_2021_107009 crossref_primary_10_1016_j_est_2025_116125 crossref_primary_10_1016_j_neucom_2020_12_065 crossref_primary_10_1016_j_apenergy_2019_01_063 crossref_primary_10_1007_s00202_020_00983_y crossref_primary_10_3390_su17052172 crossref_primary_10_1016_j_cie_2019_106040 crossref_primary_10_1007_s00521_020_04849_z crossref_primary_10_3390_pr10020197 crossref_primary_10_1016_j_energy_2023_129618 crossref_primary_10_1016_j_ijepes_2022_108726 crossref_primary_10_3390_su12041489 crossref_primary_10_1007_s11042_020_09639_2 crossref_primary_10_1016_j_enconman_2022_116246 crossref_primary_10_1016_j_est_2024_110785 crossref_primary_10_1109_MCI_2021_3084416 crossref_primary_10_1109_ACCESS_2020_2989445 crossref_primary_10_1016_j_apenergy_2018_11_063 crossref_primary_10_1016_j_asoc_2020_106294 crossref_primary_10_1109_ACCESS_2019_2940897 crossref_primary_10_1016_j_energy_2024_132192 crossref_primary_10_1016_j_epsr_2022_108863 crossref_primary_10_1063_1_5064438 crossref_primary_10_3390_pr7110843 crossref_primary_10_1108_GS_08_2020_0101 crossref_primary_10_1016_j_heliyon_2023_e16671 crossref_primary_10_1016_j_enconman_2021_114667 crossref_primary_10_1007_s11276_022_03048_z crossref_primary_10_1016_j_jclepro_2018_10_129 crossref_primary_10_1007_s13369_022_06655_2 crossref_primary_10_1080_0305215X_2019_1624740 crossref_primary_10_1016_j_resourpol_2020_101881 crossref_primary_10_1016_j_apenergy_2018_06_053 crossref_primary_10_1016_j_eswa_2024_124560 crossref_primary_10_1007_s10489_020_01816_y crossref_primary_10_1016_j_energy_2019_06_075 crossref_primary_10_3390_math12071049 crossref_primary_10_1016_j_jclepro_2019_119082 crossref_primary_10_1016_j_seta_2023_103603 crossref_primary_10_1016_j_ijhydene_2021_10_154 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_1016_j_energy_2019_02_141 crossref_primary_10_1007_s00500_020_05183_1 crossref_primary_10_1016_j_enconman_2018_08_053 crossref_primary_10_1016_j_renene_2022_02_005 crossref_primary_10_1016_j_apenergy_2018_06_117 crossref_primary_10_3390_app9030423 crossref_primary_10_3390_risks12020018 crossref_primary_10_1016_j_enconman_2022_115583 crossref_primary_10_1016_j_energy_2023_129139 crossref_primary_10_1016_j_energy_2019_02_194 crossref_primary_10_1111_coin_12259 crossref_primary_10_1016_j_apenergy_2019_04_188 crossref_primary_10_3390_su10113913 crossref_primary_10_1016_j_enconman_2019_05_020 crossref_primary_10_1007_s00521_022_07303_4 crossref_primary_10_1016_j_solener_2023_112241 crossref_primary_10_1016_j_enconman_2024_118865 crossref_primary_10_1109_ACCESS_2020_2966268 crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_1016_j_apenergy_2019_05_044 crossref_primary_10_1016_j_energy_2019_02_080 crossref_primary_10_1016_j_jwpe_2020_101487 crossref_primary_10_1016_j_ijpe_2019_03_001 crossref_primary_10_1016_j_bspc_2019_101728 crossref_primary_10_1109_ACCESS_2020_3001151 crossref_primary_10_1155_2019_7561398 crossref_primary_10_1016_j_engappai_2023_107034 crossref_primary_10_1016_j_iswa_2022_200138 crossref_primary_10_3233_JIFS_191747 crossref_primary_10_1007_s13369_021_06042_3 crossref_primary_10_1080_15397734_2024_2321971 crossref_primary_10_1109_TSTE_2019_2890875 crossref_primary_10_1007_s10462_020_09933_3 crossref_primary_10_1155_2019_8418369 crossref_primary_10_1186_s40537_021_00415_z crossref_primary_10_1016_j_apenergy_2018_12_009 crossref_primary_10_1007_s11771_023_5432_3 crossref_primary_10_1007_s00170_022_09669_0 crossref_primary_10_1016_j_soildyn_2019_106012 crossref_primary_10_1016_j_asoc_2020_106620 crossref_primary_10_1088_1742_6596_1682_1_012009 crossref_primary_10_3390_en15249261 crossref_primary_10_1016_j_asoc_2020_106625 crossref_primary_10_3390_buildings12010054 crossref_primary_10_1016_j_apenergy_2018_03_180 crossref_primary_10_1007_s40565_019_00571_5 crossref_primary_10_1016_j_renene_2024_120350 crossref_primary_10_1016_j_knosys_2020_106642 crossref_primary_10_1016_j_apm_2019_07_001 crossref_primary_10_1016_j_isci_2022_105804 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_3390_automation4030017 crossref_primary_10_1016_j_asoc_2018_07_022 crossref_primary_10_1016_j_est_2025_115706 crossref_primary_10_3390_en12101931 crossref_primary_10_3390_pr10061074 crossref_primary_10_1007_s11356_020_11065_8 crossref_primary_10_1007_s10489_018_1334_8 crossref_primary_10_1016_j_energy_2022_124957 |
| Cites_doi | 10.1016/j.eswa.2015.10.039 10.1142/S1793536910000422 10.1016/j.atmosenv.2016.08.012 10.1016/j.asoc.2013.04.005 10.1016/j.neucom.2006.01.032 10.1016/j.enconman.2017.04.012 10.1109/4235.585893 10.1016/j.renene.2014.11.011 10.1207/s15516709cog1402_1 10.1109/TSP.2013.2288675 10.1016/j.enconman.2016.05.024 10.1109/TMAG.2009.2012586 10.1021/ac00020a022 10.1016/j.enconman.2016.06.053 10.1109/ICASSP.2011.5947265 10.1016/j.apenergy.2016.03.096 10.1109/4235.996017 10.1098/rspa.1998.0193 10.1007/978-3-642-12538-6_6 10.1016/j.energy.2015.08.039 10.1016/j.ymssp.2015.03.002 10.1016/j.asoc.2017.01.033 10.1016/j.renene.2016.03.103 10.1016/j.atmosenv.2016.10.046 10.1016/j.apenergy.2016.08.108 10.1016/j.enconman.2016.02.013 10.1007/s00521-015-1920-1 10.1016/j.enconman.2015.04.057 10.1016/j.apenergy.2017.04.008 10.1016/j.enconman.2017.01.022 10.1016/j.rser.2013.12.054 10.1016/j.advengsoft.2016.01.008 10.1016/j.enconman.2016.08.086 10.1016/S0893-6080(97)00111-1 10.1016/j.rser.2014.03.033 10.1007/s10489-016-0825-8 10.1016/j.apenergy.2015.01.038 10.1016/j.enconman.2017.03.054 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2017.10.031 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 360 |
| ExternalDocumentID | 10_1016_j_apenergy_2017_10_031 S0306261917314307 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c382t-95146b44144b2e0d3ffada11b99cc4f66205d28138a68078233dded6d7ac6693 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 20:49:52 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Thu Oct 09 00:29:11 EDT 2025 Fri Feb 23 02:31:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Forecasting accuracy and stability Hybrid forecasting system Multi-Objective Whale Optimization Algorithm Wind speed forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-95146b44144b2e0d3ffada11b99cc4f66205d28138a68078233dded6d7ac6693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000571155 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2000571155 crossref_citationtrail_10_1016_j_apenergy_2017_10_031 crossref_primary_10_1016_j_apenergy_2017_10_031 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_10_031 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-15 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Aghajani, Kazemzadeh, Ebrahimi (b0070) 2016; 121 Wang, Zhang, Wu, Wang (b0115) 2016; 94 Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE int conf acoust speech signal process, vol. 7; 2011, p. 4144–7. 10.1109/ICASSP.2011 5947265 Zhang, Morris (b0215) 1998; 11 Lange, Focken (b0045) 2006 Wang, Wang, Jiang (b0060) 2015; 143 Yeh, Shieh, Huang (b0190) 2010; 02 Elman (b0205) 1990; 14 Wang, Wang, Li, Peng, Liu (b0010) 2016; 182 Prakash, Lakshminarayana (b0180) 2016 Xiao, Qian, Shao (b0120) 2017; 143 Wang, Heng, Xiao, Wang (b0130) 2017 Jiang, Dong (b0065) 2017; 142 Punnathanam, Kotecha (b0150) 2016 Zhang, Qu, Zhang, Mao, Ma, Fan (b0040) 2017; 136 Wang, Wang, Wei (b0035) 2015; 91 Wang, Qin, Zhou, Jiang (b0050) 2015; 76 Mirjalili, Saremi, Mirjalili, Coelho (b0170) 2016; 47 Sun, Qiao, Wei, Wang (b0125) 2017; 197 Ardalani-farsa, Zolfaghari (b0210) 2010; 73 Huang, Shen, Long, Wu, Shih, Zheng (b0195) 1998; 454 Jung, Broadwater (b0030) 2014; 31 Okumus, Dinler (b0080) 2016; 123 Ma, Jin, Dong (b0100) 2017; 54 Meng, Ge, Yin, Chen (b0020) 2016; 114 Mirjalili (b0145) 2016; 27 Zhang, Wei, Zhao, Liu, Zhang (b0025) 2016; 126 Xue, Zhou, Xu, Zhu, Li (b0200) 2015; 62 Mirjalili, Jangir, Saremi (b0140) 2017; 46 Global Wind Energy Council (b0015) 2016 Mirjalili, Lewis (b0095) 2016; 95 Dragomiretskiy, Zosso (b0105) 2014; 62 Prasad, Gorai, Goyal (b0225) 2016; 142 Lu, Ireland (b0160) 2009; 45 Wolpert, Macready (b0165) 1997; 1 Liu, Tian, Li (b0075) 2015; 100 Xu, Yang, Wang (b0175) 2017; 148 Bureerat, Sriworamas (b0155) 2013; 13 Barbounis, Theocharis (b0055) 2007; 70 Zhao, Ye, Li, Song, Lang, Su (b0005) 2016; 177 Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence, vol. 284. Berlin: Springer Verlag; 2010. p. 65–74. Deb, Pratap, Agarwal, Meyarivan (b0135) 2002; 6 Gemperline, Long, Gregoriou (b0220) 1991; 63 Tascikaraoglu, Uzunoglu (b0085) 2014; 34 El, Ewees, Hassanien (b0185) 2017 Lu (10.1016/j.apenergy.2017.10.031_b0160) 2009; 45 Barbounis (10.1016/j.apenergy.2017.10.031_b0055) 2007; 70 Lange (10.1016/j.apenergy.2017.10.031_b0045) 2006 Mirjalili (10.1016/j.apenergy.2017.10.031_b0140) 2017; 46 Yeh (10.1016/j.apenergy.2017.10.031_b0190) 2010; 02 Jung (10.1016/j.apenergy.2017.10.031_b0030) 2014; 31 Ardalani-farsa (10.1016/j.apenergy.2017.10.031_b0210) 2010; 73 Zhang (10.1016/j.apenergy.2017.10.031_b0025) 2016; 126 Tascikaraoglu (10.1016/j.apenergy.2017.10.031_b0085) 2014; 34 Wang (10.1016/j.apenergy.2017.10.031_b0060) 2015; 143 Ma (10.1016/j.apenergy.2017.10.031_b0100) 2017; 54 Huang (10.1016/j.apenergy.2017.10.031_b0195) 1998; 454 Okumus (10.1016/j.apenergy.2017.10.031_b0080) 2016; 123 Mirjalili (10.1016/j.apenergy.2017.10.031_b0095) 2016; 95 Wang (10.1016/j.apenergy.2017.10.031_b0130) 2017 Punnathanam (10.1016/j.apenergy.2017.10.031_b0150) 2016 El (10.1016/j.apenergy.2017.10.031_b0185) 2017 Zhang (10.1016/j.apenergy.2017.10.031_b0215) 1998; 11 Wang (10.1016/j.apenergy.2017.10.031_b0010) 2016; 182 Xiao (10.1016/j.apenergy.2017.10.031_b0120) 2017; 143 Meng (10.1016/j.apenergy.2017.10.031_b0020) 2016; 114 Prakash (10.1016/j.apenergy.2017.10.031_b0180) 2016 Xue (10.1016/j.apenergy.2017.10.031_b0200) 2015; 62 10.1016/j.apenergy.2017.10.031_b0110 Zhang (10.1016/j.apenergy.2017.10.031_b0040) 2017; 136 Liu (10.1016/j.apenergy.2017.10.031_b0075) 2015; 100 Gemperline (10.1016/j.apenergy.2017.10.031_b0220) 1991; 63 Bureerat (10.1016/j.apenergy.2017.10.031_b0155) 2013; 13 Sun (10.1016/j.apenergy.2017.10.031_b0125) 2017; 197 Wang (10.1016/j.apenergy.2017.10.031_b0035) 2015; 91 Aghajani (10.1016/j.apenergy.2017.10.031_b0070) 2016; 121 Deb (10.1016/j.apenergy.2017.10.031_b0135) 2002; 6 Mirjalili (10.1016/j.apenergy.2017.10.031_b0170) 2016; 47 Jiang (10.1016/j.apenergy.2017.10.031_b0065) 2017; 142 Dragomiretskiy (10.1016/j.apenergy.2017.10.031_b0105) 2014; 62 Elman (10.1016/j.apenergy.2017.10.031_b0205) 1990; 14 Prasad (10.1016/j.apenergy.2017.10.031_b0225) 2016; 142 Wolpert (10.1016/j.apenergy.2017.10.031_b0165) 1997; 1 Global Wind Energy Council (10.1016/j.apenergy.2017.10.031_b0015) 2016 Xu (10.1016/j.apenergy.2017.10.031_b0175) 2017; 148 Wang (10.1016/j.apenergy.2017.10.031_b0115) 2016; 94 Wang (10.1016/j.apenergy.2017.10.031_b0050) 2015; 76 10.1016/j.apenergy.2017.10.031_b0090 Zhao (10.1016/j.apenergy.2017.10.031_b0005) 2016; 177 Mirjalili (10.1016/j.apenergy.2017.10.031_b0145) 2016; 27 |
| References_xml | – volume: 126 start-page: 1084 year: 2016 end-page: 1092 ident: b0025 article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers Manage – volume: 13 start-page: 3693 year: 2013 end-page: 3702 ident: b0155 article-title: Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm publication-title: Appl Soft Comput – volume: 76 start-page: 91 year: 2015 end-page: 101 ident: b0050 article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China publication-title: Renew Energy – year: 2017 ident: b0185 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst Appl – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: b0010 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy – volume: 197 start-page: 151 year: 2017 end-page: 162 ident: b0125 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl Energy – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0165 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b0115 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew Energy – volume: 143 start-page: 472 year: 2015 end-page: 488 ident: b0060 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy – volume: 100 start-page: 16 year: 2015 end-page: 22 ident: b0075 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energy Convers Manage – volume: 45 start-page: 1072 year: 2009 end-page: 1075 ident: b0160 article-title: Lewis a. Multi-objective optimization in high frequency electromagnetics—an effective technique for smart mobile terminal antenna (SMTA) design publication-title: IEEE Trans Magn – year: 2006 ident: b0045 publication-title: Physical approach to short-term wind power prediction – volume: 142 start-page: 370 year: 2016 ident: b0225 article-title: Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time publication-title: Atmos Environ – start-page: 2017 year: 2016 ident: b0015 publication-title: Global wind statistics – volume: 91 start-page: 556 year: 2015 end-page: 572 ident: b0035 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China publication-title: Energy – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0135 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – year: 2016 ident: b0180 article-title: Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm publication-title: Alex Eng J – year: 2016 ident: b0150 article-title: Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization publication-title: Energy Convers Manage – volume: 121 start-page: 232 year: 2016 end-page: 240 ident: b0070 article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm publication-title: Energy Convers Manage – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0195 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0105 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0145 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl – start-page: 125 year: 2017 ident: b0130 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: b0140 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl Intell – volume: 63 start-page: 2313 year: 1991 end-page: 2323 ident: b0220 article-title: Nonlinear multivariate calibration using principal components regression and artificial neural networks publication-title: Anal Chem – volume: 143 start-page: 410 year: 2017 end-page: 430 ident: b0120 article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm publication-title: Energy Convers Manage – volume: 11 start-page: 65 year: 1998 end-page: 80 ident: b0215 article-title: A sequential learning approach for single hidden layer neural networks publication-title: Neural Netw – volume: 114 start-page: 75 year: 2016 end-page: 88 ident: b0020 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers Manage – volume: 136 start-page: 439 year: 2017 end-page: 451 ident: b0040 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers Manage – volume: 177 start-page: 793 year: 2016 end-page: 803 ident: b0005 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl Energy – volume: 34 start-page: 243 year: 2014 end-page: 254 ident: b0085 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev – volume: 70 start-page: 1525 year: 2007 end-page: 1542 ident: b0055 article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation publication-title: Neurocomputing – volume: 148 start-page: 239 year: 2017 end-page: 257 ident: b0175 article-title: Air quality early-warning system for cities in China publication-title: Atmos Environ – volume: 02 start-page: 135 year: 2010 end-page: 156 ident: b0190 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv Adapt Data Anal – volume: 142 start-page: 307 year: 2017 end-page: 321 ident: b0065 article-title: Forecast of hourly global horizontal irradiance based on structured Kernel Support Vector Machine: a case study of Tibet area in China publication-title: Energy Convers Manage – volume: 47 start-page: 106 year: 2016 end-page: 119 ident: b0170 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst Appl – volume: 73 start-page: 2540 year: 2010 end-page: 2553 ident: b0210 article-title: Neurocomputing Chaotic time series prediction with residual analysis method using hybrid Elman–NARX publication-title: Neural networks – reference: Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE int conf acoust speech signal process, vol. 7; 2011, p. 4144–7. 10.1109/ICASSP.2011 5947265 – volume: 62 start-page: 444 year: 2015 end-page: 459 ident: b0200 article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis publication-title: Mech Syst Signal Process – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0205 article-title: Finding structure in time publication-title: Cogn Sci – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0095 article-title: The whale optimization algorithm publication-title: Adv Eng Softw – volume: 123 start-page: 362 year: 2016 end-page: 371 ident: b0080 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage – reference: Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in computational intelligence, vol. 284. Berlin: Springer Verlag; 2010. p. 65–74. – volume: 54 start-page: 296 year: 2017 end-page: 312 ident: b0100 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl Soft Comput – volume: 31 start-page: 762 year: 2014 end-page: 777 ident: b0030 article-title: Current status and future advances for wind speed and power forecasting publication-title: Renew Sustain Energy Rev – volume: 47 start-page: 106 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0170 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.10.039 – volume: 02 start-page: 135 year: 2010 ident: 10.1016/j.apenergy.2017.10.031_b0190 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv Adapt Data Anal doi: 10.1142/S1793536910000422 – volume: 142 start-page: 370 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0225 article-title: Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.08.012 – volume: 13 start-page: 3693 issue: 8 year: 2013 ident: 10.1016/j.apenergy.2017.10.031_b0155 article-title: Simultaneous topology and sizing optimization of a water distribution network using a hybrid multi-objective evolutionary algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.04.005 – volume: 70 start-page: 1525 year: 2007 ident: 10.1016/j.apenergy.2017.10.031_b0055 article-title: A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.01.032 – volume: 143 start-page: 410 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0120 article-title: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.04.012 – year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0180 article-title: Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm publication-title: Alex Eng J – year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0185 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst Appl – year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0150 article-title: Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization publication-title: Energy Convers Manage – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.apenergy.2017.10.031_b0165 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – year: 2006 ident: 10.1016/j.apenergy.2017.10.031_b0045 – volume: 76 start-page: 91 year: 2015 ident: 10.1016/j.apenergy.2017.10.031_b0050 article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China publication-title: Renew Energy doi: 10.1016/j.renene.2014.11.011 – volume: 14 start-page: 179 year: 1990 ident: 10.1016/j.apenergy.2017.10.031_b0205 article-title: Finding structure in time publication-title: Cogn Sci doi: 10.1207/s15516709cog1402_1 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.apenergy.2017.10.031_b0105 article-title: Variational mode decomposition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 73 start-page: 2540 year: 2010 ident: 10.1016/j.apenergy.2017.10.031_b0210 article-title: Neurocomputing Chaotic time series prediction with residual analysis method using hybrid Elman–NARX publication-title: Neural networks – volume: 121 start-page: 232 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0070 article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.05.024 – volume: 45 start-page: 1072 year: 2009 ident: 10.1016/j.apenergy.2017.10.031_b0160 article-title: Lewis a. Multi-objective optimization in high frequency electromagnetics—an effective technique for smart mobile terminal antenna (SMTA) design publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2009.2012586 – volume: 63 start-page: 2313 year: 1991 ident: 10.1016/j.apenergy.2017.10.031_b0220 article-title: Nonlinear multivariate calibration using principal components regression and artificial neural networks publication-title: Anal Chem doi: 10.1021/ac00020a022 – volume: 123 start-page: 362 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0080 article-title: Current status of wind energy forecasting and a hybrid method for hourly predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.06.053 – ident: 10.1016/j.apenergy.2017.10.031_b0110 doi: 10.1109/ICASSP.2011.5947265 – volume: 177 start-page: 793 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0005 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.096 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.apenergy.2017.10.031_b0135 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.apenergy.2017.10.031_b0195 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci doi: 10.1098/rspa.1998.0193 – ident: 10.1016/j.apenergy.2017.10.031_b0090 doi: 10.1007/978-3-642-12538-6_6 – volume: 91 start-page: 556 year: 2015 ident: 10.1016/j.apenergy.2017.10.031_b0035 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China publication-title: Energy doi: 10.1016/j.energy.2015.08.039 – volume: 62 start-page: 444 year: 2015 ident: 10.1016/j.apenergy.2017.10.031_b0200 article-title: An adaptively fast ensemble empirical mode decomposition method and its applications to rolling element bearing fault diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.03.002 – start-page: 2017 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0015 publication-title: Global wind statistics – volume: 54 start-page: 296 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0100 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.01.033 – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0115 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.103 – volume: 148 start-page: 239 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0175 article-title: Air quality early-warning system for cities in China publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.10.046 – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0010 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.108 – volume: 114 start-page: 75 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0020 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.02.013 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0145 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – volume: 100 start-page: 16 year: 2015 ident: 10.1016/j.apenergy.2017.10.031_b0075 article-title: Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.04.057 – volume: 197 start-page: 151 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0125 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.008 – volume: 136 start-page: 439 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0040 article-title: A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.01.022 – volume: 31 start-page: 762 year: 2014 ident: 10.1016/j.apenergy.2017.10.031_b0030 article-title: Current status and future advances for wind speed and power forecasting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.12.054 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0095 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 126 start-page: 1084 year: 2016 ident: 10.1016/j.apenergy.2017.10.031_b0025 article-title: A Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.08.086 – volume: 11 start-page: 65 year: 1998 ident: 10.1016/j.apenergy.2017.10.031_b0215 article-title: A sequential learning approach for single hidden layer neural networks publication-title: Neural Netw doi: 10.1016/S0893-6080(97)00111-1 – volume: 34 start-page: 243 year: 2014 ident: 10.1016/j.apenergy.2017.10.031_b0085 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.03.033 – volume: 46 start-page: 79 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0140 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl Intell doi: 10.1007/s10489-016-0825-8 – volume: 143 start-page: 472 year: 2015 ident: 10.1016/j.apenergy.2017.10.031_b0060 article-title: The study and application of a novel hybrid forecasting model – a case study of wind speed forecasting in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.038 – volume: 142 start-page: 307 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0065 article-title: Forecast of hourly global horizontal irradiance based on structured Kernel Support Vector Machine: a case study of Tibet area in China publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.03.054 – start-page: 125 year: 2017 ident: 10.1016/j.apenergy.2017.10.031_b0130 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy |
| SSID | ssj0002120 |
| Score | 2.6272078 |
| Snippet | •We propose a new algorithm—Multi-Objective Whale Optimization Algorithm (MOWOA).•A novel hybrid system based on MOWOA is proposed for wind speed... In recent years, managers and researchers have paid increasing attention to accurate and stable wind speed prediction due to its significant effect on power... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 344 |
| SubjectTerms | algorithms Forecasting accuracy and stability Hybrid forecasting system managers Multi-Objective Whale Optimization Algorithm prediction researchers whales wind speed Wind speed forecasting |
| Title | A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting |
| URI | https://dx.doi.org/10.1016/j.apenergy.2017.10.031 https://www.proquest.com/docview/2000571155 |
| Volume | 208 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QuMAB8RTjpSBx7bY2adoeJwQaIOAACG5VmmRs09ZW2wBxQfAf-IX8Euw25SUhDki9JLKrKk7sr4o_m5A9wBzaC0PjtABcOJx7Co6UhqFRXROa0A818p1Pz0Tnih_f-DczZL_iwmBapfX9pU8vvLWdadrVbOb9fvMC0S7ifzdgEPQLRjnnAXYxaDx9pnl4tjQjCDso_YUlPGjI3BQMO0zxChqY5cXc3wLUD1ddxJ_DRbJggSNtl9-2RGZMukzmv5QTXCZrB5-sNRC1x3ayQl7aNM3uzZD2HpGgRcvyzRQjmKZZSiUFcE1zbJiAM3J4m437097o7fm1IOg658mgdIz0ugcRhZ6DoxlZBidtV-IUADB9gJ98OskhKOLQKDnBxOpVcnl4cLnfcWzvBUex0Js6ALy4SAArcZ54pqVZtyu1dN0kipTiXSG8lg9GdlkoBZas9xgDR6mFDqQSImJrpJZmqVknNADEoFnkG64SeGBPAEIDXSa0MiLUdeJX6x0rW5cc22MM4yoBbRBXdorRTjgPdqqT5odeXlbm-FMjqswZf9tjMYSPP3V3K_vHcADxVkWmJrubYB9PwLwArP2Nf7x_k8zhCBNlXH-L1KbjO7MNcGea7BT7eYfMto9OOmfv3HUD9A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIAD4ineBIlrt7VJ0_Y4IdB4HxiCW5UmGds02ooNEBcE_4FfyC_BblNeEuKA1EtSu6rqxP6i-rMJ2QHMob0wNE4DwIXDuadgS2kYGtUxoQn9UCPf-eRUtC744ZV_NUZ2Ky4MplVa31_69MJb25m6_Zr1vNernyPaRfzvBgyCPjLKJ7jvBXgCqz195nl4tjYjSDso_oUm3K_J3BQUO8zxCmqY5sXc3yLUD19dBKD9WTJjkSNtli83R8ZMOk-mv9QTnCdLe5-0NRC1-3a4QF6aNM3uzYB2H5GhRcv6zRRDmKZZSiUFdE1z7JiAM3Jwnd32Rt2bt-fXgqHrnCX90jPSyy6EFHoGnubGUjhpsxKngIDpA5zy6TCHqIhDo-QQM6sXSXt_r73bcmzzBUex0Bs5gLy4SAAscZ54pqFZpyO1dN0kipTiHSG8hg9WdlkoBdas9xgDT6mFDqQSImJLZDzNUrNMaACQQbPIN1wlcMGiAIgGukxoZUSoV4hffe9Y2cLk2B9jEFcZaP24slOMdsJ5sNMKqX_o5WVpjj81osqc8bdFFkP8-FN3u7J_DDsQf6vI1GR3Q2zkCaAXkLW_-o_nb5HJVvvkOD4-OD1aI1N4B7NmXH-djI9u78wGYJ9Rslms7XfKNgWJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+system+based+on+a+new+proposed+algorithm%E2%80%94Multi-Objective+Whale+Optimization+Algorithm+for+wind+speed+forecasting&rft.jtitle=Applied+energy&rft.au=Wang%2C+Jianzhou&rft.au=Du%2C+Pei&rft.au=Niu%2C+Tong&rft.au=Yang%2C+Wendong&rft.date=2017-12-15&rft.issn=0306-2619&rft.volume=208+p.344-360&rft.spage=344&rft.epage=360&rft_id=info:doi/10.1016%2Fj.apenergy.2017.10.031&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |