On O(n) algorithms for projection onto the top-k-sum sublevel set

The top- k -sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that im...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming computation Vol. 17; no. 2; pp. 307 - 348
Main Authors Roth, Jake, Cui, Ying
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1867-2949
1867-2957
DOI10.1007/s12532-024-00273-9

Cover

Abstract The top- k -sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O ( n ) complexity of floating point operations when applied to a sorted n -dimensional input vector, where the absorbed constant is independent of k . This stands in contrast to an existing grid-search-inspired method that has O ( k ( n - k ) ) complexity, a partition-based method with O ( n + D log D ) complexity, where D ≤ n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n = 10 7 and k = 10 4 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours.
AbstractList The top- k -sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O ( n ) complexity of floating point operations when applied to a sorted n -dimensional input vector, where the absorbed constant is independent of k . This stands in contrast to an existing grid-search-inspired method that has O ( k ( n - k ) ) complexity, a partition-based method with O ( n + D log D ) complexity, where D ≤ n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n = 10 7 and k = 10 4 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours.
The operator computes the sum of the largest components of a given vector. The Euclidean projection onto the top- -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have complexity of floating point operations when applied to a sorted -dimensional input vector, where the absorbed constant . This stands in contrast to an existing grid-search-inspired method that has complexity, a partition-based method with complexity, where is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when is linearly dependent on , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale and within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours.
The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O(n) complexity of floating point operations when applied to a sorted n-dimensional input vector, where the absorbed constant is independent ofk. This stands in contrast to an existing grid-search-inspired method that has O(k(n-k)) complexity, a partition-based method with O(n+DlogD) complexity, where D≤n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n=107 and k=104 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours.
The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O(n) complexity of floating point operations when applied to a sorted n-dimensional input vector, where the absorbed constant is independent of k. This stands in contrast to an existing grid-search-inspired method that has O(k(n-k)) complexity, a partition-based method with O(n+DlogD) complexity, where D≤n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n=107 and k=104 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours.
Author Roth, Jake
Cui, Ying
AuthorAffiliation 2 Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA 94720, USA
1 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55414, USA
AuthorAffiliation_xml – name: 2 Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA 94720, USA
– name: 1 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Author_xml – sequence: 1
  givenname: Jake
  surname: Roth
  fullname: Roth, Jake
  organization: Department of Industrial and Systems Engineering, University of Minnesota
– sequence: 2
  givenname: Ying
  surname: Cui
  fullname: Cui, Ying
  email: yingcui@berkeley.edu
  organization: Department of Industrial Engineering and Operations Research, University of California, Berkeley
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40873764$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0qqATKH-iistQNLEz9HI9XVYR4SUjZ0LXlGe4kk07sYHsi8e8xhIaywRtbut8558rnCE188IDQd0bPGaX6V2JcCU4ol4RSrgUxX9CU1ZUm3Cg92b-lOUQnKa1oOYLrWpiv6FDSWgtdySmazT2en_oz7IZFiH1erhPuQsSbGFbQ5j54HHwOOC8B57Ahf0ka1ziNzQBbGHCC_A0ddG5IcPJ2H6M_V5f3Fzfkbn59ezG7I62oeSZ10zWSKdo2QoCsasW1MUoZVQnXafnQKQVKMNE2tMyhoqANa5wDYFq6Tohj9HvnuxmbNTy04HN0g93Efu3ikw2utx8nvl_aRdhaxkVNqaLF4eebQwyPI6RsV2GMvixtBafSaFlpXqgf_-fsA_79WQH4DmhjSClCt0cYtS_d2F03tnRjX7uxpojETpQK7BcQ37M_UT0DkvGP7Q
Cites_doi 10.1109/ICMLA52953.2021.00011
10.1016/j.applthermaleng.2017.05.069
10.1137/050622328
10.1007/BF01584990
10.1080/01621459.1972.10481216
10.1145/512274.3734138
10.1007/s11228-021-00609-w
10.1016/j.ijepes.2018.02.022
10.1287/opre.1090.0712
10.1137/1.9780898719000
10.1007/BF01195027
10.1287/moor.20.2.441
10.1287/opre.28.4.927
10.1561/2200000039
10.1016/S0022-0000(73)80033-9
10.21314/JOR.2000.038
10.1007/BF01580873
10.1007/BF01585173
10.1137/141000671
10.1007/s10107-017-1201-0
10.2514/1.J060539
10.1109/TPAMI.2023.3296062
10.1137/110827144
10.1016/j.neucom.2020.01.104
10.5281/zenodo.14189753
10.1109/TPWRS.2020.2971684
10.1007/s11425-020-1743-9
10.1109/TPWRS.2003.810685
10.1007/s10107-015-0946-6
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
NPM
JQ2
5PM
DOI 10.1007/s12532-024-00273-9
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
DatabaseTitleList
PubMed
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1867-2957
EndPage 348
ExternalDocumentID PMC12380050
40873764
10_1007_s12532_024_00273_9
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA287413
GroupedDBID 06D
0R~
0VY
1N0
203
29M
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFDZB
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
GXS
H13
HF~
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
NPM
JQ2
5PM
ID FETCH-LOGICAL-c382t-8bfb4150cb33e46852799559563af74df55e5313cb03e4e60e791baaee174af33
IEDL.DBID U2A
ISSN 1867-2949
IngestDate Tue Sep 30 17:00:10 EDT 2025
Thu Oct 02 14:06:30 EDT 2025
Thu Sep 04 05:07:37 EDT 2025
Wed Oct 01 06:26:25 EDT 2025
Sat May 17 01:10:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C20
90-04
Top
90C25
90C33
90-08
90C06
Projection
sum
matrix
Superquantile
Z-matrix
Top-k-sum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-8bfb4150cb33e46852799559563af74df55e5313cb03e4e60e791baaee174af33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PMID 40873764
PQID 3204974672
PQPubID 2044128
PageCount 42
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12380050
proquest_journals_3204974672
pubmed_primary_40873764
crossref_primary_10_1007_s12532_024_00273_9
springer_journals_10_1007_s12532_024_00273_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming computation
PublicationTitleAbbrev Math. Prog. Comp
PublicationTitleAlternate Math Program Comput
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References L Leqi (273_CR26) 2019; 32
ML Overton (273_CR30) 1993; 62
R Dahlgren (273_CR14) 2003; 18
W Chen (273_CR9) 2010; 58
273_CR32
Y Laguel (273_CR25) 2021; 29
Q Li (273_CR27) 2021; 65
273_CR22
J Bezanson (273_CR5) 2017; 59
L Condat (273_CR10) 2016; 158
273_CR28
MJ Best (273_CR4) 1990; 47
F Bach (273_CR2) 2013; 6
A Nemirovski (273_CR29) 2006; 17
RW Cottle (273_CR12) 2009
A Dolatabadi (273_CR16) 2017; 123
M Tavakoli (273_CR38) 2018; 100
RW Cottle (273_CR11) 1972; 3
RE Barlow (273_CR3) 1972; 67
A Chaudhuri (273_CR8) 2022; 60
M Blum (273_CR6) 1973; 7
273_CR41
273_CR36
MJ Todd (273_CR39) 2018; 171
JWJ Williams (273_CR40) 1964; 7
273_CR13
273_CR35
J-S Pang (273_CR31) 1980; 28
273_CR33
273_CR18
273_CR17
B Wu (273_CR42) 2014; 24
R Chandrasekaran (273_CR7) 1970; 7
273_CR15
G Isac (273_CR23) 1986; 46
RT Rockafellar (273_CR34) 1999; 2
273_CR37
P Yuan (273_CR43) 2020; 395
273_CR19
273_CR1
O Güler (273_CR20) 1995; 20
CAR Hoare (273_CR21) 1961; 4
RA Jabr (273_CR24) 2020; 35
References_xml – ident: 273_CR17
  doi: 10.1109/ICMLA52953.2021.00011
– ident: 273_CR41
– volume: 123
  start-page: 40
  year: 2017
  ident: 273_CR16
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.069
– ident: 273_CR1
– ident: 273_CR37
– ident: 273_CR33
– ident: 273_CR18
– volume: 17
  start-page: 969
  issue: 4
  year: 2006
  ident: 273_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/050622328
– ident: 273_CR28
– volume: 3
  start-page: 210
  issue: 1
  year: 1972
  ident: 273_CR11
  publication-title: Math. Prog.
  doi: 10.1007/BF01584990
– volume: 67
  start-page: 140
  issue: 337
  year: 1972
  ident: 273_CR3
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481216
– volume: 7
  start-page: 347
  year: 1964
  ident: 273_CR40
  publication-title: Commun. ACM
  doi: 10.1145/512274.3734138
– volume: 29
  start-page: 967
  year: 2021
  ident: 273_CR25
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-021-00609-w
– volume: 100
  start-page: 1
  year: 2018
  ident: 273_CR38
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.02.022
– volume: 58
  start-page: 470
  issue: 2
  year: 2010
  ident: 273_CR9
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0712
– volume-title: The Linear Complementarity Problem
  year: 2009
  ident: 273_CR12
  doi: 10.1137/1.9780898719000
– volume: 46
  start-page: 568
  issue: 6
  year: 1986
  ident: 273_CR23
  publication-title: Arch. Math.
  doi: 10.1007/BF01195027
– ident: 273_CR15
– volume: 20
  start-page: 441
  issue: 2
  year: 1995
  ident: 273_CR20
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.20.2.441
– volume: 7
  start-page: 263
  year: 1970
  ident: 273_CR7
  publication-title: Opsearch
– volume: 28
  start-page: 927
  issue: 4
  year: 1980
  ident: 273_CR31
  publication-title: Oper. Res.
  doi: 10.1287/opre.28.4.927
– volume: 6
  start-page: 145
  issue: 2–3
  year: 2013
  ident: 273_CR2
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000039
– volume: 7
  start-page: 448
  year: 1973
  ident: 273_CR6
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(73)80033-9
– volume: 2
  start-page: 21
  issue: 3
  year: 1999
  ident: 273_CR34
  publication-title: J. Risk
  doi: 10.21314/JOR.2000.038
– volume: 47
  start-page: 425
  issue: 1
  year: 1990
  ident: 273_CR4
  publication-title: Math. Prog.
  doi: 10.1007/BF01580873
– volume: 62
  start-page: 321
  issue: 1
  year: 1993
  ident: 273_CR30
  publication-title: Math. Prog.
  doi: 10.1007/BF01585173
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 273_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: 273_CR13
– volume: 4
  start-page: 321
  year: 1961
  ident: 273_CR21
  publication-title: Commun. ACM
– ident: 273_CR32
– volume: 171
  start-page: 489
  issue: 1–2
  year: 2018
  ident: 273_CR39
  publication-title: Math. Prog.
  doi: 10.1007/s10107-017-1201-0
– volume: 60
  start-page: 551
  issue: 2
  year: 2022
  ident: 273_CR8
  publication-title: Am. Inst. Aeronaut. Astronaut. J.
  doi: 10.2514/1.J060539
– ident: 273_CR19
– ident: 273_CR36
– ident: 273_CR22
  doi: 10.1109/TPAMI.2023.3296062
– volume: 24
  start-page: 766
  issue: 2
  year: 2014
  ident: 273_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/110827144
– volume: 395
  start-page: 1
  year: 2020
  ident: 273_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.104
– ident: 273_CR35
  doi: 10.5281/zenodo.14189753
– volume: 35
  start-page: 3764
  issue: 5
  year: 2020
  ident: 273_CR24
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.2971684
– volume: 32
  start-page: 15029
  year: 2019
  ident: 273_CR26
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  start-page: 869
  year: 2021
  ident: 273_CR27
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-020-1743-9
– volume: 18
  start-page: 503
  issue: 2
  year: 2003
  ident: 273_CR14
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.810685
– volume: 158
  start-page: 575
  year: 2016
  ident: 273_CR10
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-015-0946-6
SSID ssj0000327839
Score 2.3468513
Snippet The top- k -sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a...
The operator computes the sum of the largest components of a given vector. The Euclidean projection onto the top- -sum sublevel set serves as a crucial...
The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 307
SubjectTerms Algorithms
Complexity
Floating point arithmetic
Full Length Paper
Iterative methods
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Operations Research/Decision Theory
Optimization
Search methods
Solvers
Theory of Computation
Title On O(n) algorithms for projection onto the top-k-sum sublevel set
URI https://link.springer.com/article/10.1007/s12532-024-00273-9
https://www.ncbi.nlm.nih.gov/pubmed/40873764
https://www.proquest.com/docview/3204974672
https://pubmed.ncbi.nlm.nih.gov/PMC12380050
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: AFBBN
  dateStart: 20090701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: U2A
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjB-C2KpAcPGm0y2m7rjsSARAN4kARPywqdEHEQNv5_X8cGInrwuLTrlvfa99X3fg_gejBEqe96iqI2t6jgoUWlRkNOu07oDEUtdFWa5dtxWj3x1Lf7WVFYnGe751eSqaReF7sxmzOKOoWmICzUK0DJNnBeuIt7rL6KrFjcdI8wdq8Ba6PME15WLfP7MpsaacvM3M6W_HFlmmqi5gHsZyYkqS95fgg7OjqCvW_AgvjUXqGxxsdQ70akexPdkmDyPp2Pk9FnTNBWJVkUBjlDDIoBwVdIMp3RD4rbk8QLNTEZRSTWyQn0mo3XhxbNWifQAZcsoVKFClWzNVCca-FImxngNxudIR6ErhiGtq3x9PGBsnBcO5Z2vZoKAq3RQwlCzk-hGE0jfQ4kCERoqmtrrqMFD6RpEWM75v5VWVILrwx3Ofn82RIhw19jIRti-0hsPyW2j7MrOYX97LTEPmfop5i-J6wMZ0tir5YSlnRRCIoyyA02rCYYfOzNkWg8SnGyUSlLg29ThvucY-tv_v2LF_-bfgm7zPQETiMzFSgm84W-QkMlUVUo1R_fnhtVKHRe2tV0l34BdMXfCQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3o_xzIEDCDJ1SdqmxwkxxvvCpHGqmi5liNFNa3fh1-N07cZ4HDhWSdPGdmI7sT8DHIcd3PVdT1HU5hYVPLKo1GjIadeJnI6oRa7KonwfnGZL3LTtdp4UlhTR7sWVZLZTT5PdmM0ZRZ1CMxAW6s1DWaCDwkpQrl89307PVixu6kcYy9fAtVHmCS_Pl_l9oFmd9MPQ_Bkv-e3SNNNFjRVoFbMYh6C8VUepqoYf3wAe_zvNVVjOjVNSH0vTGszpeB2WvkAW4tP9BOc12YD6Y0weT-JTEvRe-sPXtPueELSCSX6-gzwnBh-B4Csk7Q_oG0XBJ8lI9UysEkl0ugmtxuXTRZPmRRloyCVLqVSRQqVvhYpzLRxpMwMpZ6ObxYPIFZ3ItjWuax4qC9u1Y2nXq6kg0Bp9nyDifAtKcT_WO0CCQEQmb7fmOlrwQJriM7ZjbnaVJbXwKnBWsMUfjLE3_CnKsiGTj2TyMzL52Hu_4Jyfr8PE5ww9IFNRhVVge8zEyVDCki5ur6ICcoa9kw4GeXu2JX7tZgjcqO6lQc6pwHnBxOk3__7F3f91P4KF5tP9nX93_XC7B4vMVB7Ozn_2oZQOR_oAzaFUHebS_wnSMfxF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOiDfjmQMHEETrkrRNjxMw8RwcmMStatYEEKOb1vL_cbq223gcOFZx08pO4kfszwBH3RhPfT9QFLW5QwU3DpUaDTnte8aLRcP4Ks_ybXtXHXHz7D5PVPHn2e7lleSopsGiNCVZfRCb-rjwjbmcUdQvNAdkocEszAsLlIArusOaVZTF4baThLWBLXAbZYEIisqZ36eZ1k4_TM6fmZPfrk9zrdRageXCnCTNkfxXYUYna7A0ATKIT_cVMmu6Ds2HhDwcJyck6r30h2_Z60dK0G4lRUQGpUQsogHBV0jWH9B3ikuVpJ-qZ7OLSKqzDei0Lp_Or2jRRoF2uWQZlcooVNNOV3GuhSddZkHgXHSMeGR8ERvX1bgTeVc5OK49R_tBQ0WR1uitRIbzTZhL-oneBhJFwthK24bvacEjadvFuJ69i1WO1CKowWnJvnAwQssIx7jIltkhMjvMmR0i9V7J4bDYOWnIGfostgcKq8HWiNnVVMKRPh6IogZySgwVgcXKnh5J3l5zzGxU0NJi3dTgrJTY-Jt__-LO_8gPYeHxohXeXbdvd2GR2VbBecBmD-ay4afeR_slUwf5Ev0C6aPjkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+O%28n%29+algorithms+for+projection+onto+the+top-k-sum+sublevel+set&rft.jtitle=Mathematical+programming+computation&rft.au=Roth%2C+Jake&rft.au=Cui%2C+Ying&rft.date=2025-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=17&rft.issue=2&rft.spage=307&rft.epage=348&rft_id=info:doi/10.1007%2Fs12532-024-00273-9&rft.externalDocID=10_1007_s12532_024_00273_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon