A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: A practical application and validation using human U2OS cytoplasm–nucleus translocation images
Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent n...
Saved in:
| Published in | The Artificial intelligence review Vol. 42; no. 3; pp. 331 - 346 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.10.2014
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0269-2821 1573-7462 |
| DOI | 10.1007/s10462-013-9415-x |
Cover
| Abstract | Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu’s Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach. |
|---|---|
| AbstractList | Issue Title: Special Issue of the 8th AIAI 2012 (Artificial Intelligence Applications and Innovations) International Conference Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu's Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach.[PUBLICATION ABSTRACT] Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research trial quickly eliminates the possibility of a manual annotation; thus, the need for automatic image annotation is quickly becoming an urgent need. Furthermore, the high clustering indexes and noise observed in these images contribute to a complex issue, which has attracted the attention of the scientific community. In this paper, we present a fully automated method for annotating fluorescent confocal microscopy images in highly complex conditions. The proposed method relies on a multi-layered segmentation and declustering process, which begins with an adaptive segmentation step using a two-level Otsu's Method. The second layer is comprised of two probabilistic classifiers, responsible for determining how many components may constitute each segmented region. The first of these employs rule-based reasoning grounded on the decreasing harmonic pattern observed in the region area density function, while the second one consists of a Support Vector Machine trained with features derived from the log likelihood ratio function of Gaussian mixture models of each region. Our results indicate that the proposed method is able to perform the identification and annotation process on par with an expert human subject, thus presenting itself a viable alternative to the traditional manual approach. |
| Author | Nogueira, Pedro A. Teófilo, Luís Filipe |
| Author_xml | – sequence: 1 givenname: Pedro A. surname: Nogueira fullname: Nogueira, Pedro A. email: pedro.alves.nogueira@gmail.com, pedro.alves.nogueira@fe.up.pt organization: LIACC, Artificial Intelligence and Computer Science Laboratory, University of Porto, Faculty of Engineering, FEUP, University of Porto, DEI – sequence: 2 givenname: Luís Filipe surname: Teófilo fullname: Teófilo, Luís Filipe organization: LIACC, Artificial Intelligence and Computer Science Laboratory, University of Porto, Faculty of Engineering, FEUP, University of Porto, DEI |
| BookMark | eNp9kc1u1DAUhS3USkynPAA7S2zYpPgvE4fdqIKCVKkLyjpynDsZV44dbAc1u74Db9RH6ZPgmRQJVYKV_8537_U5Z-jEeQcIvaXkghJSfYiUiA0rCOVFLWhZ3L9CK1pWvKjy9QlaEbapCyYZfY3OYrwjhJRM8BV63OJhsskUVs0QoMMR-gFcUsl4hwdIe9_hnQ_YTdrCFHEHCfTx0Ti8N_3ezljbKaYjPRgdfNR-nLEZVG9c_xFv8RhURrSyWI2jzZsjr1yHfypruuU4xazG-2lQDn9nN9-wnpMfrYrD08OvP91TUC5a_1zh0ALiOTrdKRvhzfO6RrefP91efimub66-Xm6vC80lS4VsVVuLTctqookEIltd11JzBm0HghBJS9lxKIlUZdXWlHdVS4UEybWkouRr9H4pOwb_Y4KYmsFEDdYqB36KDd2wmpeCZ9PX6N0L6Z2fgsvDZRWpRUmlYFlVLaqDZTHArtFm8T3_0tiGkuYQbbNE2-Rom0O0zX0m6QtyDNmLMP-XYQsTs9b1EP6a6Z_QbybCvq8 |
| CitedBy_id | crossref_primary_10_1109_TII_2016_2542043 crossref_primary_10_1007_s10462_017_9572_4 crossref_primary_10_1007_s10462_020_09808_7 crossref_primary_10_1038_ncomms14905 crossref_primary_10_1080_21681163_2022_2117646 crossref_primary_10_1016_j_bspc_2020_101846 crossref_primary_10_1186_s12859_017_1604_1 |
| Cites_doi | 10.1111/j.1365-2818.2010.03441.x 10.1007/978-3-642-33409-2_1 10.1007/978-94-009-5897-5 10.1109/TEC.1961.5219197 10.1109/TCSI.2006.884469 10.1109/ICMLC.2003.1260033 10.1109/TBME.2011.2106499 10.1109/5.18626 10.1109/ICIP.2004.1421728 10.1109/ISBI.2002.1029239 10.1155/IJBI/2006/12186 10.7551/mitpress/1130.003.0016 10.1007/978-3-540-89639-5_52 10.1109/TITB.2007.898006 10.1111/j.2517-6161.1977.tb01600.x 10.1145/1656274.1656278 10.1007/978-3-642-31298-4_51 10.1007/978-3-642-34459-6_9 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2013 Copyright Springer Nature B.V. Oct 2014 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2013 – notice: Copyright Springer Nature B.V. Oct 2014 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U F28 FR3 |
| DOI | 10.1007/s10462-013-9415-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Technology Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 346 |
| ExternalDocumentID | 3456537411 10_1007_s10462_013_9415_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA PUEGO 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U F28 FR3 |
| ID | FETCH-LOGICAL-c382t-8bab946b290c08e08bc998c32ebde4008158d3e508a57b913d7b148e83c81453 |
| IEDL.DBID | M1O |
| ISSN | 0269-2821 |
| IngestDate | Thu Oct 02 07:03:31 EDT 2025 Sat Oct 25 06:56:20 EDT 2025 Wed Oct 01 02:07:35 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Support vector machines Gaussian mixture models Fluorescent confocal microscopy Cell segmentation |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c382t-8bab946b290c08e08bc998c32ebde4008158d3e508a57b913d7b148e83c81453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1609451842 |
| PQPubID | 36790 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1629354357 proquest_journals_1609451842 crossref_citationtrail_10_1007_s10462_013_9415_x crossref_primary_10_1007_s10462_013_9415_x springer_journals_10_1007_s10462_013_9415_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-01 |
| PublicationDateYYYYMMDD | 2014-10-01 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2014 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | HallMEibeFHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: an updateSIGKDD Explor20091111018 SethianJLevel set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science1999CambridgeCambridge University Press EverittBSHandDJFinite mixture distributions1981LondonChapman & Hall10.1007/978-94-009-5897-50466.62018(ISBN 0-412-22420-8) Jiang K, Liao Q, Dai S (2003) A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proceedings second international conference on machine learning and cybernetics RabinerLRA tutorial on Hidden Markov Models and selected applications in speech recognitionProc IEEE198977225728610.1109/5.18626 FicarraECataldoSDAcquavivaAMaciiEAutomated segmentation of cells With IHC membrane stainingIEEE Trans Biomed Eng201158–51421142910.1109/TBME.2011.2106499 Reynolds D (2007) Gaussian mixture models. MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02140, USA Spring KR (2010) MicroscopyU: introduction to fluorescence microscopy YangXLiHZhouXNuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopyIEEE Trans Circuits Syst I Regul Pap2006531124052414 DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ R Stat Soc Ser B (Methodological)19773911385015370364.62022 ZhouXLiFYanJWongSTCA novel cell segmentation method and cell phase identification using Markov modelsIEEE Trans Inf Technol Biomed200913210897771 Broad Bioimage Benchmark Collection—annotated biological image sets for testing and validation. Available at http://www.broadinstitute.org/bbbc Kachouie NN, Fieguth P, Ramunas J, Jervis E (2006) Probabilistic model-based cell tracking. Int J Biomed Imaging 2006:1–10 Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. MICCAI 2005. LNCS, vol 3749, pp 302–309 YanPZhouXShahMWongSTCAutomatic segmentation of high-throughput RNAi fluorescent cellular imagesIEEE Trans Inf Technol Biomed2008121121 Yu W, Lee HK, Hariharan S, Bu W, Ahmed S (2008) Level set segmentation of cellular images based on topological dependence. In: Proceedings of the 4th international symposium on advances in visual computing Park J, Keller JM (1997) Fuzzy patch label relaxation in bone marrow cell segmentation. In: IEEE international conference on computational cybernetics and simulation, pp 1133–1138 Morse BS (2000) Brigham Young University. SH &B, Section 5 Nogueira PA, Teófilo LF (2012) Automatic analysis of Leishmania infected microscopy images via Gaussian mixture models. Advances in artificial intelligence-SBIA, pp 82–91 Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press UsajMTorkarDKanduserMMiklavcicDCell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast imageJ Microsc2010241330331410.1111/j.1365-2818.2010.03441.x Nogueira PA, Teófilo LF (2012) A probabilistic approach to organic component detection in Leishmania infected microscopy images. In: Proceedings of the 8th conference on artificial intelligence applications and innovations, pp 1–10 Liao Q, Deng Y (2002) An accurate segmentation method for white blood cell images. In: IEEE international symposium on biomedical, imaging, pp 245–248 Begelman G, Gur E, Rivlin E, Rudzsky M, Zalevsky Z (2004) Cell nuclei segmentation using fuzzy logic engine. In: Proceedings IEEE international conference on image processing LealPFerroLMarquesMRomaoSCruzTTomasAMCastroHQuelhasPAutomatic assessment of Leishmania infection indexes on in vitro macrophage cell culturesImage Anal Recognit Lect Notes Comput Sci2012732543243910.1007/978-3-642-31298-4_51 FreemanHOn the encoding of arbitrary geometric configurationsIRE Trans Electron Comput EC1961-102260268 9415_CR18 BS Everitt (9415_CR4) 1981 9415_CR16 9415_CR14 P Leal (9415_CR10) 2012; 7325 9415_CR15 9415_CR12 9415_CR13 X Zhou (9415_CR26) 2009; 13 J Sethian (9415_CR19) 1999 9415_CR11 9415_CR25 9415_CR23 9415_CR24 E Ficarra (9415_CR5) 2011; 58–5 9415_CR9 9415_CR8 9415_CR7 AP Dempster (9415_CR3) 1977; 39 9415_CR2 9415_CR1 9415_CR22 LR Rabiner (9415_CR17) 1989; 77 9415_CR20 9415_CR6 M Usaj (9415_CR21) 2010; 241 |
| References_xml | – reference: Nogueira PA, Teófilo LF (2012) Automatic analysis of Leishmania infected microscopy images via Gaussian mixture models. Advances in artificial intelligence-SBIA, pp 82–91 – reference: Begelman G, Gur E, Rivlin E, Rudzsky M, Zalevsky Z (2004) Cell nuclei segmentation using fuzzy logic engine. In: Proceedings IEEE international conference on image processing – reference: Liao Q, Deng Y (2002) An accurate segmentation method for white blood cell images. In: IEEE international symposium on biomedical, imaging, pp 245–248 – reference: YangXLiHZhouXNuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopyIEEE Trans Circuits Syst I Regul Pap2006531124052414 – reference: ZhouXLiFYanJWongSTCA novel cell segmentation method and cell phase identification using Markov modelsIEEE Trans Inf Technol Biomed200913210897771 – reference: Yu W, Lee HK, Hariharan S, Bu W, Ahmed S (2008) Level set segmentation of cellular images based on topological dependence. In: Proceedings of the 4th international symposium on advances in visual computing – reference: Reynolds D (2007) Gaussian mixture models. MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02140, USA – reference: FicarraECataldoSDAcquavivaAMaciiEAutomated segmentation of cells With IHC membrane stainingIEEE Trans Biomed Eng201158–51421142910.1109/TBME.2011.2106499 – reference: Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. MICCAI 2005. LNCS, vol 3749, pp 302–309 – reference: SethianJLevel set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science1999CambridgeCambridge University Press – reference: Kachouie NN, Fieguth P, Ramunas J, Jervis E (2006) Probabilistic model-based cell tracking. Int J Biomed Imaging 2006:1–10 – reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJ R Stat Soc Ser B (Methodological)19773911385015370364.62022 – reference: EverittBSHandDJFinite mixture distributions1981LondonChapman & Hall10.1007/978-94-009-5897-50466.62018(ISBN 0-412-22420-8) – reference: Jiang K, Liao Q, Dai S (2003) A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proceedings second international conference on machine learning and cybernetics – reference: FreemanHOn the encoding of arbitrary geometric configurationsIRE Trans Electron Comput EC1961-102260268 – reference: YanPZhouXShahMWongSTCAutomatic segmentation of high-throughput RNAi fluorescent cellular imagesIEEE Trans Inf Technol Biomed2008121121 – reference: RabinerLRA tutorial on Hidden Markov Models and selected applications in speech recognitionProc IEEE198977225728610.1109/5.18626 – reference: LealPFerroLMarquesMRomaoSCruzTTomasAMCastroHQuelhasPAutomatic assessment of Leishmania infection indexes on in vitro macrophage cell culturesImage Anal Recognit Lect Notes Comput Sci2012732543243910.1007/978-3-642-31298-4_51 – reference: Broad Bioimage Benchmark Collection—annotated biological image sets for testing and validation. Available at http://www.broadinstitute.org/bbbc/ – reference: Spring KR (2010) MicroscopyU: introduction to fluorescence microscopy – reference: Park J, Keller JM (1997) Fuzzy patch label relaxation in bone marrow cell segmentation. In: IEEE international conference on computational cybernetics and simulation, pp 1133–1138 – reference: Morse BS (2000) Brigham Young University. SH &B, Section 5 – reference: HallMEibeFHolmesGPfahringerBReutemannPWittenIHThe WEKA data mining software: an updateSIGKDD Explor20091111018 – reference: Nogueira PA, Teófilo LF (2012) A probabilistic approach to organic component detection in Leishmania infected microscopy images. In: Proceedings of the 8th conference on artificial intelligence applications and innovations, pp 1–10 – reference: UsajMTorkarDKanduserMMiklavcicDCell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast imageJ Microsc2010241330331410.1111/j.1365-2818.2010.03441.x – reference: Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press – volume: 241 start-page: 303 issue: 3 year: 2010 ident: 9415_CR21 publication-title: J Microsc doi: 10.1111/j.1365-2818.2010.03441.x – ident: 9415_CR14 doi: 10.1007/978-3-642-33409-2_1 – ident: 9415_CR15 – volume-title: Finite mixture distributions year: 1981 ident: 9415_CR4 doi: 10.1007/978-94-009-5897-5 – ident: 9415_CR6 doi: 10.1109/TEC.1961.5219197 – volume: 13 start-page: 1089 issue: 2 year: 2009 ident: 9415_CR26 publication-title: IEEE Trans Inf Technol Biomed – ident: 9415_CR24 doi: 10.1109/TCSI.2006.884469 – ident: 9415_CR2 – ident: 9415_CR23 – ident: 9415_CR18 – ident: 9415_CR8 doi: 10.1109/ICMLC.2003.1260033 – volume: 58–5 start-page: 1421 year: 2011 ident: 9415_CR5 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2106499 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 9415_CR17 publication-title: Proc IEEE doi: 10.1109/5.18626 – ident: 9415_CR1 doi: 10.1109/ICIP.2004.1421728 – ident: 9415_CR11 doi: 10.1109/ISBI.2002.1029239 – volume-title: Level set methods and fast machining methods: evolving interface in computational geometry. Fluid mechanics, computer vision and material science year: 1999 ident: 9415_CR19 – ident: 9415_CR9 doi: 10.1155/IJBI/2006/12186 – ident: 9415_CR16 doi: 10.7551/mitpress/1130.003.0016 – ident: 9415_CR25 doi: 10.1007/978-3-540-89639-5_52 – ident: 9415_CR12 – ident: 9415_CR22 doi: 10.1109/TITB.2007.898006 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 9415_CR3 publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 9415_CR7 doi: 10.1145/1656274.1656278 – volume: 7325 start-page: 432 year: 2012 ident: 9415_CR10 publication-title: Image Anal Recognit Lect Notes Comput Sci doi: 10.1007/978-3-642-31298-4_51 – ident: 9415_CR13 doi: 10.1007/978-3-642-34459-6_9 – ident: 9415_CR20 |
| SSID | ssj0005243 |
| Score | 2.072327 |
| Snippet | Fluorescent microscopy imaging is a popular and well-established method for biomedical research. However, the large number of images created in each research... Issue Title: Special Issue of the 8th AIAI 2012 (Artificial Intelligence Applications and Innovations) International Conference Fluorescent microscopy imaging... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 331 |
| SubjectTerms | Annotations Artificial Intelligence Automation Clustering Computer Science Datasets Density functions Fluorescence Image annotation Imaging Likelihood ratio Manuals Mathematical models Microscopy Multilayers Noise Probabilistic models Segmentation Support vector machines Watersheds |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9sKFlj-xtKBB4gRyFceO43BboZYKBBzYSuUUxY63WnXXW5FEYjnxDn2jPgpPwjix26UCpJ7jv2jGmW8y38wQ8pJJaZiqFM1RhSlaCEW1KhidyXyW1UWNGN7_7_j4SR4di_cn2UnI424i2z2GJPsv9Uaym5CeRsBpgWtSBI5bfbmtEdmavPv64WCD2TGQ5VJZUPQoWAxm_m2RP83RNca8ERbtrc3hNpnGcw4kk7P9rtX75seNEo63fJEdci-gT5gM6nKf3LHuAdmOnR0gXPSH5HICPdOQLqq1b-YJjT1dhiwlB0PXaUC4C86XQ-4aqG3bc7oczB34EsiLNZhF56sw4OylZ_35_Jc1zJd9W6Q3MIGQoIXn2YiiQ-VqQO2fD72ewPPyT6HvJAjH6ecvYNbt6hwh__LXz4u4e-sNrrfKwwlwC9s8ItPDg-nbIxq6PVDDVdpSpStdCKnTIjGJsonSBl1Bw1Orays8dMlUzS0CyirLdcF4nWv05aziRjGR8cdk5FbOPiHAcsu54InQkgtEiJXOcaaoEzvTrJrxMUmizEsTKqH7hhyL8rqGsxdRiSIqvYjK72Py6mrK-VAG5H-D96IileGL0JRMoiOdoT-djsmLq8d4l32ApnJ21fkxCL4yBLD5mLyOurOxxL82fHqr0bvkLqI-MTAS98io_dbZZ4isWv083KTfOOofZA priority: 102 providerName: Springer Nature |
| Title | A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: A practical application and validation using human U2OS cytoplasm–nucleus translocation images |
| URI | https://link.springer.com/article/10.1007/s10462-013-9415-x https://www.proquest.com/docview/1609451842 https://www.proquest.com/docview/1629354357 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7462 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF7R9sKF8itSSjRInEBbvF7_rLkgA0krIC2ijVROlne9qSISJ21sqeHEO_BGPApPwox_mlCJHrjEh3i9a3l255udb-dj7LkIAiNUqniIJszRQyiuVST4KAhHfhZliOFpv2NwGBwMvQ-n_mmz4bZoaJXtmlgt1NnM0B75KxFgIOJjPOK-mZ9zUo2i7GojobHBtij5SAoGA3G0RvGoWXNuEHEMLUSb1ayPznkBkRIkj3CE_PJvv7QCm9fyo5Xb6W-zpB1wzTb5tlcWes98v1bL8f_f6C670yBSiGsTusdu2fw-227VHqCZ_A_Yrxgq9iGfpEsS-ISFPZs2J5dyqJWoASEw5FQiuVxAZouK55XDOAcqizxZgpmUVJkBW0-JCUhnYpYwnlZSSa8hhubQFo5nLbMOaZ4Bzohxrf8ExNU_g0pdEIbu0TGYZTGbYxgw_f3jZ9t7QU6YPHU9AuzCLh6yk37v5N0BbxQguJHKLbjSqY68QLuRYxxlHaUNhodGulZn1iM446tMWgSZqR_qSMgs1BjfWSWNEp4vH7HNfJbbxwxEaKX0pOPpQHqIGlMdYksvc-xIi3QkO8xpP39imuroJNIxSVZ1ncliErSYhCwmueywF1dN5nVpkJtu3m2NIGlWiUWysoAOe3b1N85vStqkuZ2VdA8CMh9BbdhhL1tbXHvEvzrcubnDJ-w2Qj-vpiXuss3iorRPEV4Vuss2VH-_y7bi94NPx3Td__qxh9e3vcPPX7rVDMPfoRv_AQp6Lsg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuvBGBAoMEF9AK27u210gVCtAqpW1AkEq9Wd5HqkiJE7Aj6hv_gd_DhZ_CL2HGjyYg0VvP3vWuPLM733geH2NP_SgyvsoUj1GFOVoIxbVKfD6O4nFoE4sYnv53HA2jwbF8fxKebLCfXS0MpVV2d2J9Udu5oX_kL_0IHZEQ_ZHg9eILJ9Yoiq52FBpZS61gd-oWY21hx4GrvqELV-zsv0N5PwuCvd3R2wFvWQa4ESooudKZTmSkg8QznnKe0gZdECMCp62TZDJDZYVDIJOFsU58YWONPoRTwihfEmkEWoAtKWSCvt_Wm93hx09rOSZN2l4QJRx9G78Lqza1ezKirAjBE_xE_Oxvw7hCu_8EaGu7t3eDXWsBK_QbDbvJNlx-i13vyCCgvRtus199qJMT-TSriP8TCnc6awubcmiIqgERMuTUQXlZgHVlnQaWwyQH6po8rcBMl9S4AWfPKFGQSmYqmMxqJqVX0Ie2pgv3sxZ4hyy3gAdm0tBDAaXyn0JNPgjHwYfPYKpyvkAvYfb7-49u9ZJsNBnyZge4hCvusNFliO4u28znubvHwI-dEFJ4UkdCIqjMdIwzpfXcWPvZWPSY1wknNW3zdOLwmKarts8kzxTlmZI807Mee34-ZdF0Drlo8HYn8bS9RIp0pfI99uT8MR5_iulkuZsvaQzitRAxb9xjLzpNWXvF_xa8f_GCj9mVwejoMD3cHx48YFcRJcomg3GbbZZfl-4hIrFSP2r1HVh6ySfsD1XtRxg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqIiEulE-xUGCQ4AJym8T5cJAQWlFWLYUWiVbqLYodp1qxm11IIhpO_Ad-DVd-Bkd-CTNJ3F0q0VsPnDdZR87z-E38Zh5jj90w1K5MJY8Qwhx3CMmVjF2eh1EeZHGGHJ6-d7zbC7cP_TdHwdEK-2FrYUhWaWNiG6izmaZv5JtuiIlIgPmIt5n3soj3W6OX80-cHKTopNXaaXQQ2TXNF0zfyhc7W_iun3je6PXBq23eOwxwLaRXcalSFfuh8mJHO9I4UmlMP7TwjMqMT9tlIDNhkMSkQaRiV2SRwvzBSKGl65NhBEb_SxFlEaQadPeX1CWdYM8LY45ZjWsPVLuqPT8kPYTgMU4OP_l7S1zw3DNHs-2ON1pjv-xcdUKXjxt1pTb01zNtJP_LybzGrvY8HIbdwrnOVkxxg61ZjwvoQ95N9nMIreaST9KGbE2hNMfTvl6rgM5_G5D4Q0GNoesSMlO16rYCxgVQM-hJA3pSUz8KvHtK-keqBGpgPG0Nop7DEPpSNXyeJT0BpEUGGAfGnesVUIXCMbSeinDo7X8A3VSzOSY_09_fvtvRK6IexE-6J8AhTHmLHVzERN5mq8WsMHcYuJERwheOr0LhI1dOVYR3-pljcuWmuRgwxyIv0X1PeLImmSSLbtYE1gTBmhBYk5MBe3p6y7xriHLexesWf0kfG8tkAb4Be3T6M0Y1OqpKCzOr6RqkoQFS-WjAntllsPQX_xrw7vkDPmSXEefJ25293XvsCnJfv9NlrrPV6nNt7iO_rNSDdiUDSy4Y7H8AyLOLYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-layered+segmentation+method+for+nucleus+detection+in+highly+clustered+microscopy+imaging%3A+A+practical+application+and+validation+using+human+U2OS+cytoplasm%E2%80%93nucleus+translocation+images&rft.jtitle=The+Artificial+intelligence+review&rft.date=2014-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=42&rft.issue=3&rft.spage=331&rft.epage=346&rft_id=info:doi/10.1007%2Fs10462-013-9415-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3456537411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |