A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: A practical application and validation using human U2OS cytoplasm–nucleus translocation images

Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent n...

Full description

Saved in:
Bibliographic Details
Published inThe Artificial intelligence review Vol. 42; no. 3; pp. 331 - 346
Main Authors Nogueira, Pedro A., Teófilo, Luís Filipe
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2014
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0269-2821
1573-7462
DOI10.1007/s10462-013-9415-x

Cover

Abstract Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu’s Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach.
AbstractList Issue Title: Special Issue of the 8th AIAI 2012 (Artificial Intelligence Applications and Innovations) International Conference Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu's Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach.[PUBLICATION ABSTRACT]
Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu's Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach.
Author Nogueira, Pedro A.
Teófilo, Luís Filipe
Author_xml – sequence: 1
  givenname: Pedro A.
  surname: Nogueira
  fullname: Nogueira, Pedro A.
  email: pedro.alves.nogueira@gmail.com, pedro.alves.nogueira@fe.up.pt
  organization: LIACC, Artificial Intelligence and Computer Science Laboratory, University of Porto, Faculty of Engineering, FEUP, University of Porto, DEI
– sequence: 2
  givenname: Luís Filipe
  surname: Teófilo
  fullname: Teófilo, Luís Filipe
  organization: LIACC, Artificial Intelligence and Computer Science Laboratory, University of Porto, Faculty of Engineering, FEUP, University of Porto, DEI
BookMark eNp9kc1u1DAUhS3USkynPAA7S2zYpPgvE4fdqIKCVKkLyjpynDsZV44dbAc1u74Db9RH6ZPgmRQJVYKV_8537_U5Z-jEeQcIvaXkghJSfYiUiA0rCOVFLWhZ3L9CK1pWvKjy9QlaEbapCyYZfY3OYrwjhJRM8BV63OJhsskUVs0QoMMR-gFcUsl4hwdIe9_hnQ_YTdrCFHEHCfTx0Ti8N_3ezljbKaYjPRgdfNR-nLEZVG9c_xFv8RhURrSyWI2jzZsjr1yHfypruuU4xazG-2lQDn9nN9-wnpMfrYrD08OvP91TUC5a_1zh0ALiOTrdKRvhzfO6RrefP91efimub66-Xm6vC80lS4VsVVuLTctqookEIltd11JzBm0HghBJS9lxKIlUZdXWlHdVS4UEybWkouRr9H4pOwb_Y4KYmsFEDdYqB36KDd2wmpeCZ9PX6N0L6Z2fgsvDZRWpRUmlYFlVLaqDZTHArtFm8T3_0tiGkuYQbbNE2-Rom0O0zX0m6QtyDNmLMP-XYQsTs9b1EP6a6Z_QbybCvq8
CitedBy_id crossref_primary_10_1109_TII_2016_2542043
crossref_primary_10_1007_s10462_017_9572_4
crossref_primary_10_1007_s10462_020_09808_7
crossref_primary_10_1038_ncomms14905
crossref_primary_10_1080_21681163_2022_2117646
crossref_primary_10_1016_j_bspc_2020_101846
crossref_primary_10_1186_s12859_017_1604_1
Cites_doi 10.1111/j.1365-2818.2010.03441.x
10.1007/978-3-642-33409-2_1
10.1007/978-94-009-5897-5
10.1109/TEC.1961.5219197
10.1109/TCSI.2006.884469
10.1109/ICMLC.2003.1260033
10.1109/TBME.2011.2106499
10.1109/5.18626
10.1109/ICIP.2004.1421728
10.1109/ISBI.2002.1029239
10.1155/IJBI/2006/12186
10.7551/mitpress/1130.003.0016
10.1007/978-3-540-89639-5_52
10.1109/TITB.2007.898006
10.1111/j.2517-6161.1977.tb01600.x
10.1145/1656274.1656278
10.1007/978-3-642-31298-4_51
10.1007/978-3-642-34459-6_9
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Copyright Springer Nature B.V. Oct 2014
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: Copyright Springer Nature B.V. Oct 2014
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
F28
FR3
DOI 10.1007/s10462-013-9415-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Technology Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 346
ExternalDocumentID 3456537411
10_1007_s10462_013_9415_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
F28
FR3
ID FETCH-LOGICAL-c382t-8bab946b290c08e08bc998c32ebde4008158d3e508a57b913d7b148e83c81453
IEDL.DBID M1O
ISSN 0269-2821
IngestDate Thu Oct 02 07:03:31 EDT 2025
Sat Oct 25 06:56:20 EDT 2025
Wed Oct 01 02:07:35 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Support vector machines
Gaussian mixture models
Fluorescent confocal microscopy
Cell segmentation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-8bab946b290c08e08bc998c32ebde4008158d3e508a57b913d7b148e83c81453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1609451842
PQPubID 36790
PageCount 16
ParticipantIDs proquest_miscellaneous_1629354357
proquest_journals_1609451842
crossref_citationtrail_10_1007_s10462_013_9415_x
crossref_primary_10_1007_s10462_013_9415_x
springer_journals_10_1007_s10462_013_9415_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2014
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References HallMEibeFHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: an updateSIGKDD Explor20091111018
SethianJLevel set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science1999CambridgeCambridge University Press
EverittBSHandDJFinite mixture distributions1981LondonChapman & Hall10.1007/978-94-009-5897-50466.62018(ISBN 0-412-22420-8)
Jiang K, Liao Q, Dai S (2003) A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proceedings second international conference on machine learning and cybernetics
RabinerLRA tutorial on Hidden Markov Models and selected applications in speech recognitionProc IEEE198977225728610.1109/5.18626
FicarraECataldoSDAcquavivaAMaciiEAutomated segmentation of cells With IHC membrane stainingIEEE Trans Biomed Eng201158–51421142910.1109/TBME.2011.2106499
Reynolds D (2007) Gaussian mixture models. MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02140, USA
Spring KR (2010) MicroscopyU: introduction to fluorescence microscopy
YangXLiHZhouXNuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopyIEEE Trans Circuits Syst I Regul Pap2006531124052414
DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ R Stat Soc Ser B (Methodological)19773911385015370364.62022
ZhouXLiFYanJWongSTCA novel cell segmentation method and cell phase identification using Markov modelsIEEE Trans Inf Technol Biomed200913210897771
Broad Bioimage Benchmark Collection—annotated biological image sets for testing and validation. Available at http://www.broadinstitute.org/bbbc
Kachouie NN, Fieguth P, Ramunas J, Jervis E (2006) Probabilistic model-based cell tracking. Int J Biomed Imaging 2006:1–10
Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. MICCAI 2005. LNCS, vol 3749, pp 302–309
YanPZhouXShahMWongSTCAutomatic segmentation of high-throughput RNAi fluorescent cellular imagesIEEE Trans Inf Technol Biomed2008121121
Yu W, Lee HK, Hariharan S, Bu W, Ahmed S (2008) Level set segmentation of cellular images based on topological dependence. In: Proceedings of the 4th international symposium on advances in visual computing
Park J, Keller JM (1997) Fuzzy patch label relaxation in bone marrow cell segmentation. In: IEEE international conference on computational cybernetics and simulation, pp 1133–1138
Morse BS (2000) Brigham Young University. SH &B, Section 5
Nogueira PA, Teófilo LF (2012) Automatic analysis of Leishmania infected microscopy images via Gaussian mixture models. Advances in artificial intelligence-SBIA, pp 82–91
Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press
UsajMTorkarDKanduserMMiklavcicDCell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast imageJ Microsc2010241330331410.1111/j.1365-2818.2010.03441.x
Nogueira PA, Teófilo LF (2012) A probabilistic approach to organic component detection in Leishmania infected microscopy images. In: Proceedings of the 8th conference on artificial intelligence applications and innovations, pp 1–10
Liao Q, Deng Y (2002) An accurate segmentation method for white blood cell images. In: IEEE international symposium on biomedical, imaging, pp 245–248
Begelman G, Gur E, Rivlin E, Rudzsky M, Zalevsky Z (2004) Cell nuclei segmentation using fuzzy logic engine. In: Proceedings IEEE international conference on image processing
LealPFerroLMarquesMRomaoSCruzTTomasAMCastroHQuelhasPAutomatic assessment of Leishmania infection indexes on in vitro macrophage cell culturesImage Anal Recognit Lect Notes Comput Sci2012732543243910.1007/978-3-642-31298-4_51
FreemanHOn the encoding of arbitrary geometric configurationsIRE Trans Electron Comput EC1961-102260268
9415_CR18
BS Everitt (9415_CR4) 1981
9415_CR16
9415_CR14
P Leal (9415_CR10) 2012; 7325
9415_CR15
9415_CR12
9415_CR13
X Zhou (9415_CR26) 2009; 13
J Sethian (9415_CR19) 1999
9415_CR11
9415_CR25
9415_CR23
9415_CR24
E Ficarra (9415_CR5) 2011; 58–5
9415_CR9
9415_CR8
9415_CR7
AP Dempster (9415_CR3) 1977; 39
9415_CR2
9415_CR1
9415_CR22
LR Rabiner (9415_CR17) 1989; 77
9415_CR20
9415_CR6
M Usaj (9415_CR21) 2010; 241
References_xml – reference: Nogueira PA, Teófilo LF (2012) Automatic analysis of Leishmania infected microscopy images via Gaussian mixture models. Advances in artificial intelligence-SBIA, pp 82–91
– reference: Begelman G, Gur E, Rivlin E, Rudzsky M, Zalevsky Z (2004) Cell nuclei segmentation using fuzzy logic engine. In: Proceedings IEEE international conference on image processing
– reference: Liao Q, Deng Y (2002) An accurate segmentation method for white blood cell images. In: IEEE international symposium on biomedical, imaging, pp 245–248
– reference: YangXLiHZhouXNuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopyIEEE Trans Circuits Syst I Regul Pap2006531124052414
– reference: ZhouXLiFYanJWongSTCA novel cell segmentation method and cell phase identification using Markov modelsIEEE Trans Inf Technol Biomed200913210897771
– reference: Yu W, Lee HK, Hariharan S, Bu W, Ahmed S (2008) Level set segmentation of cellular images based on topological dependence. In: Proceedings of the 4th international symposium on advances in visual computing
– reference: Reynolds D (2007) Gaussian mixture models. MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02140, USA
– reference: FicarraECataldoSDAcquavivaAMaciiEAutomated segmentation of cells With IHC membrane stainingIEEE Trans Biomed Eng201158–51421142910.1109/TBME.2011.2106499
– reference: Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. MICCAI 2005. LNCS, vol 3749, pp 302–309
– reference: SethianJLevel set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science1999CambridgeCambridge University Press
– reference: Kachouie NN, Fieguth P, Ramunas J, Jervis E (2006) Probabilistic model-based cell tracking. Int J Biomed Imaging 2006:1–10
– reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ R Stat Soc Ser B (Methodological)19773911385015370364.62022
– reference: EverittBSHandDJFinite mixture distributions1981LondonChapman & Hall10.1007/978-94-009-5897-50466.62018(ISBN 0-412-22420-8)
– reference: Jiang K, Liao Q, Dai S (2003) A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proceedings second international conference on machine learning and cybernetics
– reference: FreemanHOn the encoding of arbitrary geometric configurationsIRE Trans Electron Comput EC1961-102260268
– reference: YanPZhouXShahMWongSTCAutomatic segmentation of high-throughput RNAi fluorescent cellular imagesIEEE Trans Inf Technol Biomed2008121121
– reference: RabinerLRA tutorial on Hidden Markov Models and selected applications in speech recognitionProc IEEE198977225728610.1109/5.18626
– reference: LealPFerroLMarquesMRomaoSCruzTTomasAMCastroHQuelhasPAutomatic assessment of Leishmania infection indexes on in vitro macrophage cell culturesImage Anal Recognit Lect Notes Comput Sci2012732543243910.1007/978-3-642-31298-4_51
– reference: Broad Bioimage Benchmark Collection—annotated biological image sets for testing and validation. Available at http://www.broadinstitute.org/bbbc/
– reference: Spring KR (2010) MicroscopyU: introduction to fluorescence microscopy
– reference: Park J, Keller JM (1997) Fuzzy patch label relaxation in bone marrow cell segmentation. In: IEEE international conference on computational cybernetics and simulation, pp 1133–1138
– reference: Morse BS (2000) Brigham Young University. SH &B, Section 5
– reference: HallMEibeFHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: an updateSIGKDD Explor20091111018
– reference: Nogueira PA, Teófilo LF (2012) A probabilistic approach to organic component detection in Leishmania infected microscopy images. In: Proceedings of the 8th conference on artificial intelligence applications and innovations, pp 1–10
– reference: UsajMTorkarDKanduserMMiklavcicDCell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast imageJ Microsc2010241330331410.1111/j.1365-2818.2010.03441.x
– reference: Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press
– volume: 241
  start-page: 303
  issue: 3
  year: 2010
  ident: 9415_CR21
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2010.03441.x
– ident: 9415_CR14
  doi: 10.1007/978-3-642-33409-2_1
– ident: 9415_CR15
– volume-title: Finite mixture distributions
  year: 1981
  ident: 9415_CR4
  doi: 10.1007/978-94-009-5897-5
– ident: 9415_CR6
  doi: 10.1109/TEC.1961.5219197
– volume: 13
  start-page: 1089
  issue: 2
  year: 2009
  ident: 9415_CR26
  publication-title: IEEE Trans Inf Technol Biomed
– ident: 9415_CR24
  doi: 10.1109/TCSI.2006.884469
– ident: 9415_CR2
– ident: 9415_CR23
– ident: 9415_CR18
– ident: 9415_CR8
  doi: 10.1109/ICMLC.2003.1260033
– volume: 58–5
  start-page: 1421
  year: 2011
  ident: 9415_CR5
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2106499
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 9415_CR17
  publication-title: Proc IEEE
  doi: 10.1109/5.18626
– ident: 9415_CR1
  doi: 10.1109/ICIP.2004.1421728
– ident: 9415_CR11
  doi: 10.1109/ISBI.2002.1029239
– volume-title: Level set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science
  year: 1999
  ident: 9415_CR19
– ident: 9415_CR9
  doi: 10.1155/IJBI/2006/12186
– ident: 9415_CR16
  doi: 10.7551/mitpress/1130.003.0016
– ident: 9415_CR25
  doi: 10.1007/978-3-540-89639-5_52
– ident: 9415_CR12
– ident: 9415_CR22
  doi: 10.1109/TITB.2007.898006
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 9415_CR3
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 9415_CR7
  doi: 10.1145/1656274.1656278
– volume: 7325
  start-page: 432
  year: 2012
  ident: 9415_CR10
  publication-title: Image Anal Recognit Lect Notes Comput Sci
  doi: 10.1007/978-3-642-31298-4_51
– ident: 9415_CR13
  doi: 10.1007/978-3-642-34459-6_9
– ident: 9415_CR20
SSID ssj0005243
Score 2.072327
Snippet Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research...
Issue Title: Special Issue of the 8th AIAI 2012 (Artificial Intelligence Applications and Innovations) International Conference Fluorescent microscopy imaging...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Annotations
Artificial Intelligence
Automation
Clustering
Computer Science
Datasets
Density functions
Fluorescence
Image annotation
Imaging
Likelihood ratio
Manuals
Mathematical models
Microscopy
Multilayers
Noise
Probabilistic models
Segmentation
Support vector machines
Watersheds
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9sKFlj-xtKBB4gRyFceO43BboZYKBBzYSuUUxY63WnXXW5FEYjnxDn2jPgpPwjix26UCpJ7jv2jGmW8y38wQ8pJJaZiqFM1RhSlaCEW1KhidyXyW1UWNGN7_7_j4SR4di_cn2UnI424i2z2GJPsv9Uaym5CeRsBpgWtSBI5bfbmtEdmavPv64WCD2TGQ5VJZUPQoWAxm_m2RP83RNca8ERbtrc3hNpnGcw4kk7P9rtX75seNEo63fJEdci-gT5gM6nKf3LHuAdmOnR0gXPSH5HICPdOQLqq1b-YJjT1dhiwlB0PXaUC4C86XQ-4aqG3bc7oczB34EsiLNZhF56sw4OylZ_35_Jc1zJd9W6Q3MIGQoIXn2YiiQ-VqQO2fD72ewPPyT6HvJAjH6ecvYNbt6hwh__LXz4u4e-sNrrfKwwlwC9s8ItPDg-nbIxq6PVDDVdpSpStdCKnTIjGJsonSBl1Bw1Orays8dMlUzS0CyirLdcF4nWv05aziRjGR8cdk5FbOPiHAcsu54InQkgtEiJXOcaaoEzvTrJrxMUmizEsTKqH7hhyL8rqGsxdRiSIqvYjK72Py6mrK-VAG5H-D96IileGL0JRMoiOdoT-djsmLq8d4l32ApnJ21fkxCL4yBLD5mLyOurOxxL82fHqr0bvkLqI-MTAS98io_dbZZ4isWv083KTfOOofZA
  priority: 102
  providerName: Springer Nature
Title A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: A practical application and validation using human U2OS cytoplasm–nucleus translocation images
URI https://link.springer.com/article/10.1007/s10462-013-9415-x
https://www.proquest.com/docview/1609451842
https://www.proquest.com/docview/1629354357
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF7R9sKF8itSSjRInEBbvF7_rLkgA0krIC2ijVROlne9qSISJ21sqeHEO_BGPApPwox_mlCJHrjEh3i9a3l255udb-dj7LkIAiNUqniIJszRQyiuVST4KAhHfhZliOFpv2NwGBwMvQ-n_mmz4bZoaJXtmlgt1NnM0B75KxFgIOJjPOK-mZ9zUo2i7GojobHBtij5SAoGA3G0RvGoWXNuEHEMLUSb1ayPznkBkRIkj3CE_PJvv7QCm9fyo5Xb6W-zpB1wzTb5tlcWes98v1bL8f_f6C670yBSiGsTusdu2fw-227VHqCZ_A_Yrxgq9iGfpEsS-ISFPZs2J5dyqJWoASEw5FQiuVxAZouK55XDOAcqizxZgpmUVJkBW0-JCUhnYpYwnlZSSa8hhubQFo5nLbMOaZ4Bzohxrf8ExNU_g0pdEIbu0TGYZTGbYxgw_f3jZ9t7QU6YPHU9AuzCLh6yk37v5N0BbxQguJHKLbjSqY68QLuRYxxlHaUNhodGulZn1iM446tMWgSZqR_qSMgs1BjfWSWNEp4vH7HNfJbbxwxEaKX0pOPpQHqIGlMdYksvc-xIi3QkO8xpP39imuroJNIxSVZ1ncliErSYhCwmueywF1dN5nVpkJtu3m2NIGlWiUWysoAOe3b1N85vStqkuZ2VdA8CMh9BbdhhL1tbXHvEvzrcubnDJ-w2Qj-vpiXuss3iorRPEV4Vuss2VH-_y7bi94NPx3Td__qxh9e3vcPPX7rVDMPfoRv_AQp6Lsg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuvBGBAoMEF9AK27u210gVCtAqpW1AkEq9Wd5HqkiJE7Aj6hv_gd_DhZ_CL2HGjyYg0VvP3vWuPLM733geH2NP_SgyvsoUj1GFOVoIxbVKfD6O4nFoE4sYnv53HA2jwbF8fxKebLCfXS0MpVV2d2J9Udu5oX_kL_0IHZEQ_ZHg9eILJ9Yoiq52FBpZS61gd-oWY21hx4GrvqELV-zsv0N5PwuCvd3R2wFvWQa4ESooudKZTmSkg8QznnKe0gZdECMCp62TZDJDZYVDIJOFsU58YWONPoRTwihfEmkEWoAtKWSCvt_Wm93hx09rOSZN2l4QJRx9G78Lqza1ezKirAjBE_xE_Oxvw7hCu_8EaGu7t3eDXWsBK_QbDbvJNlx-i13vyCCgvRtus199qJMT-TSriP8TCnc6awubcmiIqgERMuTUQXlZgHVlnQaWwyQH6po8rcBMl9S4AWfPKFGQSmYqmMxqJqVX0Ie2pgv3sxZ4hyy3gAdm0tBDAaXyn0JNPgjHwYfPYKpyvkAvYfb7-49u9ZJsNBnyZge4hCvusNFliO4u28znubvHwI-dEFJ4UkdCIqjMdIwzpfXcWPvZWPSY1wknNW3zdOLwmKarts8kzxTlmZI807Mee34-ZdF0Drlo8HYn8bS9RIp0pfI99uT8MR5_iulkuZsvaQzitRAxb9xjLzpNWXvF_xa8f_GCj9mVwejoMD3cHx48YFcRJcomg3GbbZZfl-4hIrFSP2r1HVh6ySfsD1XtRxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqIiEulE-xUGCQ4AJym8T5cJAQWlFWLYUWiVbqLYodp1qxm11IIhpO_Ad-DVd-Bkd-CTNJ3F0q0VsPnDdZR87z-E38Zh5jj90w1K5MJY8Qwhx3CMmVjF2eh1EeZHGGHJ6-d7zbC7cP_TdHwdEK-2FrYUhWaWNiG6izmaZv5JtuiIlIgPmIt5n3soj3W6OX80-cHKTopNXaaXQQ2TXNF0zfyhc7W_iun3je6PXBq23eOwxwLaRXcalSFfuh8mJHO9I4UmlMP7TwjMqMT9tlIDNhkMSkQaRiV2SRwvzBSKGl65NhBEb_SxFlEaQadPeX1CWdYM8LY45ZjWsPVLuqPT8kPYTgMU4OP_l7S1zw3DNHs-2ON1pjv-xcdUKXjxt1pTb01zNtJP_LybzGrvY8HIbdwrnOVkxxg61ZjwvoQ95N9nMIreaST9KGbE2hNMfTvl6rgM5_G5D4Q0GNoesSMlO16rYCxgVQM-hJA3pSUz8KvHtK-keqBGpgPG0Nop7DEPpSNXyeJT0BpEUGGAfGnesVUIXCMbSeinDo7X8A3VSzOSY_09_fvtvRK6IexE-6J8AhTHmLHVzERN5mq8WsMHcYuJERwheOr0LhI1dOVYR3-pljcuWmuRgwxyIv0X1PeLImmSSLbtYE1gTBmhBYk5MBe3p6y7xriHLexesWf0kfG8tkAb4Be3T6M0Y1OqpKCzOr6RqkoQFS-WjAntllsPQX_xrw7vkDPmSXEefJ25293XvsCnJfv9NlrrPV6nNt7iO_rNSDdiUDSy4Y7H8AyLOLYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-layered+segmentation+method+for+nucleus+detection+in+highly+clustered+microscopy+imaging%3A+A+practical+application+and+validation+using+human+U2OS+cytoplasm%E2%80%93nucleus+translocation+images&rft.jtitle=The+Artificial+intelligence+review&rft.date=2014-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=42&rft.issue=3&rft.spage=331&rft.epage=346&rft_id=info:doi/10.1007%2Fs10462-013-9415-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3456537411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon