On O(n) algorithms for projection onto the top-k-sum sublevel set
The top- k -sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top- k -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that im...
Saved in:
| Published in | Mathematical programming computation Vol. 17; no. 2; pp. 307 - 348 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-2949 1867-2957 |
| DOI | 10.1007/s12532-024-00273-9 |
Cover
| Abstract | The
top-
k
-sum
operator computes the sum of the largest
k
components of a given vector. The Euclidean projection onto the top-
k
-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have
O
(
n
) complexity of floating point operations when applied to a sorted
n
-dimensional input vector, where the absorbed constant is
independent of
k
. This stands in contrast to an existing grid-search-inspired method that has
O
(
k
(
n
-
k
)
)
complexity, a partition-based method with
O
(
n
+
D
log
D
)
complexity, where
D
≤
n
is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when
k
is linearly dependent on
n
, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale
n
=
10
7
and
k
=
10
4
within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours. |
|---|---|
| AbstractList | The
top-
k
-sum
operator computes the sum of the largest
k
components of a given vector. The Euclidean projection onto the top-
k
-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have
O
(
n
) complexity of floating point operations when applied to a sorted
n
-dimensional input vector, where the absorbed constant is
independent of
k
. This stands in contrast to an existing grid-search-inspired method that has
O
(
k
(
n
-
k
)
)
complexity, a partition-based method with
O
(
n
+
D
log
D
)
complexity, where
D
≤
n
is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when
k
is linearly dependent on
n
, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale
n
=
10
7
and
k
=
10
4
within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours. The operator computes the sum of the largest components of a given vector. The Euclidean projection onto the top- -sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have complexity of floating point operations when applied to a sorted -dimensional input vector, where the absorbed constant . This stands in contrast to an existing grid-search-inspired method that has complexity, a partition-based method with complexity, where is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when is linearly dependent on , which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale and within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi's QP solver can take from minutes to hours. The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O(n) complexity of floating point operations when applied to a sorted n-dimensional input vector, where the absorbed constant is independent ofk. This stands in contrast to an existing grid-search-inspired method that has O(k(n-k)) complexity, a partition-based method with O(n+DlogD) complexity, where D≤n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n=107 and k=104 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours. The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a crucial subroutine in iterative methods to solve composite superquantile optimization problems. In this paper, we introduce a solver that implements two finite-termination algorithms to compute this projection. Both algorithms have O(n) complexity of floating point operations when applied to a sorted n-dimensional input vector, where the absorbed constant is independent of k. This stands in contrast to an existing grid-search-inspired method that has O(k(n-k)) complexity, a partition-based method with O(n+DlogD) complexity, where D≤n is the number of distinct elements in the input vector, and a semismooth Newton method with a finite termination property but unspecified floating point complexity. The improvement of our methods over the first method is significant when k is linearly dependent on n, which is frequently encountered in practical superquantile optimization applications. In instances where the input vector is unsorted, an additional cost is incurred to (partially) sort the vector, whereas a full sort of the input vector seems unavoidable for the other two methods. To reduce this cost, we further derive a rigorous procedure that leverages approximate sorting to compute the projection, which is particularly useful when solving a sequence of similar projection problems. Numerical results show that our methods solve problems of scale n=107 and k=104 within 0.05 s, whereas the most competitive alternative, the semismooth Newton-based method, takes about 1 s. The existing grid-search method and Gurobi’s QP solver can take from minutes to hours. |
| Author | Roth, Jake Cui, Ying |
| AuthorAffiliation | 2 Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA 94720, USA 1 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55414, USA |
| AuthorAffiliation_xml | – name: 2 Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA 94720, USA – name: 1 Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN 55414, USA |
| Author_xml | – sequence: 1 givenname: Jake surname: Roth fullname: Roth, Jake organization: Department of Industrial and Systems Engineering, University of Minnesota – sequence: 2 givenname: Ying surname: Cui fullname: Cui, Ying email: yingcui@berkeley.edu organization: Department of Industrial Engineering and Operations Research, University of California, Berkeley |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40873764$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPGzEUha0qqATKH-iistQNLEz9HI9XVYR4SUjZ0LXlGe4kk07sYHsi8e8xhIaywRtbut8558rnCE188IDQd0bPGaX6V2JcCU4ol4RSrgUxX9CU1ZUm3Cg92b-lOUQnKa1oOYLrWpiv6FDSWgtdySmazT2en_oz7IZFiH1erhPuQsSbGFbQ5j54HHwOOC8B57Ahf0ka1ziNzQBbGHCC_A0ddG5IcPJ2H6M_V5f3Fzfkbn59ezG7I62oeSZ10zWSKdo2QoCsasW1MUoZVQnXafnQKQVKMNE2tMyhoqANa5wDYFq6Tohj9HvnuxmbNTy04HN0g93Efu3ikw2utx8nvl_aRdhaxkVNqaLF4eebQwyPI6RsV2GMvixtBafSaFlpXqgf_-fsA_79WQH4DmhjSClCt0cYtS_d2F03tnRjX7uxpojETpQK7BcQ37M_UT0DkvGP7Q |
| Cites_doi | 10.1109/ICMLA52953.2021.00011 10.1016/j.applthermaleng.2017.05.069 10.1137/050622328 10.1007/BF01584990 10.1080/01621459.1972.10481216 10.1145/512274.3734138 10.1007/s11228-021-00609-w 10.1016/j.ijepes.2018.02.022 10.1287/opre.1090.0712 10.1137/1.9780898719000 10.1007/BF01195027 10.1287/moor.20.2.441 10.1287/opre.28.4.927 10.1561/2200000039 10.1016/S0022-0000(73)80033-9 10.21314/JOR.2000.038 10.1007/BF01580873 10.1007/BF01585173 10.1137/141000671 10.1007/s10107-017-1201-0 10.2514/1.J060539 10.1109/TPAMI.2023.3296062 10.1137/110827144 10.1016/j.neucom.2020.01.104 10.5281/zenodo.14189753 10.1109/TPWRS.2020.2971684 10.1007/s11425-020-1743-9 10.1109/TPWRS.2003.810685 10.1007/s10107-015-0946-6 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
| DBID | AAYXX CITATION NPM JQ2 5PM |
| DOI | 10.1007/s12532-024-00273-9 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection |
| DatabaseTitleList | PubMed ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1867-2957 |
| EndPage | 348 |
| ExternalDocumentID | PMC12380050 40873764 10_1007_s12532_024_00273_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA287413 |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29M 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 6NX 8UJ 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN BA0 BAPOH BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 GXS H13 HF~ HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P9R PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION NPM JQ2 5PM |
| ID | FETCH-LOGICAL-c382t-8bfb4150cb33e46852799559563af74df55e5313cb03e4e60e791baaee174af33 |
| IEDL.DBID | U2A |
| ISSN | 1867-2949 |
| IngestDate | Tue Sep 30 17:00:10 EDT 2025 Thu Oct 02 14:06:30 EDT 2025 Thu Sep 04 05:07:37 EDT 2025 Wed Oct 01 06:26:25 EDT 2025 Sat May 17 01:10:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 90C20 90-04 Top 90C25 90C33 90-08 90C06 Projection sum matrix Superquantile Z-matrix Top-k-sum |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-8bfb4150cb33e46852799559563af74df55e5313cb03e4e60e791baaee174af33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PMID | 40873764 |
| PQID | 3204974672 |
| PQPubID | 2044128 |
| PageCount | 42 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12380050 proquest_journals_3204974672 pubmed_primary_40873764 crossref_primary_10_1007_s12532_024_00273_9 springer_journals_10_1007_s12532_024_00273_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming computation |
| PublicationTitleAbbrev | Math. Prog. Comp |
| PublicationTitleAlternate | Math Program Comput |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | L Leqi (273_CR26) 2019; 32 ML Overton (273_CR30) 1993; 62 R Dahlgren (273_CR14) 2003; 18 W Chen (273_CR9) 2010; 58 273_CR32 Y Laguel (273_CR25) 2021; 29 Q Li (273_CR27) 2021; 65 273_CR22 J Bezanson (273_CR5) 2017; 59 L Condat (273_CR10) 2016; 158 273_CR28 MJ Best (273_CR4) 1990; 47 F Bach (273_CR2) 2013; 6 A Nemirovski (273_CR29) 2006; 17 RW Cottle (273_CR12) 2009 A Dolatabadi (273_CR16) 2017; 123 M Tavakoli (273_CR38) 2018; 100 RW Cottle (273_CR11) 1972; 3 RE Barlow (273_CR3) 1972; 67 A Chaudhuri (273_CR8) 2022; 60 M Blum (273_CR6) 1973; 7 273_CR41 273_CR36 MJ Todd (273_CR39) 2018; 171 JWJ Williams (273_CR40) 1964; 7 273_CR13 273_CR35 J-S Pang (273_CR31) 1980; 28 273_CR33 273_CR18 273_CR17 B Wu (273_CR42) 2014; 24 R Chandrasekaran (273_CR7) 1970; 7 273_CR15 G Isac (273_CR23) 1986; 46 RT Rockafellar (273_CR34) 1999; 2 273_CR37 P Yuan (273_CR43) 2020; 395 273_CR19 273_CR1 O Güler (273_CR20) 1995; 20 CAR Hoare (273_CR21) 1961; 4 RA Jabr (273_CR24) 2020; 35 |
| References_xml | – ident: 273_CR17 doi: 10.1109/ICMLA52953.2021.00011 – ident: 273_CR41 – volume: 123 start-page: 40 year: 2017 ident: 273_CR16 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.069 – ident: 273_CR1 – ident: 273_CR37 – ident: 273_CR33 – ident: 273_CR18 – volume: 17 start-page: 969 issue: 4 year: 2006 ident: 273_CR29 publication-title: SIAM J. Optim. doi: 10.1137/050622328 – ident: 273_CR28 – volume: 3 start-page: 210 issue: 1 year: 1972 ident: 273_CR11 publication-title: Math. Prog. doi: 10.1007/BF01584990 – volume: 67 start-page: 140 issue: 337 year: 1972 ident: 273_CR3 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481216 – volume: 7 start-page: 347 year: 1964 ident: 273_CR40 publication-title: Commun. ACM doi: 10.1145/512274.3734138 – volume: 29 start-page: 967 year: 2021 ident: 273_CR25 publication-title: Set-Valued Var. Anal. doi: 10.1007/s11228-021-00609-w – volume: 100 start-page: 1 year: 2018 ident: 273_CR38 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.02.022 – volume: 58 start-page: 470 issue: 2 year: 2010 ident: 273_CR9 publication-title: Oper. Res. doi: 10.1287/opre.1090.0712 – volume-title: The Linear Complementarity Problem year: 2009 ident: 273_CR12 doi: 10.1137/1.9780898719000 – volume: 46 start-page: 568 issue: 6 year: 1986 ident: 273_CR23 publication-title: Arch. Math. doi: 10.1007/BF01195027 – ident: 273_CR15 – volume: 20 start-page: 441 issue: 2 year: 1995 ident: 273_CR20 publication-title: Math. Oper. Res. doi: 10.1287/moor.20.2.441 – volume: 7 start-page: 263 year: 1970 ident: 273_CR7 publication-title: Opsearch – volume: 28 start-page: 927 issue: 4 year: 1980 ident: 273_CR31 publication-title: Oper. Res. doi: 10.1287/opre.28.4.927 – volume: 6 start-page: 145 issue: 2–3 year: 2013 ident: 273_CR2 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000039 – volume: 7 start-page: 448 year: 1973 ident: 273_CR6 publication-title: J. Comput. Syst. Sci. doi: 10.1016/S0022-0000(73)80033-9 – volume: 2 start-page: 21 issue: 3 year: 1999 ident: 273_CR34 publication-title: J. Risk doi: 10.21314/JOR.2000.038 – volume: 47 start-page: 425 issue: 1 year: 1990 ident: 273_CR4 publication-title: Math. Prog. doi: 10.1007/BF01580873 – volume: 62 start-page: 321 issue: 1 year: 1993 ident: 273_CR30 publication-title: Math. Prog. doi: 10.1007/BF01585173 – volume: 59 start-page: 65 issue: 1 year: 2017 ident: 273_CR5 publication-title: SIAM Rev. doi: 10.1137/141000671 – ident: 273_CR13 – volume: 4 start-page: 321 year: 1961 ident: 273_CR21 publication-title: Commun. ACM – ident: 273_CR32 – volume: 171 start-page: 489 issue: 1–2 year: 2018 ident: 273_CR39 publication-title: Math. Prog. doi: 10.1007/s10107-017-1201-0 – volume: 60 start-page: 551 issue: 2 year: 2022 ident: 273_CR8 publication-title: Am. Inst. Aeronaut. Astronaut. J. doi: 10.2514/1.J060539 – ident: 273_CR19 – ident: 273_CR36 – ident: 273_CR22 doi: 10.1109/TPAMI.2023.3296062 – volume: 24 start-page: 766 issue: 2 year: 2014 ident: 273_CR42 publication-title: SIAM J. Optim. doi: 10.1137/110827144 – volume: 395 start-page: 1 year: 2020 ident: 273_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.104 – ident: 273_CR35 doi: 10.5281/zenodo.14189753 – volume: 35 start-page: 3764 issue: 5 year: 2020 ident: 273_CR24 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2971684 – volume: 32 start-page: 15029 year: 2019 ident: 273_CR26 publication-title: Adv. Neural Inf. Process. Syst. – volume: 65 start-page: 869 year: 2021 ident: 273_CR27 publication-title: Sci. China Math. doi: 10.1007/s11425-020-1743-9 – volume: 18 start-page: 503 issue: 2 year: 2003 ident: 273_CR14 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.810685 – volume: 158 start-page: 575 year: 2016 ident: 273_CR10 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-015-0946-6 |
| SSID | ssj0000327839 |
| Score | 2.3468513 |
| Snippet | The
top-
k
-sum
operator computes the sum of the largest
k
components of a given vector. The Euclidean projection onto the top-
k
-sum sublevel set serves as a... The operator computes the sum of the largest components of a given vector. The Euclidean projection onto the top- -sum sublevel set serves as a crucial... The top-k-sum operator computes the sum of the largest k components of a given vector. The Euclidean projection onto the top-k-sum sublevel set serves as a... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 307 |
| SubjectTerms | Algorithms Complexity Floating point arithmetic Full Length Paper Iterative methods Mathematics Mathematics and Statistics Mathematics of Computing Methods Operations Research/Decision Theory Optimization Search methods Solvers Theory of Computation |
| Title | On O(n) algorithms for projection onto the top-k-sum sublevel set |
| URI | https://link.springer.com/article/10.1007/s12532-024-00273-9 https://www.ncbi.nlm.nih.gov/pubmed/40873764 https://www.proquest.com/docview/3204974672 https://pubmed.ncbi.nlm.nih.gov/PMC12380050 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1867-2957 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327839 issn: 1867-2949 databaseCode: AFBBN dateStart: 20090701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1867-2957 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327839 issn: 1867-2949 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1867-2957 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327839 issn: 1867-2949 databaseCode: U2A dateStart: 20090701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjB-C2KpAcPGm0y2m7rjsSARAN4kARPywqdEHEQNv5_X8cGInrwuLTrlvfa99X3fg_gejBEqe96iqI2t6jgoUWlRkNOu07oDEUtdFWa5dtxWj3x1Lf7WVFYnGe751eSqaReF7sxmzOKOoWmICzUK0DJNnBeuIt7rL6KrFjcdI8wdq8Ba6PME15WLfP7MpsaacvM3M6W_HFlmmqi5gHsZyYkqS95fgg7OjqCvW_AgvjUXqGxxsdQ70akexPdkmDyPp2Pk9FnTNBWJVkUBjlDDIoBwVdIMp3RD4rbk8QLNTEZRSTWyQn0mo3XhxbNWifQAZcsoVKFClWzNVCca-FImxngNxudIR6ErhiGtq3x9PGBsnBcO5Z2vZoKAq3RQwlCzk-hGE0jfQ4kCERoqmtrrqMFD6RpEWM75v5VWVILrwx3Ofn82RIhw19jIRti-0hsPyW2j7MrOYX97LTEPmfop5i-J6wMZ0tir5YSlnRRCIoyyA02rCYYfOzNkWg8SnGyUSlLg29ThvucY-tv_v2LF_-bfgm7zPQETiMzFSgm84W-QkMlUVUo1R_fnhtVKHRe2tV0l34BdMXfCQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3o_xzIEDCDJ1SdqmxwkxxvvCpHGqmi5liNFNa3fh1-N07cZ4HDhWSdPGdmI7sT8DHIcd3PVdT1HU5hYVPLKo1GjIadeJnI6oRa7KonwfnGZL3LTtdp4UlhTR7sWVZLZTT5PdmM0ZRZ1CMxAW6s1DWaCDwkpQrl89307PVixu6kcYy9fAtVHmCS_Pl_l9oFmd9MPQ_Bkv-e3SNNNFjRVoFbMYh6C8VUepqoYf3wAe_zvNVVjOjVNSH0vTGszpeB2WvkAW4tP9BOc12YD6Y0weT-JTEvRe-sPXtPueELSCSX6-gzwnBh-B4Csk7Q_oG0XBJ8lI9UysEkl0ugmtxuXTRZPmRRloyCVLqVSRQqVvhYpzLRxpMwMpZ6ObxYPIFZ3ItjWuax4qC9u1Y2nXq6kg0Bp9nyDifAtKcT_WO0CCQEQmb7fmOlrwQJriM7ZjbnaVJbXwKnBWsMUfjLE3_CnKsiGTj2TyMzL52Hu_4Jyfr8PE5ww9IFNRhVVge8zEyVDCki5ur6ICcoa9kw4GeXu2JX7tZgjcqO6lQc6pwHnBxOk3__7F3f91P4KF5tP9nX93_XC7B4vMVB7Ozn_2oZQOR_oAzaFUHebS_wnSMfxF |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SAgOiDfjmQMHEETrkrRNjxMw8RwcmMStatYEEKOb1vL_cbq223gcOFZx08pO4kfszwBH3RhPfT9QFLW5QwU3DpUaDTnte8aLRcP4Ks_ybXtXHXHz7D5PVPHn2e7lleSopsGiNCVZfRCb-rjwjbmcUdQvNAdkocEszAsLlIArusOaVZTF4baThLWBLXAbZYEIisqZ36eZ1k4_TM6fmZPfrk9zrdRageXCnCTNkfxXYUYna7A0ATKIT_cVMmu6Ds2HhDwcJyck6r30h2_Z60dK0G4lRUQGpUQsogHBV0jWH9B3ikuVpJ-qZ7OLSKqzDei0Lp_Or2jRRoF2uWQZlcooVNNOV3GuhSddZkHgXHSMeGR8ERvX1bgTeVc5OK49R_tBQ0WR1uitRIbzTZhL-oneBhJFwthK24bvacEjadvFuJ69i1WO1CKowWnJvnAwQssIx7jIltkhMjvMmR0i9V7J4bDYOWnIGfostgcKq8HWiNnVVMKRPh6IogZySgwVgcXKnh5J3l5zzGxU0NJi3dTgrJTY-Jt__-LO_8gPYeHxohXeXbdvd2GR2VbBecBmD-ay4afeR_slUwf5Ev0C6aPjkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+O%28n%29+algorithms+for+projection+onto+the+top-k-sum+sublevel+set&rft.jtitle=Mathematical+programming+computation&rft.au=Roth%2C+Jake&rft.au=Cui%2C+Ying&rft.date=2025-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1867-2949&rft.eissn=1867-2957&rft.volume=17&rft.issue=2&rft.spage=307&rft.epage=348&rft_id=info:doi/10.1007%2Fs12532-024-00273-9&rft.externalDocID=10_1007_s12532_024_00273_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon |