Generative Adversarial Networks applied to synthetic financial scenarios generation
In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables de...
Saved in:
| Published in | Physica A Vol. 623; p. 128899 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-4371 1873-2119 0378-4371 |
| DOI | 10.1016/j.physa.2023.128899 |
Cover
| Abstract | In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables describing the state of the world, common to all objects at a given date and potentially influential on the specific features. The conditioning process is specified at inference time, and only involves state variables; it simply consists in setting lower and/or upper bounds on their values. The generative model is trained as an un-conditioned generator and is agnostic of any scenario the user might set at inference time. The use case considered in this pilot study is of interest for the financial industry: the generator produces random samples of the instrument-specific features over time (e.g their price, size or the risk for securities). Such generation is conditioned on user-defined macroeconomic assumptions/scenarios involving global variables, such as inflation, oil prices or interest rates. We introduce numerical metrics to assess the statistical closeness between the two multivariate distributions of historical and artificial data. As proof of concept, we test the proposed algorithm by reproducing the value variation for two possible portfolios, Energy and Financial, conditioned on scenarios for which a consensus is present in the community. Jinkou allows us to recover some classical stylized facts about the financial markets, this ability constituting a proof of its efficiency.
[Display omitted]
•We synthesize data conditioned over continuous values not known at training time.•Jinkou allows us to recover the most known stylized facts in financial markets.•No algorithmic details are specific to the use case considered in this study. |
|---|---|
| AbstractList | The finance industry is producing an increasing amount of datasets that investment professionals can consider to be influential on the price of financial assets. These datasets were initially mainly limited to exchange data, namely price, capitalization and volume. Their coverage has now considerably expanded to include, for example, macroeconomic data, supply and demand of commodities, balance sheet data and more recently extra-financial data such as ESG scores. This broadening of the factors retained as influential constitutes a serious challenge for statistical modeling. Indeed, the instability of the correlations between these factors makes it practically impossible to identify the joint laws needed to construct scenarios. Fortunately, spectacular advances in Deep Learning field in recent years have given rise to GANs. GANs are a type of generative machine learning models that produce new data samples with the same characteristics as a training data distribution in an unsupervised way, avoiding data assumptions and human induced biases. In this work, we are exploring the use of GANs for synthetic financial scenarios generation. This pilot study is the result of a collaboration between Fujitsu and Advestis and it will be followed by a thorough exploration of the use cases that can benefit from the proposed solution. We propose a GANs-based algorithm that allows the replication of multivariate data representing several properties (including, but not limited to, price, market capitalization, ESG score, controversy score,. . .) of a set of stocks. This approach differs from examples in the financial literature, which are mainly focused on the reproduction of temporal asset price scenarios. We also propose several metrics to evaluate the quality of the data generated by the GANs. This approach is well fit for the generation of scenarios, the time direction simply arising as a subsequent (eventually conditioned) generation of data points drawn from the learned distribution. Our method will allow to simulate high dimensional scenarios (compared to ≲ 10 features currently employed in most recent use cases) where network complexity is reduced thanks to a wisely performed feature engineering and selection. Complete results will be presented in a forthcoming study. In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of variables whose distribution is to be replicated include specific variables taking different values for different objects, as well state variables describing the state of the world, common to all objects at a given date and potentially influential on the specific features. The conditioning process is specified at inference time, and only involves state variables; it simply consists in setting lower and/or upper bounds on their values. The generative model is trained as an un-conditioned generator and is agnostic of any scenario the user might set at inference time. The use case considered in this pilot study is of interest for the financial industry: the generator produces random samples of the instrument-specific features over time (e.g their price, size or the risk for securities). Such generation is conditioned on user-defined macroeconomic assumptions/scenarios involving global variables, such as inflation, oil prices or interest rates. We introduce numerical metrics to assess the statistical closeness between the two multivariate distributions of historical and artificial data. As proof of concept, we test the proposed algorithm by reproducing the value variation for two possible portfolios, Energy and Financial, conditioned on scenarios for which a consensus is present in the community. Jinkou allows us to recover some classical stylized facts about the financial markets, this ability constituting a proof of its efficiency. [Display omitted] •We synthesize data conditioned over continuous values not known at training time.•Jinkou allows us to recover the most known stylized facts in financial markets.•No algorithmic details are specific to the use case considered in this study. |
| ArticleNumber | 128899 |
| Author | Geissler, Christophe Wallart, Julien Morizet, Nicolas Rizzato, Matteo Boumlaik, Noureddine |
| Author_xml | – sequence: 1 givenname: Matteo surname: Rizzato fullname: Rizzato, Matteo email: mrizzato@advestis.com organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France – sequence: 2 givenname: Julien surname: Wallart fullname: Wallart, Julien organization: Fujitsu Systems Europe, 185 Rue Galilée, Labège, 31670, France – sequence: 3 givenname: Christophe surname: Geissler fullname: Geissler, Christophe organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France – sequence: 4 givenname: Nicolas surname: Morizet fullname: Morizet, Nicolas organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France – sequence: 5 givenname: Noureddine surname: Boumlaik fullname: Boumlaik, Noureddine organization: Advestis, 69 Boulevard Haussmann, Paris, 75008, France |
| BackLink | https://hal.science/hal-03716692$$DView record in HAL |
| BookMark | eNqNkD1PwzAQhi1UJFrgF7BkZWjxR-rGA0NVQUGqYABm6-JcqEtwItu06r8nIUggBmC60-l93pOeERm42iEhZ4xOGGXyYjNp1vsAE065mDCeZUodkCEVs2ycihkbfNuPyCiEDaWUzQQfkoclOvQQ7RaTebFFH8BbqJI7jLvav4QEmqayWCSxTsLexTVGa5LSOnCmywWDriXqkDx_FtXuhByWUAU8_ZzH5On66nFxM17dL28X89XYiIzHcWaKlBUZZmWKkqGC0mQwQyGkhDw1SuRqylDSaZ5zlAAFz0GZLiQUlSkVxyTte99cA_sdVJVuvH0Fv9eM6k6M3ugPMboTo3sxLXbeY2v4Amqw-ma-0t2tdcWkVHzL26zos8bXIXgs__lB_aCMjR9qogdb_cFe9iy25rYWvQ7GojNYWI8m6qK2v_LvWuWjwA |
| CitedBy_id | crossref_primary_10_3389_frai_2025_1546398 crossref_primary_10_1016_j_ijepes_2024_109868 |
| Cites_doi | 10.1007/BF02589501 10.1214/aos/1176344552 10.1016/j.procs.2019.01.256 10.3390/wind2020021 10.3758/BF03193163 10.1016/j.patrec.2005.10.010 10.1080/10807039609383659 10.1093/ije/dyt043 10.1016/j.physa.2019.121261 10.1088/1361-6382/ac09cc 10.1016/S0165-1889(97)00028-6 10.1016/S0024-3795(97)00015-3 10.1007/s12559-019-09670-y 10.3905/jfi.1991.408013 10.1080/713665670 10.1023/A:1026543900054 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.physa.2023.128899 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Statistics |
| EISSN | 0378-4371 |
| ExternalDocumentID | oai:HAL:hal-03716692v2 10_1016_j_physa_2023_128899 S0378437123004545 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAXKI AAXUO ABAOU ABMAC ABNEU ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFJKZ AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQXK AATTM AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFODL AGQPQ AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS EFLBG EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG VOH WUQ XJT XOL YYP ZY4 ~HD 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c382t-8cd41d8e8f4e61e9afc8a7e3366ab4c93b951e605bb2e6aad2ba9cfc8a3906403 |
| IEDL.DBID | UNPAY |
| ISSN | 0378-4371 1873-2119 |
| IngestDate | Sun Oct 26 03:57:52 EDT 2025 Tue Oct 14 20:38:24 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Thu Oct 16 04:23:05 EDT 2025 Tue Dec 03 03:44:54 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generative Adversarial Networks Deep neural networks Conditional data augmentation Risk management Financial scenarios Time series generation Data Augmentation Deep neural networks Generative Adversarial Networks Conditional data augmentation Financial scenarios Risk management Time series generation |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-8cd41d8e8f4e61e9afc8a7e3366ab4c93b951e605bb2e6aad2ba9cfc8a3906403 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-03716692 |
| ParticipantIDs | unpaywall_primary_10_1016_j_physa_2023_128899 hal_primary_oai_HAL_hal_03716692v2 crossref_primary_10_1016_j_physa_2023_128899 crossref_citationtrail_10_1016_j_physa_2023_128899 elsevier_sciencedirect_doi_10_1016_j_physa_2023_128899 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 2023-08-00 2023-08 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica A |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b5) 2014 Boyle, Broadie, Glasserman (b2) 1997; 21 van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b18) 2016 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (b30) 2016 Dhariwal, Nichol (b43) 2021 Anderson, Stephens (b27) 1997; 264 Kingma, Ba (b37) 2014 Oriol, Miot (b39) 2021 Carrara, Amato, Brombin, Falchi, Gennaro (b44) 2020 Arjovsky, Chintala, Bottou (b25) 2017 Mirza, Osindero (b28) 2014 McGinn, Messenger, Williams, Heng (b22) 2021; 38 Eberle, Cevasco, Schwarzkopf, Hollm, Seifried (b6) 2022; 2 Bińkowski, Donahue, Dieleman, Clark, Elsen, Casagrande, Cobo, Simonyan (b21) 2019 Zhang, Zhong, Dong, Wang, Wang (b14) 2019; 147 Fawcett (b34) 2006; 27 Liu, Tang, Zhou, Qiu (b41) 2019 Black, Litterman (b4) 1991; 1 Rubner, Tomasi, Guibas (b24) 2000; 40 Patel, Oberai (b29) 2019 Takahashi, Chen, Tanaka-Ishii (b15) 2019; 527 Hamra, MacLehose, Richardson (b7) 2013; 42 Wiese, Knobloch, Korn (b38) 2019 Efron (b9) 1979; 7 Bertsekas (b8) 2005 Wiese, Knobloch, Korn, Kretschmer (b17) 2019 Ferson (b3) 1996; 2 Kim, Zhou, Philion, Torralba, Fidler (b23) 2020 Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b31) 2018 Engle, Focardi, Fabozzi (b13) 2012 Glassermann (b1) 2003 Miyato, Kataoka, Koyama, Yoshida (b36) 2018 Wang, Healy, Smeaton, Ward (b32) 2019; 12 Thanh-Tung, Tran, Venkatesh (b40) 2018 Koshiyama, Firoozye, Treleaven (b19) 2019 Lutz, Lütkepohl (b12) 2017 Yoon, Jarrett, van der Schaar (b16) 2019 Zientek, Thompson (b11) 2007; 39 Cont (b20) 2001; 1 Donahue, Krähenbühl, Darrell (b26) 2016 Yoshida, Miyato (b35) 2017 Sharma, Namboodiri (b42) 2018 Hodges (b33) 1958; 3 Nakhwan, Duangsoithong (b10) 2022 Eberle (10.1016/j.physa.2023.128899_b6) 2022; 2 Goodfellow (10.1016/j.physa.2023.128899_b5) 2014 Salimans (10.1016/j.physa.2023.128899_b30) 2016 Fawcett (10.1016/j.physa.2023.128899_b34) 2006; 27 Heusel (10.1016/j.physa.2023.128899_b31) 2018 Carrara (10.1016/j.physa.2023.128899_b44) 2020 Glassermann (10.1016/j.physa.2023.128899_b1) 2003 Nakhwan (10.1016/j.physa.2023.128899_b10) 2022 McGinn (10.1016/j.physa.2023.128899_b22) 2021; 38 Bertsekas (10.1016/j.physa.2023.128899_b8) 2005 Koshiyama (10.1016/j.physa.2023.128899_b19) 2019 Kim (10.1016/j.physa.2023.128899_b23) 2020 Wiese (10.1016/j.physa.2023.128899_b38) 2019 Thanh-Tung (10.1016/j.physa.2023.128899_b40) 2018 Hodges (10.1016/j.physa.2023.128899_b33) 1958; 3 Wiese (10.1016/j.physa.2023.128899_b17) 2019 Kingma (10.1016/j.physa.2023.128899_b37) 2014 Rubner (10.1016/j.physa.2023.128899_b24) 2000; 40 Efron (10.1016/j.physa.2023.128899_b9) 1979; 7 Zientek (10.1016/j.physa.2023.128899_b11) 2007; 39 Lutz (10.1016/j.physa.2023.128899_b12) 2017 Engle (10.1016/j.physa.2023.128899_b13) 2012 Donahue (10.1016/j.physa.2023.128899_b26) 2016 Dhariwal (10.1016/j.physa.2023.128899_b43) 2021 Boyle (10.1016/j.physa.2023.128899_b2) 1997; 21 Bińkowski (10.1016/j.physa.2023.128899_b21) 2019 Patel (10.1016/j.physa.2023.128899_b29) 2019 Yoshida (10.1016/j.physa.2023.128899_b35) 2017 Liu (10.1016/j.physa.2023.128899_b41) 2019 Cont (10.1016/j.physa.2023.128899_b20) 2001; 1 Zhang (10.1016/j.physa.2023.128899_b14) 2019; 147 van den Oord (10.1016/j.physa.2023.128899_b18) 2016 Miyato (10.1016/j.physa.2023.128899_b36) 2018 Hamra (10.1016/j.physa.2023.128899_b7) 2013; 42 Arjovsky (10.1016/j.physa.2023.128899_b25) 2017 Ferson (10.1016/j.physa.2023.128899_b3) 1996; 2 Black (10.1016/j.physa.2023.128899_b4) 1991; 1 Takahashi (10.1016/j.physa.2023.128899_b15) 2019; 527 Mirza (10.1016/j.physa.2023.128899_b28) 2014 Oriol (10.1016/j.physa.2023.128899_b39) 2021 Anderson (10.1016/j.physa.2023.128899_b27) 1997; 264 Sharma (10.1016/j.physa.2023.128899_b42) 2018 Yoon (10.1016/j.physa.2023.128899_b16) 2019 Wang (10.1016/j.physa.2023.128899_b32) 2019; 12 |
| References_xml | – volume: 2 start-page: 990 year: 1996 end-page: 1007 ident: b3 article-title: What Monte Carlo methods cannot do publication-title: Hum. Ecol. Risk Assess.: Int. J. – volume: 38 year: 2021 ident: b22 article-title: Generalised gravitational wave burst generation with generative adversarial networks publication-title: Classical Quantum Gravity – volume: 1 start-page: 223 year: 2001 end-page: 236 ident: b20 article-title: Empirical properties of asset returns: Stylized facts and statistical issues publication-title: Quant. Finance – volume: 527 year: 2019 ident: b15 article-title: Modeling financial time-series with generative adversarial networks publication-title: Physica A – year: 2016 ident: b26 article-title: Adversarial feature learning – year: 2019 ident: b38 article-title: Copula & marginal flows: Disentangling the marginal from its joint – year: 2019 ident: b29 article-title: Bayesian inference with generative adversarial network priors – year: 2020 ident: b44 article-title: Combining GANs and AutoEncoders for efficient anomaly detection – year: 2005 ident: b8 publication-title: Dynamic Programming and Optimal Control – year: 2019 ident: b17 article-title: Quant GANs: Deep generation of financial time series – volume: 40 start-page: 99 year: 2000 end-page: 121 ident: b24 article-title: The earth mover’s distance as a metric for image retrieval publication-title: Int. J. Comput. Vis. – volume: 7 start-page: 1 year: 1979 end-page: 26 ident: b9 article-title: Bootstrap methods: Another look at the Jackknife publication-title: Ann. Statist. – volume: 39 start-page: 318 year: 2007 end-page: 325 ident: b11 article-title: Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis publication-title: Behav. Res. Methods – volume: 12 start-page: 13 year: 2019 end-page: 24 ident: b32 article-title: Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation publication-title: Cogn. Comput. – volume: 147 start-page: 400 year: 2019 end-page: 406 ident: b14 article-title: Stock market prediction based on generative adversarial network publication-title: Procedia Comput. Sci. – year: 2014 ident: b5 article-title: Generative adversarial networks – start-page: 18 year: 2022 end-page: 23 ident: b10 article-title: Comparison analysis of data augmentation using bootstrap, GANs and autoencoder publication-title: 2022 14th International Conference on Knowledge and Smart Technology – year: 2018 ident: b36 article-title: Spectral Normalization for Generative Adversarial Networks – year: 2019 ident: b41 article-title: Spectral regularization for combating mode collapse in GANs – year: 2020 ident: b23 article-title: Learning to simulate dynamic environments with GameGAN – year: 2021 ident: b39 article-title: On some theoretical limitations of generative adversarial networks – year: 2019 ident: b19 article-title: Generative adversarial networks for financial trading strategies fine-tuning and combination – year: 2014 ident: b37 article-title: Adam: A method for stochastic optimization – year: 2003 ident: b1 article-title: Monte Carlo Methods in Financial Engineering – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b34 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. – volume: 264 start-page: 145 year: 1997 end-page: 171 ident: b27 article-title: The continuous and discrete Brownian bridges: Representations and applications publication-title: Linear Algebra Appl. – volume: 42 start-page: 627 year: 2013 end-page: 634 ident: b7 article-title: Markov Chain Monte Carlo: an introduction for epidemiologists publication-title: Int. J. Epidemiol. – year: 2016 ident: b18 article-title: WaveNet: A Generative Model for Raw Audio – year: 2019 ident: b21 article-title: High fidelity speech synthesis with adversarial networks – year: 2012 ident: b13 article-title: ARCH/GARCH models in applied financial econometrics publication-title: Encyclopedia of Financial Models – volume: 3 start-page: 469 year: 1958 end-page: 486 ident: b33 article-title: The significance probability of the Smirnov two-sample test publication-title: Arkiv För Matematik – year: 2017 ident: b12 article-title: Structural Vector Autoregressive Analysis – year: 2019 ident: b16 article-title: Time-series generative adversarial networks publication-title: Advances in Neural Information Processing Systems, Vol. 32 – year: 2018 ident: b40 article-title: On catastrophic forgetting and mode collapse in generative adversarial networks – year: 2021 ident: b43 article-title: Diffusion models beat GANs on image synthesis – year: 2018 ident: b31 article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium – year: 2014 ident: b28 article-title: Conditional Generative Adversarial Nets – volume: 1 start-page: pp 7 year: 1991 end-page: 18 ident: b4 article-title: Asset allocation combining investor view with market equilibrium publication-title: J. Fixed Income – year: 2017 ident: b25 article-title: Wasserstein GAN – year: 2016 ident: b30 article-title: Improved techniques for training GANs – volume: 2 start-page: 394 year: 2022 end-page: 414 ident: b6 article-title: Multivariate simulation of offshore weather time series: A comparison between Markov chain, autoregressive, and long short-term memory models publication-title: Wind – volume: 21 start-page: pp 1267 year: 1997 end-page: 1321 ident: b2 article-title: Monte Carlo methods for security pricing publication-title: J. Econom. Dynam. Control – year: 2018 ident: b42 article-title: No Modes left behind: Capturing the data distribution effectively using GANs – year: 2017 ident: b35 article-title: Spectral norm regularization for improving the generalizability of deep learning – year: 2021 ident: 10.1016/j.physa.2023.128899_b39 – year: 2020 ident: 10.1016/j.physa.2023.128899_b44 – volume: 3 start-page: 469 issue: 5 year: 1958 ident: 10.1016/j.physa.2023.128899_b33 article-title: The significance probability of the Smirnov two-sample test publication-title: Arkiv För Matematik doi: 10.1007/BF02589501 – year: 2014 ident: 10.1016/j.physa.2023.128899_b37 – year: 2019 ident: 10.1016/j.physa.2023.128899_b29 – year: 2018 ident: 10.1016/j.physa.2023.128899_b36 – year: 2016 ident: 10.1016/j.physa.2023.128899_b18 – year: 2012 ident: 10.1016/j.physa.2023.128899_b13 article-title: ARCH/GARCH models in applied financial econometrics – year: 2018 ident: 10.1016/j.physa.2023.128899_b31 – year: 2018 ident: 10.1016/j.physa.2023.128899_b40 – volume: 7 start-page: 1 issue: 1 year: 1979 ident: 10.1016/j.physa.2023.128899_b9 article-title: Bootstrap methods: Another look at the Jackknife publication-title: Ann. Statist. doi: 10.1214/aos/1176344552 – year: 2017 ident: 10.1016/j.physa.2023.128899_b35 – volume: 147 start-page: 400 year: 2019 ident: 10.1016/j.physa.2023.128899_b14 article-title: Stock market prediction based on generative adversarial network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.01.256 – volume: 2 start-page: 394 issue: 2 year: 2022 ident: 10.1016/j.physa.2023.128899_b6 article-title: Multivariate simulation of offshore weather time series: A comparison between Markov chain, autoregressive, and long short-term memory models publication-title: Wind doi: 10.3390/wind2020021 – volume: 39 start-page: 318 issue: 1 year: 2007 ident: 10.1016/j.physa.2023.128899_b11 article-title: Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis publication-title: Behav. Res. Methods doi: 10.3758/BF03193163 – year: 2016 ident: 10.1016/j.physa.2023.128899_b26 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.physa.2023.128899_b34 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – year: 2019 ident: 10.1016/j.physa.2023.128899_b38 – year: 2021 ident: 10.1016/j.physa.2023.128899_b43 – volume: 2 start-page: 990 issue: 4 year: 1996 ident: 10.1016/j.physa.2023.128899_b3 article-title: What Monte Carlo methods cannot do publication-title: Hum. Ecol. Risk Assess.: Int. J. doi: 10.1080/10807039609383659 – year: 2019 ident: 10.1016/j.physa.2023.128899_b41 – volume: 42 start-page: 627 issue: 2 year: 2013 ident: 10.1016/j.physa.2023.128899_b7 article-title: Markov Chain Monte Carlo: an introduction for epidemiologists publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyt043 – year: 2019 ident: 10.1016/j.physa.2023.128899_b21 – volume: 527 year: 2019 ident: 10.1016/j.physa.2023.128899_b15 article-title: Modeling financial time-series with generative adversarial networks publication-title: Physica A doi: 10.1016/j.physa.2019.121261 – year: 2020 ident: 10.1016/j.physa.2023.128899_b23 – year: 2014 ident: 10.1016/j.physa.2023.128899_b5 – year: 2019 ident: 10.1016/j.physa.2023.128899_b17 – volume: 38 issue: 15 year: 2021 ident: 10.1016/j.physa.2023.128899_b22 article-title: Generalised gravitational wave burst generation with generative adversarial networks publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ac09cc – year: 2018 ident: 10.1016/j.physa.2023.128899_b42 – year: 2019 ident: 10.1016/j.physa.2023.128899_b19 – year: 2016 ident: 10.1016/j.physa.2023.128899_b30 – year: 2017 ident: 10.1016/j.physa.2023.128899_b25 – year: 2019 ident: 10.1016/j.physa.2023.128899_b16 article-title: Time-series generative adversarial networks – year: 2017 ident: 10.1016/j.physa.2023.128899_b12 – volume: 21 start-page: pp 1267 issue: 8-9 year: 1997 ident: 10.1016/j.physa.2023.128899_b2 article-title: Monte Carlo methods for security pricing publication-title: J. Econom. Dynam. Control doi: 10.1016/S0165-1889(97)00028-6 – start-page: 18 year: 2022 ident: 10.1016/j.physa.2023.128899_b10 article-title: Comparison analysis of data augmentation using bootstrap, GANs and autoencoder – volume: 264 start-page: 145 year: 1997 ident: 10.1016/j.physa.2023.128899_b27 article-title: The continuous and discrete Brownian bridges: Representations and applications publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(97)00015-3 – year: 2014 ident: 10.1016/j.physa.2023.128899_b28 – year: 2003 ident: 10.1016/j.physa.2023.128899_b1 – volume: 12 start-page: 13 issue: 1 year: 2019 ident: 10.1016/j.physa.2023.128899_b32 article-title: Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation publication-title: Cogn. Comput. doi: 10.1007/s12559-019-09670-y – year: 2005 ident: 10.1016/j.physa.2023.128899_b8 – volume: 1 start-page: pp 7 issue: 2 year: 1991 ident: 10.1016/j.physa.2023.128899_b4 article-title: Asset allocation combining investor view with market equilibrium publication-title: J. Fixed Income doi: 10.3905/jfi.1991.408013 – volume: 1 start-page: 223 year: 2001 ident: 10.1016/j.physa.2023.128899_b20 article-title: Empirical properties of asset returns: Stylized facts and statistical issues publication-title: Quant. Finance doi: 10.1080/713665670 – volume: 40 start-page: 99 issue: 2 year: 2000 ident: 10.1016/j.physa.2023.128899_b24 article-title: The earth mover’s distance as a metric for image retrieval publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1026543900054 |
| SSID | ssj0001732 |
| Score | 2.4816635 |
| Snippet | In this paper, we introduce Jinkou, a GAN-based algorithm that allows for the conditional generation of synthetic multivariate time series. The set of... The finance industry is producing an increasing amount of datasets that investment professionals can consider to be influential on the price of financial... |
| SourceID | unpaywall hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 128899 |
| SubjectTerms | Applications Computational Finance Conditional data augmentation Deep neural networks Financial scenarios Generative Adversarial Networks Machine Learning Quantitative Finance Risk management Statistics Time series generation |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA61IHoRV6wbQTw6XZJpJjmWYimivdRCb0O2caFMi9MqvfjbzZvMVAUp4nFCXhJewpeXyZfvIXQl3K4oIq0CTow7oMiwHSgiZZBEbRc-EJJQCW-H7wesPwpvx-1xBXXLtzBAqyyw32N6jtZFSaPwZmP2_NwYNmnEQxo56M115OCheRhGkMWg_vFF82hF1N8kuNMS1C6Vh3KOF_w9APEhQusOp3kuAPvr7rTxBDTJrUU6k8t3OZl824N6u2inCB5xx49vD1Vsuo82cxKnzg7Q0GtIA4DhPNFyJmF54YGnemdY-pATz6c4W6Yu9HPt4KTU3MAg7OQsphl-LBqapodo1Lt56PaDImlCoCkn8wCSEbUMtzwJLWtZIRPNZWQpZUyqUAuqXExl3SFGKWKZlIYoKTRUogJu9egRqqbT1B4jTBKtjDLtpg21s7RcmKRpmIlaRidK8BoipbNiXSiKQ2KLSVxSx17i3MMxeDj2Hq6h65XRzAtqrK_OylmIf6yL2EH-esNLN2erLkBFu9-5i6EMVAoZE-SN1FCwmtK_jObkv6M5Rdvw5ZmDZ6g6f13YcxfNzNVFvlw_AUUS8-M priority: 102 providerName: Elsevier |
| Title | Generative Adversarial Networks applied to synthetic financial scenarios generation |
| URI | https://dx.doi.org/10.1016/j.physa.2023.128899 https://hal.science/hal-03716692 |
| UnpaywallVersion | submittedVersion |
| Volume | 623 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 0378-4371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 1873-2119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 0378-4371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 1873-2119 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 0378-4371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 1873-2119 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 0378-4371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001732 issn: 1873-2119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_udhGf_Bb30CWIj2a5Tdo0eVzEY_1aBF04n0q-6qFL97Bdj_PBv92Zpl1EZNG3UjJpyAwzv2kmvwF4ZjAqmsI7rkXABMVmOXfCWl4VOcIHISpp6e7wu5VarrPX5_n5EbDhLswFIs7e99MzJ0Y5pQw62bHKEW2PYLxevV986g4HMAHKZMqpdCE5kZUNxEJdCRf9HCBuISFn6IZ1x-_61-BzfEFVkDd39aW9vrKbzW8h5ux2KnVsOmZCqiz5Otu1buZ__MHbeGj1d-BWjy_ZIhnEXTiK9T240dV5-uY-fEg00-TjWNeLubFkgWyVqsEbZhMqZe2WNdc1okOch1UDLQcj7ieU2Dbscz_Rtn4A67OXH18sed9XgXupRcupX9E86KirLKp5NLby2hZRSqWsy7yRDmFXxDzHORGVtUE4azwNkoYO_uRDGNXbOj4CJirvggv5acw8SkZtQnUaVCjmwVfO6AmIYcNL35OOU--LTTlUl30pOy2VpKUyaWkCz_dCl4lz4_BwNWiy7Dc_wYESo8JhwaeopP0niGh7uXhb0rtBcd_FBPjeLP5lNSf_Of4xjNpvu_gEoU3rpnA8-zmfwnjx6s1yNe1t_RdGMfwl |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BFYILooWK5aO1UI-E3bUTxz4iBNqWZS-AxM3yV9qtVtkVWUBc-O144mShUoWqXhOPY42t55n4-Q3ANxl2RZlbkwjqQoKi0ywxVOukyLMQPlBaMI13hy9HfHCT_rjNbpfgtL0Lg7TKBvsjptdo3TzpNt7szsbj7lWP5SJleYDeWkcuW4YPaUZzzMCOn195Hv2cxaOEkC5h81Z6qCZ54e8DVB-i7DgAtagVYP-6PS3_Qp7k2n0500-PejJ5swmdb8JGEz2SkzjAj7Dky0-wWrM4bbUFV1FEGhGM1JWWK43ri4wi17siOsacZD4l1VMZYr_QDyla0Q2Cyk7BYlqRn01H03Ibbs7Prk8HSVM1IbFM0HmC1Yj6TnhRpJ73vdSFFTr3jHGuTWolMyGo8iGLMYZ6rrWjRkuLjZjEYz32GVbKael3gNDCGmdc1vOpDZZeSFf0HHd539nCSNEB2jpL2UZSHCtbTFTLHfutag8r9LCKHu7A0cJoFhU13m_O21lQfywMFTD_fcPDMGeLT6CM9uBkqPAZyhRyLukD7UCymNJ_Gc3u_47mK6wNri-Havh9dLEH6_gm0gj3YWV-d-8PQmgzN1_qpfsCli73Bg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEA56Ij5prS2e2BJKH5vDS3azyeNRKofoUbAH-rTk11bssXe4e4r-9Z3Z7B4icujbsmSyITPMfLOZfEPIdw1RUWfOMsU9JCgmSZnlxrAiSwE-cF4Ig3eHLyZyPE3OrtKrDUK7uzA3gDhb34_PDBnlpNTgZLdkCmi7R7amk9-j6-ZwABKgRMScSmWCIVlZRyzUlHDhzwHkFuJiAG5YNfyurwafzRusgtxZlgvz-GBms2ch5nQvljpWDTMhVpb8GyxrO3BPL3gb163-A9lt8SUdRYPYJxuh_Ei2mzpPVx2Qy0gzjT6ONr2YK4MWSCexGryiJqJSWs9p9VgCOoR5aNHRclDkfgKJeUX_thPNy09kevrrz88xa_sqMCcUrxn2Kxp6FVSRBDkM2hROmSwIIaWxidPCAuwKkOdYy4M0xnNrtMNBQuPBn_hMeuW8DIeE8sJZb316EhIHkkFpX5x46bOhd4XVqk94t-G5a0nHsffFLO-qy27zRks5aimPWuqTHyuhReTcWD9cdprM282PcCCHqLBe8BsoafUJJNoej85zfNcp7p73CVuZxVtWc_TO8cekV98twxeANrX92lr3f5Kk-Zk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Adversarial+Networks+applied+to+synthetic+financial+scenarios+generation&rft.jtitle=Physica+A&rft.au=Rizzato%2C+Matteo&rft.au=Wallart%2C+Julien&rft.au=Geissler%2C+Christophe&rft.au=Morizet%2C+Nicolas&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.volume=623&rft_id=info:doi/10.1016%2Fj.physa.2023.128899&rft.externalDocID=S0378437123004545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |