Generative Adversarial Networks applied to synthetic financial scenarios generation

In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables de...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 623; p. 128899
Main Authors Rizzato, Matteo, Wallart, Julien, Geissler, Christophe, Morizet, Nicolas, Boumlaik, Noureddine
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
0378-4371
DOI10.1016/j.physa.2023.128899

Cover

Abstract In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables describing the state of the world, common to all objects at a given date and potentially influential on the specific features. The conditioning process is specified at inference time, and only involves state variables; it simply consists in setting lower and/or upper bounds on their values. The generative model is trained as an un-conditioned generator and is agnostic of any scenario the user might set at inference time. The use case considered in this pilot study is of interest for the financial industry: the generator produces random samples of the instrument-specific features over time (e.g their price, size or the risk for securities). Such generation is conditioned on user-defined macroeconomic assumptions/scenarios involving global variables, such as inflation, oil prices or interest rates. We introduce numerical metrics to assess the statistical closeness between the two multivariate distributions of historical and artificial data. As proof of concept, we test the proposed algorithm by reproducing the value variation for two possible portfolios, Energy and Financial, conditioned on scenarios for which a consensus is present in the community. Jinkou allows us to recover some classical stylized facts about the financial markets, this ability constituting a proof of its efficiency. [Display omitted] •We synthesize data conditioned over continuous values not known at training time.•Jinkou allows us to recover the most known stylized facts in financial markets.•No algorithmic details are specific to the use case considered in this study.
AbstractList The finance industry is producing an increasing amount of datasets that investment professionals can consider to be influential on the price of financial assets. These datasets were initially mainly limited to exchange data, namely price, capitalization and volume. Their coverage has now considerably expanded to include, for example, macroeconomic data, supply and demand of commodities, balance sheet data and more recently extra-financial data such as ESG scores. This broadening of the factors retained as influential constitutes a serious challenge for statistical modeling. Indeed, the instability of the correlations between these factors makes it practically impossible to identify the joint laws needed to construct scenarios. Fortunately, spectacular advances in Deep Learning field in recent years have given rise to GANs. GANs are a type of generative machine learning models that produce new data samples with the same characteristics as a training data distribution in an unsupervised way, avoiding data assumptions and human induced biases. In this work, we are exploring the use of GANs for synthetic financial scenarios generation. This pilot study is the result of a collaboration between Fujitsu and Advestis and it will be followed by a thorough exploration of the use cases that can benefit from the proposed solution. We propose a GANs-based algorithm that allows the replication of multivariate data representing several properties (including, but not limited to, price, market capitalization, ESG score, controversy score,. . .) of a set of stocks. This approach differs from examples in the financial literature, which are mainly focused on the reproduction of temporal asset price scenarios. We also propose several metrics to evaluate the quality of the data generated by the GANs. This approach is well fit for the generation of scenarios, the time direction simply arising as a subsequent (eventually conditioned) generation of data points drawn from the learned distribution. Our method will allow to simulate high dimensional scenarios (compared to ≲ 10 features currently employed in most recent use cases) where network complexity is reduced thanks to a wisely performed feature engineering and selection. Complete results will be presented in a forthcoming study.
In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables describing the state of the world, common to all objects at a given date and potentially influential on the specific features. The conditioning process is specified at inference time, and only involves state variables; it simply consists in setting lower and/or upper bounds on their values. The generative model is trained as an un-conditioned generator and is agnostic of any scenario the user might set at inference time. The use case considered in this pilot study is of interest for the financial industry: the generator produces random samples of the instrument-specific features over time (e.g their price, size or the risk for securities). Such generation is conditioned on user-defined macroeconomic assumptions/scenarios involving global variables, such as inflation, oil prices or interest rates. We introduce numerical metrics to assess the statistical closeness between the two multivariate distributions of historical and artificial data. As proof of concept, we test the proposed algorithm by reproducing the value variation for two possible portfolios, Energy and Financial, conditioned on scenarios for which a consensus is present in the community. Jinkou allows us to recover some classical stylized facts about the financial markets, this ability constituting a proof of its efficiency. [Display omitted] •We synthesize data conditioned over continuous values not known at training time.•Jinkou allows us to recover the most known stylized facts in financial markets.•No algorithmic details are specific to the use case considered in this study.
ArticleNumber 128899
Author Geissler, Christophe
Wallart, Julien
Morizet, Nicolas
Rizzato, Matteo
Boumlaik, Noureddine
Author_xml – sequence: 1
  givenname: Matteo
  surname: Rizzato
  fullname: Rizzato, Matteo
  email: mrizzato@advestis.com
  organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France
– sequence: 2
  givenname: Julien
  surname: Wallart
  fullname: Wallart, Julien
  organization: Fujitsu Systems Europe, 185 Rue Galilée, Labège, 31670, France
– sequence: 3
  givenname: Christophe
  surname: Geissler
  fullname: Geissler, Christophe
  organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France
– sequence: 4
  givenname: Nicolas
  surname: Morizet
  fullname: Morizet, Nicolas
  organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France
– sequence: 5
  givenname: Noureddine
  surname: Boumlaik
  fullname: Boumlaik, Noureddine
  organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France
BackLink https://hal.science/hal-03716692$$DView record in HAL
BookMark eNqNkD1PwzAQhi1UJFrgF7BkZWjxR-rGA0NVQUGqYABm6-JcqEtwItu06r8nIUggBmC60-l93pOeERm42iEhZ4xOGGXyYjNp1vsAE065mDCeZUodkCEVs2ycihkbfNuPyCiEDaWUzQQfkoclOvQQ7RaTebFFH8BbqJI7jLvav4QEmqayWCSxTsLexTVGa5LSOnCmywWDriXqkDx_FtXuhByWUAU8_ZzH5On66nFxM17dL28X89XYiIzHcWaKlBUZZmWKkqGC0mQwQyGkhDw1SuRqylDSaZ5zlAAFz0GZLiQUlSkVxyTte99cA_sdVJVuvH0Fv9eM6k6M3ugPMboTo3sxLXbeY2v4Amqw-ma-0t2tdcWkVHzL26zos8bXIXgs__lB_aCMjR9qogdb_cFe9iy25rYWvQ7GojNYWI8m6qK2v_LvWuWjwA
CitedBy_id crossref_primary_10_3389_frai_2025_1546398
crossref_primary_10_1016_j_ijepes_2024_109868
Cites_doi 10.1007/BF02589501
10.1214/aos/1176344552
10.1016/j.procs.2019.01.256
10.3390/wind2020021
10.3758/BF03193163
10.1016/j.patrec.2005.10.010
10.1080/10807039609383659
10.1093/ije/dyt043
10.1016/j.physa.2019.121261
10.1088/1361-6382/ac09cc
10.1016/S0165-1889(97)00028-6
10.1016/S0024-3795(97)00015-3
10.1007/s12559-019-09670-y
10.3905/jfi.1991.408013
10.1080/713665670
10.1023/A:1026543900054
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.physa.2023.128899
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Statistics
EISSN 0378-4371
ExternalDocumentID oai:HAL:hal-03716692v2
10_1016_j_physa_2023_128899
S0378437123004545
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXKI
AAXUO
ABAOU
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XJT
XOL
YYP
ZY4
~HD
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c382t-8cd41d8e8f4e61e9afc8a7e3366ab4c93b951e605bb2e6aad2ba9cfc8a3906403
IEDL.DBID UNPAY
ISSN 0378-4371
1873-2119
IngestDate Sun Oct 26 03:57:52 EDT 2025
Tue Oct 14 20:38:24 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Thu Oct 16 04:23:05 EDT 2025
Tue Dec 03 03:44:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Generative Adversarial Networks
Deep neural networks
Conditional data augmentation
Risk management
Financial scenarios
Time series generation
Data Augmentation
Deep neural networks Generative Adversarial Networks Conditional data augmentation Financial scenarios Risk management Time series generation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-8cd41d8e8f4e61e9afc8a7e3366ab4c93b951e605bb2e6aad2ba9cfc8a3906403
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-03716692
ParticipantIDs unpaywall_primary_10_1016_j_physa_2023_128899
hal_primary_oai_HAL_hal_03716692v2
crossref_primary_10_1016_j_physa_2023_128899
crossref_citationtrail_10_1016_j_physa_2023_128899
elsevier_sciencedirect_doi_10_1016_j_physa_2023_128899
PublicationCentury 2000
PublicationDate 2023-08-01
2023-08-00
2023-08
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b5) 2014
Boyle, Broadie, Glasserman (b2) 1997; 21
van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b18) 2016
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b30) 2016
Dhariwal, Nichol (b43) 2021
Anderson, Stephens (b27) 1997; 264
Kingma, Ba (b37) 2014
Oriol, Miot (b39) 2021
Carrara, Amato, Brombin, Falchi, Gennaro (b44) 2020
Arjovsky, Chintala, Bottou (b25) 2017
Mirza, Osindero (b28) 2014
McGinn, Messenger, Williams, Heng (b22) 2021; 38
Eberle, Cevasco, Schwarzkopf, Hollm, Seifried (b6) 2022; 2
Bińkowski, Donahue, Dieleman, Clark, Elsen, Casagrande, Cobo, Simonyan (b21) 2019
Zhang, Zhong, Dong, Wang, Wang (b14) 2019; 147
Fawcett (b34) 2006; 27
Liu, Tang, Zhou, Qiu (b41) 2019
Black, Litterman (b4) 1991; 1
Rubner, Tomasi, Guibas (b24) 2000; 40
Patel, Oberai (b29) 2019
Takahashi, Chen, Tanaka-Ishii (b15) 2019; 527
Hamra, MacLehose, Richardson (b7) 2013; 42
Wiese, Knobloch, Korn (b38) 2019
Efron (b9) 1979; 7
Bertsekas (b8) 2005
Wiese, Knobloch, Korn, Kretschmer (b17) 2019
Ferson (b3) 1996; 2
Kim, Zhou, Philion, Torralba, Fidler (b23) 2020
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b31) 2018
Engle, Focardi, Fabozzi (b13) 2012
Glassermann (b1) 2003
Miyato, Kataoka, Koyama, Yoshida (b36) 2018
Wang, Healy, Smeaton, Ward (b32) 2019; 12
Thanh-Tung, Tran, Venkatesh (b40) 2018
Koshiyama, Firoozye, Treleaven (b19) 2019
Lutz, Lütkepohl (b12) 2017
Yoon, Jarrett, van der Schaar (b16) 2019
Zientek, Thompson (b11) 2007; 39
Cont (b20) 2001; 1
Donahue, Krähenbühl, Darrell (b26) 2016
Yoshida, Miyato (b35) 2017
Sharma, Namboodiri (b42) 2018
Hodges (b33) 1958; 3
Nakhwan, Duangsoithong (b10) 2022
Eberle (10.1016/j.physa.2023.128899_b6) 2022; 2
Goodfellow (10.1016/j.physa.2023.128899_b5) 2014
Salimans (10.1016/j.physa.2023.128899_b30) 2016
Fawcett (10.1016/j.physa.2023.128899_b34) 2006; 27
Heusel (10.1016/j.physa.2023.128899_b31) 2018
Carrara (10.1016/j.physa.2023.128899_b44) 2020
Glassermann (10.1016/j.physa.2023.128899_b1) 2003
Nakhwan (10.1016/j.physa.2023.128899_b10) 2022
McGinn (10.1016/j.physa.2023.128899_b22) 2021; 38
Bertsekas (10.1016/j.physa.2023.128899_b8) 2005
Koshiyama (10.1016/j.physa.2023.128899_b19) 2019
Kim (10.1016/j.physa.2023.128899_b23) 2020
Wiese (10.1016/j.physa.2023.128899_b38) 2019
Thanh-Tung (10.1016/j.physa.2023.128899_b40) 2018
Hodges (10.1016/j.physa.2023.128899_b33) 1958; 3
Wiese (10.1016/j.physa.2023.128899_b17) 2019
Kingma (10.1016/j.physa.2023.128899_b37) 2014
Rubner (10.1016/j.physa.2023.128899_b24) 2000; 40
Efron (10.1016/j.physa.2023.128899_b9) 1979; 7
Zientek (10.1016/j.physa.2023.128899_b11) 2007; 39
Lutz (10.1016/j.physa.2023.128899_b12) 2017
Engle (10.1016/j.physa.2023.128899_b13) 2012
Donahue (10.1016/j.physa.2023.128899_b26) 2016
Dhariwal (10.1016/j.physa.2023.128899_b43) 2021
Boyle (10.1016/j.physa.2023.128899_b2) 1997; 21
Bińkowski (10.1016/j.physa.2023.128899_b21) 2019
Patel (10.1016/j.physa.2023.128899_b29) 2019
Yoshida (10.1016/j.physa.2023.128899_b35) 2017
Liu (10.1016/j.physa.2023.128899_b41) 2019
Cont (10.1016/j.physa.2023.128899_b20) 2001; 1
Zhang (10.1016/j.physa.2023.128899_b14) 2019; 147
van den Oord (10.1016/j.physa.2023.128899_b18) 2016
Miyato (10.1016/j.physa.2023.128899_b36) 2018
Hamra (10.1016/j.physa.2023.128899_b7) 2013; 42
Arjovsky (10.1016/j.physa.2023.128899_b25) 2017
Ferson (10.1016/j.physa.2023.128899_b3) 1996; 2
Black (10.1016/j.physa.2023.128899_b4) 1991; 1
Takahashi (10.1016/j.physa.2023.128899_b15) 2019; 527
Mirza (10.1016/j.physa.2023.128899_b28) 2014
Oriol (10.1016/j.physa.2023.128899_b39) 2021
Anderson (10.1016/j.physa.2023.128899_b27) 1997; 264
Sharma (10.1016/j.physa.2023.128899_b42) 2018
Yoon (10.1016/j.physa.2023.128899_b16) 2019
Wang (10.1016/j.physa.2023.128899_b32) 2019; 12
References_xml – volume: 2
  start-page: 990
  year: 1996
  end-page: 1007
  ident: b3
  article-title: What Monte Carlo methods cannot do
  publication-title: Hum. Ecol. Risk Assess.: Int. J.
– volume: 38
  year: 2021
  ident: b22
  article-title: Generalised gravitational wave burst generation with generative adversarial networks
  publication-title: Classical Quantum Gravity
– volume: 1
  start-page: 223
  year: 2001
  end-page: 236
  ident: b20
  article-title: Empirical properties of asset returns: Stylized facts and statistical issues
  publication-title: Quant. Finance
– volume: 527
  year: 2019
  ident: b15
  article-title: Modeling financial time-series with generative adversarial networks
  publication-title: Physica A
– year: 2016
  ident: b26
  article-title: Adversarial feature learning
– year: 2019
  ident: b38
  article-title: Copula & marginal flows: Disentangling the marginal from its joint
– year: 2019
  ident: b29
  article-title: Bayesian inference with generative adversarial network priors
– year: 2020
  ident: b44
  article-title: Combining GANs and AutoEncoders for efficient anomaly detection
– year: 2005
  ident: b8
  publication-title: Dynamic Programming and Optimal Control
– year: 2019
  ident: b17
  article-title: Quant GANs: Deep generation of financial time series
– volume: 40
  start-page: 99
  year: 2000
  end-page: 121
  ident: b24
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  ident: b9
  article-title: Bootstrap methods: Another look at the Jackknife
  publication-title: Ann. Statist.
– volume: 39
  start-page: 318
  year: 2007
  end-page: 325
  ident: b11
  article-title: Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis
  publication-title: Behav. Res. Methods
– volume: 12
  start-page: 13
  year: 2019
  end-page: 24
  ident: b32
  article-title: Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation
  publication-title: Cogn. Comput.
– volume: 147
  start-page: 400
  year: 2019
  end-page: 406
  ident: b14
  article-title: Stock market prediction based on generative adversarial network
  publication-title: Procedia Comput. Sci.
– year: 2014
  ident: b5
  article-title: Generative adversarial networks
– start-page: 18
  year: 2022
  end-page: 23
  ident: b10
  article-title: Comparison analysis of data augmentation using bootstrap, GANs and autoencoder
  publication-title: 2022 14th International Conference on Knowledge and Smart Technology
– year: 2018
  ident: b36
  article-title: Spectral Normalization for Generative Adversarial Networks
– year: 2019
  ident: b41
  article-title: Spectral regularization for combating mode collapse in GANs
– year: 2020
  ident: b23
  article-title: Learning to simulate dynamic environments with GameGAN
– year: 2021
  ident: b39
  article-title: On some theoretical limitations of generative adversarial networks
– year: 2019
  ident: b19
  article-title: Generative adversarial networks for financial trading strategies fine-tuning and combination
– year: 2014
  ident: b37
  article-title: Adam: A method for stochastic optimization
– year: 2003
  ident: b1
  article-title: Monte Carlo Methods in Financial Engineering
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b34
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– volume: 264
  start-page: 145
  year: 1997
  end-page: 171
  ident: b27
  article-title: The continuous and discrete Brownian bridges: Representations and applications
  publication-title: Linear Algebra Appl.
– volume: 42
  start-page: 627
  year: 2013
  end-page: 634
  ident: b7
  article-title: Markov Chain Monte Carlo: an introduction for epidemiologists
  publication-title: Int. J. Epidemiol.
– year: 2016
  ident: b18
  article-title: WaveNet: A Generative Model for Raw Audio
– year: 2019
  ident: b21
  article-title: High fidelity speech synthesis with adversarial networks
– year: 2012
  ident: b13
  article-title: ARCH/GARCH models in applied financial econometrics
  publication-title: Encyclopedia of Financial Models
– volume: 3
  start-page: 469
  year: 1958
  end-page: 486
  ident: b33
  article-title: The significance probability of the Smirnov two-sample test
  publication-title: Arkiv För Matematik
– year: 2017
  ident: b12
  article-title: Structural Vector Autoregressive Analysis
– year: 2019
  ident: b16
  article-title: Time-series generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems, Vol. 32
– year: 2018
  ident: b40
  article-title: On catastrophic forgetting and mode collapse in generative adversarial networks
– year: 2021
  ident: b43
  article-title: Diffusion models beat GANs on image synthesis
– year: 2018
  ident: b31
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
– year: 2014
  ident: b28
  article-title: Conditional Generative Adversarial Nets
– volume: 1
  start-page: pp 7
  year: 1991
  end-page: 18
  ident: b4
  article-title: Asset allocation combining investor view with market equilibrium
  publication-title: J. Fixed Income
– year: 2017
  ident: b25
  article-title: Wasserstein GAN
– year: 2016
  ident: b30
  article-title: Improved techniques for training GANs
– volume: 2
  start-page: 394
  year: 2022
  end-page: 414
  ident: b6
  article-title: Multivariate simulation of offshore weather time series: A comparison between Markov chain, autoregressive, and long short-term memory models
  publication-title: Wind
– volume: 21
  start-page: pp 1267
  year: 1997
  end-page: 1321
  ident: b2
  article-title: Monte Carlo methods for security pricing
  publication-title: J. Econom. Dynam. Control
– year: 2018
  ident: b42
  article-title: No Modes left behind: Capturing the data distribution effectively using GANs
– year: 2017
  ident: b35
  article-title: Spectral norm regularization for improving the generalizability of deep learning
– year: 2021
  ident: 10.1016/j.physa.2023.128899_b39
– year: 2020
  ident: 10.1016/j.physa.2023.128899_b44
– volume: 3
  start-page: 469
  issue: 5
  year: 1958
  ident: 10.1016/j.physa.2023.128899_b33
  article-title: The significance probability of the Smirnov two-sample test
  publication-title: Arkiv För Matematik
  doi: 10.1007/BF02589501
– year: 2014
  ident: 10.1016/j.physa.2023.128899_b37
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b29
– year: 2018
  ident: 10.1016/j.physa.2023.128899_b36
– year: 2016
  ident: 10.1016/j.physa.2023.128899_b18
– year: 2012
  ident: 10.1016/j.physa.2023.128899_b13
  article-title: ARCH/GARCH models in applied financial econometrics
– year: 2018
  ident: 10.1016/j.physa.2023.128899_b31
– year: 2018
  ident: 10.1016/j.physa.2023.128899_b40
– volume: 7
  start-page: 1
  issue: 1
  year: 1979
  ident: 10.1016/j.physa.2023.128899_b9
  article-title: Bootstrap methods: Another look at the Jackknife
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344552
– year: 2017
  ident: 10.1016/j.physa.2023.128899_b35
– volume: 147
  start-page: 400
  year: 2019
  ident: 10.1016/j.physa.2023.128899_b14
  article-title: Stock market prediction based on generative adversarial network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.256
– volume: 2
  start-page: 394
  issue: 2
  year: 2022
  ident: 10.1016/j.physa.2023.128899_b6
  article-title: Multivariate simulation of offshore weather time series: A comparison between Markov chain, autoregressive, and long short-term memory models
  publication-title: Wind
  doi: 10.3390/wind2020021
– volume: 39
  start-page: 318
  issue: 1
  year: 2007
  ident: 10.1016/j.physa.2023.128899_b11
  article-title: Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193163
– year: 2016
  ident: 10.1016/j.physa.2023.128899_b26
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.physa.2023.128899_b34
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b38
– year: 2021
  ident: 10.1016/j.physa.2023.128899_b43
– volume: 2
  start-page: 990
  issue: 4
  year: 1996
  ident: 10.1016/j.physa.2023.128899_b3
  article-title: What Monte Carlo methods cannot do
  publication-title: Hum. Ecol. Risk Assess.: Int. J.
  doi: 10.1080/10807039609383659
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b41
– volume: 42
  start-page: 627
  issue: 2
  year: 2013
  ident: 10.1016/j.physa.2023.128899_b7
  article-title: Markov Chain Monte Carlo: an introduction for epidemiologists
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyt043
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b21
– volume: 527
  year: 2019
  ident: 10.1016/j.physa.2023.128899_b15
  article-title: Modeling financial time-series with generative adversarial networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121261
– year: 2020
  ident: 10.1016/j.physa.2023.128899_b23
– year: 2014
  ident: 10.1016/j.physa.2023.128899_b5
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b17
– volume: 38
  issue: 15
  year: 2021
  ident: 10.1016/j.physa.2023.128899_b22
  article-title: Generalised gravitational wave burst generation with generative adversarial networks
  publication-title: Classical Quantum Gravity
  doi: 10.1088/1361-6382/ac09cc
– year: 2018
  ident: 10.1016/j.physa.2023.128899_b42
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b19
– year: 2016
  ident: 10.1016/j.physa.2023.128899_b30
– year: 2017
  ident: 10.1016/j.physa.2023.128899_b25
– year: 2019
  ident: 10.1016/j.physa.2023.128899_b16
  article-title: Time-series generative adversarial networks
– year: 2017
  ident: 10.1016/j.physa.2023.128899_b12
– volume: 21
  start-page: pp 1267
  issue: 8-9
  year: 1997
  ident: 10.1016/j.physa.2023.128899_b2
  article-title: Monte Carlo methods for security pricing
  publication-title: J. Econom. Dynam. Control
  doi: 10.1016/S0165-1889(97)00028-6
– start-page: 18
  year: 2022
  ident: 10.1016/j.physa.2023.128899_b10
  article-title: Comparison analysis of data augmentation using bootstrap, GANs and autoencoder
– volume: 264
  start-page: 145
  year: 1997
  ident: 10.1016/j.physa.2023.128899_b27
  article-title: The continuous and discrete Brownian bridges: Representations and applications
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(97)00015-3
– year: 2014
  ident: 10.1016/j.physa.2023.128899_b28
– year: 2003
  ident: 10.1016/j.physa.2023.128899_b1
– volume: 12
  start-page: 13
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2023.128899_b32
  article-title: Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-019-09670-y
– year: 2005
  ident: 10.1016/j.physa.2023.128899_b8
– volume: 1
  start-page: pp 7
  issue: 2
  year: 1991
  ident: 10.1016/j.physa.2023.128899_b4
  article-title: Asset allocation combining investor view with market equilibrium
  publication-title: J. Fixed Income
  doi: 10.3905/jfi.1991.408013
– volume: 1
  start-page: 223
  year: 2001
  ident: 10.1016/j.physa.2023.128899_b20
  article-title: Empirical properties of asset returns: Stylized facts and statistical issues
  publication-title: Quant. Finance
  doi: 10.1080/713665670
– volume: 40
  start-page: 99
  issue: 2
  year: 2000
  ident: 10.1016/j.physa.2023.128899_b24
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1026543900054
SSID ssj0001732
Score 2.4816635
Snippet In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of...
The finance industry is producing an increasing amount of datasets that investment professionals can consider to be influential on the price of financial...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 128899
SubjectTerms Applications
Computational Finance
Conditional data augmentation
Deep neural networks
Financial scenarios
Generative Adversarial Networks
Machine Learning
Quantitative Finance
Risk management
Statistics
Time series generation
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA61IHoRV6wbQTw6XZJpJjmWYimivdRCb0O2caFMi9MqvfjbzZvMVAUp4nFCXhJewpeXyZfvIXQl3K4oIq0CTow7oMiwHSgiZZBEbRc-EJJQCW-H7wesPwpvx-1xBXXLtzBAqyyw32N6jtZFSaPwZmP2_NwYNmnEQxo56M115OCheRhGkMWg_vFF82hF1N8kuNMS1C6Vh3KOF_w9APEhQusOp3kuAPvr7rTxBDTJrUU6k8t3OZl824N6u2inCB5xx49vD1Vsuo82cxKnzg7Q0GtIA4DhPNFyJmF54YGnemdY-pATz6c4W6Yu9HPt4KTU3MAg7OQsphl-LBqapodo1Lt56PaDImlCoCkn8wCSEbUMtzwJLWtZIRPNZWQpZUyqUAuqXExl3SFGKWKZlIYoKTRUogJu9egRqqbT1B4jTBKtjDLtpg21s7RcmKRpmIlaRidK8BoipbNiXSiKQ2KLSVxSx17i3MMxeDj2Hq6h65XRzAtqrK_OylmIf6yL2EH-esNLN2erLkBFu9-5i6EMVAoZE-SN1FCwmtK_jObkv6M5Rdvw5ZmDZ6g6f13YcxfNzNVFvlw_AUUS8-M
  priority: 102
  providerName: Elsevier
Title Generative Adversarial Networks applied to synthetic financial scenarios generation
URI https://dx.doi.org/10.1016/j.physa.2023.128899
https://hal.science/hal-03716692
UnpaywallVersion submittedVersion
Volume 623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 0378-4371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 1873-2119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 0378-4371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 1873-2119
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 0378-4371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 1873-2119
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 0378-4371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 1873-2119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_udhGf_Bb30CWIj2a5Tdo0eVzEY_1aBF04n0q-6qFL97Bdj_PBv92Zpl1EZNG3UjJpyAwzv2kmvwF4ZjAqmsI7rkXABMVmOXfCWl4VOcIHISpp6e7wu5VarrPX5_n5EbDhLswFIs7e99MzJ0Y5pQw62bHKEW2PYLxevV986g4HMAHKZMqpdCE5kZUNxEJdCRf9HCBuISFn6IZ1x-_61-BzfEFVkDd39aW9vrKbzW8h5ux2KnVsOmZCqiz5Otu1buZ__MHbeGj1d-BWjy_ZIhnEXTiK9T240dV5-uY-fEg00-TjWNeLubFkgWyVqsEbZhMqZe2WNdc1okOch1UDLQcj7ieU2Dbscz_Rtn4A67OXH18sed9XgXupRcupX9E86KirLKp5NLby2hZRSqWsy7yRDmFXxDzHORGVtUE4azwNkoYO_uRDGNXbOj4CJirvggv5acw8SkZtQnUaVCjmwVfO6AmIYcNL35OOU--LTTlUl30pOy2VpKUyaWkCz_dCl4lz4_BwNWiy7Dc_wYESo8JhwaeopP0niGh7uXhb0rtBcd_FBPjeLP5lNSf_Of4xjNpvu_gEoU3rpnA8-zmfwnjx6s1yNe1t_RdGMfwl
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BFYILooWK5aO1UI-E3bUTxz4iBNqWZS-AxM3yV9qtVtkVWUBc-O144mShUoWqXhOPY42t55n4-Q3ANxl2RZlbkwjqQoKi0ywxVOukyLMQPlBaMI13hy9HfHCT_rjNbpfgtL0Lg7TKBvsjptdo3TzpNt7szsbj7lWP5SJleYDeWkcuW4YPaUZzzMCOn195Hv2cxaOEkC5h81Z6qCZ54e8DVB-i7DgAtagVYP-6PS3_Qp7k2n0500-PejJ5swmdb8JGEz2SkzjAj7Dky0-wWrM4bbUFV1FEGhGM1JWWK43ri4wi17siOsacZD4l1VMZYr_QDyla0Q2Cyk7BYlqRn01H03Ibbs7Prk8HSVM1IbFM0HmC1Yj6TnhRpJ73vdSFFTr3jHGuTWolMyGo8iGLMYZ6rrWjRkuLjZjEYz32GVbKael3gNDCGmdc1vOpDZZeSFf0HHd539nCSNEB2jpL2UZSHCtbTFTLHfutag8r9LCKHu7A0cJoFhU13m_O21lQfywMFTD_fcPDMGeLT6CM9uBkqPAZyhRyLukD7UCymNJ_Gc3u_47mK6wNri-Havh9dLEH6_gm0gj3YWV-d-8PQmgzN1_qpfsCli73Bg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEA56Ij5prS2e2BJKH5vDS3azyeNRKofoUbAH-rTk11bssXe4e4r-9Z3Z7B4icujbsmSyITPMfLOZfEPIdw1RUWfOMsU9JCgmSZnlxrAiSwE-cF4Ig3eHLyZyPE3OrtKrDUK7uzA3gDhb34_PDBnlpNTgZLdkCmi7R7amk9-j6-ZwABKgRMScSmWCIVlZRyzUlHDhzwHkFuJiAG5YNfyurwafzRusgtxZlgvz-GBms2ch5nQvljpWDTMhVpb8GyxrO3BPL3gb163-A9lt8SUdRYPYJxuh_Ei2mzpPVx2Qy0gzjT6ONr2YK4MWSCexGryiJqJSWs9p9VgCOoR5aNHRclDkfgKJeUX_thPNy09kevrrz88xa_sqMCcUrxn2Kxp6FVSRBDkM2hROmSwIIaWxidPCAuwKkOdYy4M0xnNrtMNBQuPBn_hMeuW8DIeE8sJZb316EhIHkkFpX5x46bOhd4XVqk94t-G5a0nHsffFLO-qy27zRks5aimPWuqTHyuhReTcWD9cdprM282PcCCHqLBe8BsoafUJJNoej85zfNcp7p73CVuZxVtWc_TO8cekV98twxeANrX92lr3f5Kk-Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Adversarial+Networks+applied+to+synthetic+financial+scenarios+generation&rft.jtitle=Physica+A&rft.au=Rizzato%2C+Matteo&rft.au=Wallart%2C+Julien&rft.au=Geissler%2C+Christophe&rft.au=Morizet%2C+Nicolas&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.volume=623&rft_id=info:doi/10.1016%2Fj.physa.2023.128899&rft.externalDocID=S0378437123004545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon