Robust adaptive techniques for minimization of EOG artefacts from EEG signals

In this paper, we propose the application of H ∞ techniques for minimization of electrooculogram (EOG) artefacts from corrupted electroencephalographic (EEG) signals. Two adaptive algorithms ( time-varying and exponentially-weighted) based on the H ∞ principles are proposed. The idea of applying H ∞...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 86; no. 9; pp. 2351 - 2363
Main Authors Puthusserypady, S., Ratnarajah, T.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2006
Elsevier Science
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
1872-7557
DOI10.1016/j.sigpro.2005.10.018

Cover

Abstract In this paper, we propose the application of H ∞ techniques for minimization of electrooculogram (EOG) artefacts from corrupted electroencephalographic (EEG) signals. Two adaptive algorithms ( time-varying and exponentially-weighted) based on the H ∞ principles are proposed. The idea of applying H ∞ techniques is motivated by the fact that they are robust to model uncertainties and lack of statistical information with respect to noise [B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces—Part 1: theory & Part II: applications, IEEE Trans. Automat. Control 41 (1996) 18–49]. Studies are performed on simulated as well as real recorded signals. Performance of the proposed techniques are then compared with the well-known least-mean square (LMS) and recursive least-square (RLS) algorithms. Improvements in the output signal-to-noise ratio (SNR) along with the time plots are used as criteria for comparing the performance of the algorithms. It is found that the proposed H ∞ -based algorithms work slightly better than the RLS algorithm (especially when the input SNR is very low) and always outperform the LMS algorithm in minimizing the EOG artefacts from corrupted EEG signals.
AbstractList In this paper, we propose the application of H ∞ techniques for minimization of electrooculogram (EOG) artefacts from corrupted electroencephalographic (EEG) signals. Two adaptive algorithms ( time-varying and exponentially-weighted) based on the H ∞ principles are proposed. The idea of applying H ∞ techniques is motivated by the fact that they are robust to model uncertainties and lack of statistical information with respect to noise [B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces—Part 1: theory & Part II: applications, IEEE Trans. Automat. Control 41 (1996) 18–49]. Studies are performed on simulated as well as real recorded signals. Performance of the proposed techniques are then compared with the well-known least-mean square (LMS) and recursive least-square (RLS) algorithms. Improvements in the output signal-to-noise ratio (SNR) along with the time plots are used as criteria for comparing the performance of the algorithms. It is found that the proposed H ∞ -based algorithms work slightly better than the RLS algorithm (especially when the input SNR is very low) and always outperform the LMS algorithm in minimizing the EOG artefacts from corrupted EEG signals.
Author Puthusserypady, S.
Ratnarajah, T.
Author_xml – sequence: 1
  givenname: S.
  surname: Puthusserypady
  fullname: Puthusserypady, S.
  email: elespk@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
– sequence: 2
  givenname: T.
  surname: Ratnarajah
  fullname: Ratnarajah, T.
  email: T.Ratnarajah@ieee.org
  organization: ECIT, Queen's University of Belfast, Queen's Road, Queen's Island, Belfast, BT3 9DT, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17941668$$DView record in Pascal Francis
BookMark eNqNkMFq3DAQhkXYQHeTvkEPuuTozci2bG8OhRC2m0JCICRnMZZHqRav5EjahPTp660LhR7SnAaG__tn-BZs5rwjxr4IWAoQ1fl2Ge3TEPwyB5DjagmiOWJz0dR5VktZz9h8jMlMVE35iS1i3AKAKCqYs9t73-5j4tjhkOwL8UT6h7PPe4rc-MB31tmd_YnJese94eu7DceQyKBOYyL4HV-vN3y877CPp-zYjIM-_5kn7PHb-uHqOru523y_urzJdNHkKataKUpYQa0RJTVSUy47XQKUtKoKg21emxXW2BSN6VqqJeUtVKITjSwhJyhOmJx6927At1fsezUEu8PwpgSogxO1VZMTdXBy2I5ORu5s4gaMGnsT0Gkb_7L1qhRVdchdTDkdfIyBjNI2_XaQAtr-f0fKf-AP_vZ1wmgU92IpqKgtOU2dDaST6rx9v-AXOHKgwQ
CODEN SPRODR
CitedBy_id crossref_primary_10_1002_acs_2754
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1016_j_medengphy_2015_01_006
crossref_primary_10_1109_TNSRE_2022_3154891
crossref_primary_10_2139_ssrn_3995406
crossref_primary_10_1080_03091902_2018_1464074
crossref_primary_10_1016_j_amc_2011_02_026
crossref_primary_10_1155_2007_75079
crossref_primary_10_1016_j_jneumeth_2013_08_025
crossref_primary_10_1109_TBME_2011_2108295
crossref_primary_10_1155_2018_4853741
crossref_primary_10_1016_j_asoc_2016_01_049
crossref_primary_10_1016_j_sigpro_2013_11_015
crossref_primary_10_1109_TBME_2008_919847
crossref_primary_10_1007_s00521_016_2578_z
crossref_primary_10_1080_21642583_2014_887483
crossref_primary_10_1371_journal_pone_0190420
crossref_primary_10_1016_j_bspc_2016_09_005
crossref_primary_10_1016_j_sigpro_2014_08_035
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1080_00051144_2018_1541642
crossref_primary_10_1109_JBHI_2015_2457093
crossref_primary_10_1016_j_measurement_2019_05_031
crossref_primary_10_1016_j_asoc_2011_11_010
crossref_primary_10_1016_j_bspc_2017_03_017
crossref_primary_10_1016_j_jneumeth_2014_05_008
crossref_primary_10_1109_ACCESS_2018_2842082
crossref_primary_10_1007_s11771_017_3492_y
crossref_primary_10_1080_0952813X_2015_1020571
Cites_doi 10.1016/S0013-4694(97)00042-8
10.1109/ICASSP.1995.480332
10.1016/0013-4694(83)90010-X
10.1111/j.1469-8986.1982.tb02509.x
10.1016/S0013-4694(98)00087-X
10.3758/BF03209415
10.1109/CDC.1993.325187
10.1016/0013-4694(73)90095-3
10.4310/CIS.2003.v3.n1.a2
10.1109/PROC.1975.10036
10.1109/97.803438
10.1109/78.485923
10.1117/12.546637
10.1016/S0167-8760(01)00201-X
10.1016/S0013-4694(98)00086-8
10.1007/BF02441820
10.1111/1469-8986.3720163
10.1109/9.481605
10.1049/ip-smt:19990703
10.1016/S0987-7053(00)00055-1
10.1016/0013-4694(83)90135-9
10.1016/j.ijpsycho.2004.03.007
10.1007/BF02344717
10.1016/S0165-1684(97)00123-0
10.1007/978-1-4612-2078-7_19
10.1007/BF02345969
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
ADTOC
UNPAY
DOI 10.1016/j.sigpro.2005.10.018
DatabaseName CrossRef
Pascal-Francis
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7557
EndPage 2363
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/82987
17941668
10_1016_j_sigpro_2005_10_018
S0165168405003774
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c382t-6b5140907caa5e85ce25dc4004e963fab27f9a7a838fdbe75e2b061d185402e03
IEDL.DBID AIKHN
ISSN 0165-1684
1872-7557
IngestDate Tue Aug 26 13:31:23 EDT 2025
Mon Jul 21 09:13:04 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Wed Oct 01 01:45:33 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Electrooculogram (EOG) artefacts
Robust adaptive filtering
Electroencephalogram (EEG)
Performance evaluation
H infinite optimization
Adaptive algorithm
Adaptive filtering
Artefact
Electroencephalography
Output signal
Recursive algorithm
Adaptive method
Time variation
Robust control
Algorithm performance
Least squares method
Recursive method
Linear estimation
Least mean squares methods
Signal to noise ratio
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-6b5140907caa5e85ce25dc4004e963fab27f9a7a838fdbe75e2b061d185402e03
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/82987
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_sigpro_2005_10_018
pascalfrancis_primary_17941668
crossref_citationtrail_10_1016_j_sigpro_2005_10_018
crossref_primary_10_1016_j_sigpro_2005_10_018
elsevier_sciencedirect_doi_10_1016_j_sigpro_2005_10_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing
PublicationYear 2006
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References T. Zikov, S. Bibian, G.A. Dumont, M. Huzmezan, A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram, Private communication, 2004.
Jervis, Thomlinson, Mair, Lopez, Garcia (bib8) 1999; 146
Wallstrom, Kass, Miller, Cohn, Fox (bib14) 2004; 53
A. Schlogl, G. Pfurtscheller, EOG and ECG minimization based on regression analysis, Technical Report SIESTA-Task310 Artifact Detection and Denoising, 2004.
Joyce, Gorodnitsky, Kutas (bib21) 2003; 41
Hassibi, Sayed, Kailath (bib33) 1996; 44
Sadasivan, Narayana Dutt (bib25) 1997; 62
optimal, in: Proceedings of 32nd IEEE Conference on Decision and Control, 1993, pp. 74–80.
E. Nezhadarya, M.B. Shamsollahi, EOG artifact removal from EEG using ICA and ARMAX modelling, Private communication, 2004.
approach to adaptive minimization of EOG artefacts from EEG signals, in: Proceedings of the Eigth IEEE Workshop on DSP, Utah, USA, 1998.
He, Wilson, Russell (bib28) 2004; 42
Haykin (bib34) 1996
Jung, Makeig, Humphries, Lee, McKeown, Iragui, Sejnowski (bib22) 2000; 37
Gratton, Coles, Donchin (bib3) 1983; 55
B. Hassibi, T. Kailath
Hassibi, Sayed, Kailath (bib1) 1996; 41
R. Bogacz, U. Markowska-Kaczmar, A. Kozik, Blinking artifact recognition in EEG signals using artificial neural networks, Private communication, 2004.
Enderle, Blanchard, Bronzino (bib2) 2000
Croft, Barry (bib9) 1998; 107
Borda, Hablitz (bib5) 1973; 34
T. Ratnarajah, P.K. Sadasivan, An
Haas, Frei, Osorio, Pasik-Duncan, Radel (bib15) 2003; 3
Croft, Barray (bib12) 2002; 44
Gratton (bib11) 1998; 30
adaptive filtering, in: Proceedings of ICASSP’95 1995, pp. 949–952.
Verleger, Gasser, Mocks (bib4) 1982; 19
Croft, Barry (bib10) 1998; 107
Jervis, Ifeachor, Allen (bib7) 1988; 26
Vigario (bib20) 1997; 103
Erfanian, Mahmoudi (bib29) 2005; 43
Fortgens, De Bruin (bib6) 1983; 56
Croft, Barray (bib13) 2000; 30
B. Hassibi, A.H. Sayed, T. Kailath, LMS is
G.L. Wallstrom, R.E. Kass, A. Miller, J.F. Cohn, N.A. Fox, Correction of ocular artifacts in the EEG using Bayesian adaptive regression splines, Bayesian Statist., vol. 6, Springer, New York, 2002.
Selvan, Srinivasan (bib30) 1999; 6
M.J. Berryman, S. Messer, A. Allison, D. Abbott, Techniques for noise removal from EEG, EOG and airflow signals in sleep patients, Private communication, 2004.
Widrow (bib24) 1975; 63
Croft (10.1016/j.sigpro.2005.10.018_bib10) 1998; 107
Haas (10.1016/j.sigpro.2005.10.018_bib15) 2003; 3
Erfanian (10.1016/j.sigpro.2005.10.018_bib29) 2005; 43
Jervis (10.1016/j.sigpro.2005.10.018_bib8) 1999; 146
Verleger (10.1016/j.sigpro.2005.10.018_bib4) 1982; 19
Hassibi (10.1016/j.sigpro.2005.10.018_bib1) 1996; 41
Widrow (10.1016/j.sigpro.2005.10.018_bib24) 1975; 63
Hassibi (10.1016/j.sigpro.2005.10.018_bib33) 1996; 44
10.1016/j.sigpro.2005.10.018_bib23
Croft (10.1016/j.sigpro.2005.10.018_bib9) 1998; 107
10.1016/j.sigpro.2005.10.018_bib16
Haykin (10.1016/j.sigpro.2005.10.018_bib34) 1996
10.1016/j.sigpro.2005.10.018_bib17
10.1016/j.sigpro.2005.10.018_bib18
10.1016/j.sigpro.2005.10.018_bib19
Gratton (10.1016/j.sigpro.2005.10.018_bib3) 1983; 55
Croft (10.1016/j.sigpro.2005.10.018_bib12) 2002; 44
Borda (10.1016/j.sigpro.2005.10.018_bib5) 1973; 34
Selvan (10.1016/j.sigpro.2005.10.018_bib30) 1999; 6
Gratton (10.1016/j.sigpro.2005.10.018_bib11) 1998; 30
Joyce (10.1016/j.sigpro.2005.10.018_bib21) 2003; 41
Fortgens (10.1016/j.sigpro.2005.10.018_bib6) 1983; 56
10.1016/j.sigpro.2005.10.018_bib31
10.1016/j.sigpro.2005.10.018_bib32
Wallstrom (10.1016/j.sigpro.2005.10.018_bib14) 2004; 53
Sadasivan (10.1016/j.sigpro.2005.10.018_bib25) 1997; 62
Enderle (10.1016/j.sigpro.2005.10.018_bib2) 2000
10.1016/j.sigpro.2005.10.018_bib26
10.1016/j.sigpro.2005.10.018_bib27
Jung (10.1016/j.sigpro.2005.10.018_bib22) 2000; 37
He (10.1016/j.sigpro.2005.10.018_bib28) 2004; 42
Croft (10.1016/j.sigpro.2005.10.018_bib13) 2000; 30
Jervis (10.1016/j.sigpro.2005.10.018_bib7) 1988; 26
Vigario (10.1016/j.sigpro.2005.10.018_bib20) 1997; 103
References_xml – reference: E. Nezhadarya, M.B. Shamsollahi, EOG artifact removal from EEG using ICA and ARMAX modelling, Private communication, 2004.
– reference: T. Ratnarajah, P.K. Sadasivan, An
– volume: 43
  start-page: 296
  year: 2005
  end-page: 305
  ident: bib29
  article-title: Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface
  publication-title: Med. Biol. Eng. Comput.
– volume: 146
  start-page: 293
  year: 1999
  end-page: 298
  ident: bib8
  article-title: Residual ocular artefact subsequent to ocular artefact removal from the electroencephalogram
  publication-title: IEE Proc. Sci. Meas. Technol.
– volume: 63
  start-page: 639
  year: 1975
  end-page: 652
  ident: bib24
  article-title: Adaptive noise cancellation: principles and applications
  publication-title: Proc. IEEE
– reference: G.L. Wallstrom, R.E. Kass, A. Miller, J.F. Cohn, N.A. Fox, Correction of ocular artifacts in the EEG using Bayesian adaptive regression splines, Bayesian Statist., vol. 6, Springer, New York, 2002.
– reference: adaptive filtering, in: Proceedings of ICASSP’95 1995, pp. 949–952.
– volume: 53
  start-page: 105
  year: 2004
  end-page: 119
  ident: bib14
  article-title: Automatic correction of the ocular artifacts in the EEG: a comparison of regression-based and component-based methods
  publication-title: Internat. J. Psychophysiol.
– volume: 34
  start-page: 433
  year: 1973
  end-page: 436
  ident: bib5
  article-title: Use of simple visual display to reduce eye movement artefacts in CNV recordings
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 44
  start-page: S.187
  year: 2002
  end-page: S.195
  ident: bib12
  article-title: Issues relating to the subtraction phase in EOG artifact correction of the EEG
  publication-title: Internat. J. Psychophysiol.
– volume: 41
  start-page: 18
  year: 1996
  end-page: 49
  ident: bib1
  article-title: Linear estimation in Krein spaces—Part I: theory & Part II: applications
  publication-title: IEEE Trans. Automat. Control
– reference: B. Hassibi, T. Kailath,
– volume: 42
  start-page: 407
  year: 2004
  end-page: 412
  ident: bib28
  article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
– reference: T. Zikov, S. Bibian, G.A. Dumont, M. Huzmezan, A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram, Private communication, 2004.
– volume: 6
  start-page: 330
  year: 1999
  end-page: 332
  ident: bib30
  article-title: Removal of ocular artefacts from EEG using an efficient neural network based adaptive filtering technique
  publication-title: IEEE Signal Processing Lett.
– reference: approach to adaptive minimization of EOG artefacts from EEG signals, in: Proceedings of the Eigth IEEE Workshop on DSP, Utah, USA, 1998.
– volume: 55
  start-page: 468
  year: 1983
  end-page: 484
  ident: bib3
  article-title: A new method for off-line removal of ocular artefacts
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 103
  start-page: 395
  year: 1997
  end-page: 404
  ident: bib20
  article-title: Extraction of ocular artefacts from EEG using independent component analysis
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 56
  start-page: 90
  year: 1983
  end-page: 96
  ident: bib6
  article-title: Removal of eye movement and ECG artefacts from non-cephalic reference EEG artefact
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 30
  start-page: 44
  year: 1998
  end-page: 53
  ident: bib11
  article-title: Dealing with artifacts: the EOG contamination of the event-related brain potentials
  publication-title: Behavior Res. Methods Instrum. Comput.
– volume: 26
  start-page: 2
  year: 1988
  end-page: 12
  ident: bib7
  article-title: The removal of ocular artefacts from electroencephalogram: a review
  publication-title: Med. Biol. Eng. Comput.
– volume: 41
  start-page: 1
  year: 2003
  end-page: 13
  ident: bib21
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
– volume: 107
  start-page: 387
  year: 1998
  end-page: 394
  ident: bib9
  article-title: EOG correction: a new perspective
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 44
  start-page: 267
  year: 1996
  end-page: 280
  ident: bib33
  publication-title: IEEE Trans. Signal Process
– reference: optimal, in: Proceedings of 32nd IEEE Conference on Decision and Control, 1993, pp. 74–80.
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib22
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– reference: B. Hassibi, A.H. Sayed, T. Kailath, LMS is
– volume: 107
  start-page: 395
  year: 1998
  end-page: 401
  ident: bib10
  article-title: EOG correction: a new aligned-artefact average solution
  publication-title: Electroenceph. Clin. Neurophysiol.
– volume: 62
  start-page: 173
  year: 1997
  end-page: 186
  ident: bib25
  article-title: Development of Newton type adaptive algorithm for the minimization of EOG artefacts from noisy EEG signals
  publication-title: Signal Processing
– volume: 30
  start-page: S.5
  year: 2000
  end-page: S.19
  ident: bib13
  article-title: Removal of ocular artifacts from the EEG: a review
  publication-title: Neurophysiol. Clin.
– reference: M.J. Berryman, S. Messer, A. Allison, D. Abbott, Techniques for noise removal from EEG, EOG and airflow signals in sleep patients, Private communication, 2004.
– year: 2000
  ident: bib2
  article-title: Introduction to Biomedical Engineering
– reference: R. Bogacz, U. Markowska-Kaczmar, A. Kozik, Blinking artifact recognition in EEG signals using artificial neural networks, Private communication, 2004.
– volume: 19
  start-page: 472
  year: 1982
  end-page: 480
  ident: bib4
  article-title: Correction of EOG artefacts in event related potentials of the EEG: aspects of reliability and validity
  publication-title: Psychophysiology
– reference: A. Schlogl, G. Pfurtscheller, EOG and ECG minimization based on regression analysis, Technical Report SIESTA-Task310 Artifact Detection and Denoising, 2004.
– year: 1996
  ident: bib34
  article-title: Adaptive Filter Theory
– volume: 3
  start-page: 19
  year: 2003
  end-page: 40
  ident: bib15
  article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares
  publication-title: Comm. Inform. Systems
– volume: 103
  start-page: 395
  year: 1997
  ident: 10.1016/j.sigpro.2005.10.018_bib20
  article-title: Extraction of ocular artefacts from EEG using independent component analysis
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00042-8
– ident: 10.1016/j.sigpro.2005.10.018_bib31
  doi: 10.1109/ICASSP.1995.480332
– volume: 56
  start-page: 90
  year: 1983
  ident: 10.1016/j.sigpro.2005.10.018_bib6
  article-title: Removal of eye movement and ECG artefacts from non-cephalic reference EEG artefact
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(83)90010-X
– volume: 19
  start-page: 472
  year: 1982
  ident: 10.1016/j.sigpro.2005.10.018_bib4
  article-title: Correction of EOG artefacts in event related potentials of the EEG: aspects of reliability and validity
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1982.tb02509.x
– volume: 107
  start-page: 395
  year: 1998
  ident: 10.1016/j.sigpro.2005.10.018_bib10
  article-title: EOG correction: a new aligned-artefact average solution
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00087-X
– volume: 30
  start-page: 44
  year: 1998
  ident: 10.1016/j.sigpro.2005.10.018_bib11
  article-title: Dealing with artifacts: the EOG contamination of the event-related brain potentials
  publication-title: Behavior Res. Methods Instrum. Comput.
  doi: 10.3758/BF03209415
– ident: 10.1016/j.sigpro.2005.10.018_bib32
  doi: 10.1109/CDC.1993.325187
– volume: 34
  start-page: 433
  year: 1973
  ident: 10.1016/j.sigpro.2005.10.018_bib5
  article-title: Use of simple visual display to reduce eye movement artefacts in CNV recordings
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(73)90095-3
– volume: 3
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.sigpro.2005.10.018_bib15
  article-title: EEG ocular artifact removal through ARMAX model system identification using extended least squares
  publication-title: Comm. Inform. Systems
  doi: 10.4310/CIS.2003.v3.n1.a2
– ident: 10.1016/j.sigpro.2005.10.018_bib16
– year: 1996
  ident: 10.1016/j.sigpro.2005.10.018_bib34
– ident: 10.1016/j.sigpro.2005.10.018_bib18
– volume: 63
  start-page: 639
  year: 1975
  ident: 10.1016/j.sigpro.2005.10.018_bib24
  article-title: Adaptive noise cancellation: principles and applications
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1975.10036
– volume: 6
  start-page: 330
  issue: 12
  year: 1999
  ident: 10.1016/j.sigpro.2005.10.018_bib30
  article-title: Removal of ocular artefacts from EEG using an efficient neural network based adaptive filtering technique
  publication-title: IEEE Signal Processing Lett.
  doi: 10.1109/97.803438
– ident: 10.1016/j.sigpro.2005.10.018_bib26
– volume: 44
  start-page: 267
  issue: 2
  year: 1996
  ident: 10.1016/j.sigpro.2005.10.018_bib33
  article-title: H∞ optimality of the LMS algorithm
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/78.485923
– ident: 10.1016/j.sigpro.2005.10.018_bib17
  doi: 10.1117/12.546637
– volume: 44
  start-page: S.187
  year: 2002
  ident: 10.1016/j.sigpro.2005.10.018_bib12
  article-title: Issues relating to the subtraction phase in EOG artifact correction of the EEG
  publication-title: Internat. J. Psychophysiol.
  doi: 10.1016/S0167-8760(01)00201-X
– volume: 107
  start-page: 387
  year: 1998
  ident: 10.1016/j.sigpro.2005.10.018_bib9
  article-title: EOG correction: a new perspective
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00086-8
– volume: 26
  start-page: 2
  year: 1988
  ident: 10.1016/j.sigpro.2005.10.018_bib7
  article-title: The removal of ocular artefacts from electroencephalogram: a review
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02441820
– volume: 37
  start-page: 163
  year: 2000
  ident: 10.1016/j.sigpro.2005.10.018_bib22
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– ident: 10.1016/j.sigpro.2005.10.018_bib19
– volume: 41
  start-page: 1
  year: 2003
  ident: 10.1016/j.sigpro.2005.10.018_bib21
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
– volume: 41
  start-page: 18
  year: 1996
  ident: 10.1016/j.sigpro.2005.10.018_bib1
  article-title: Linear estimation in Krein spaces—Part I: theory & Part II: applications
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.481605
– volume: 146
  start-page: 293
  year: 1999
  ident: 10.1016/j.sigpro.2005.10.018_bib8
  article-title: Residual ocular artefact subsequent to ocular artefact removal from the electroencephalogram
  publication-title: IEE Proc. Sci. Meas. Technol.
  doi: 10.1049/ip-smt:19990703
– volume: 30
  start-page: S.5
  year: 2000
  ident: 10.1016/j.sigpro.2005.10.018_bib13
  article-title: Removal of ocular artifacts from the EEG: a review
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/S0987-7053(00)00055-1
– volume: 55
  start-page: 468
  year: 1983
  ident: 10.1016/j.sigpro.2005.10.018_bib3
  article-title: A new method for off-line removal of ocular artefacts
  publication-title: Electroenceph. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(83)90135-9
– volume: 53
  start-page: 105
  year: 2004
  ident: 10.1016/j.sigpro.2005.10.018_bib14
  article-title: Automatic correction of the ocular artifacts in the EEG: a comparison of regression-based and component-based methods
  publication-title: Internat. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2004.03.007
– volume: 42
  start-page: 407
  year: 2004
  ident: 10.1016/j.sigpro.2005.10.018_bib28
  article-title: Removal of ocular artifacts from electroencephalogram by adaptive filtering
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344717
– volume: 62
  start-page: 173
  year: 1997
  ident: 10.1016/j.sigpro.2005.10.018_bib25
  article-title: Development of Newton type adaptive algorithm for the minimization of EOG artefacts from noisy EEG signals
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(97)00123-0
– year: 2000
  ident: 10.1016/j.sigpro.2005.10.018_bib2
– ident: 10.1016/j.sigpro.2005.10.018_bib23
– ident: 10.1016/j.sigpro.2005.10.018_bib27
  doi: 10.1007/978-1-4612-2078-7_19
– volume: 43
  start-page: 296
  issue: 2
  year: 2005
  ident: 10.1016/j.sigpro.2005.10.018_bib29
  article-title: Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345969
SSID ssj0001360
Score 2.0151098
Snippet In this paper, we propose the application of H ∞ techniques for minimization of electrooculogram (EOG) artefacts from corrupted electroencephalographic (EEG)...
SourceID unpaywall
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 2351
SubjectTerms Applied sciences
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Detection, estimation, filtering, equalization, prediction
Electroencephalogram (EEG)
Electrooculogram (EOG) artefacts
Exact sciences and technology
Information, signal and communications theory
Medical management aid. Diagnosis aid
Medical sciences
Robust adaptive filtering
Signal and communications theory
Signal, noise
Telecommunications and information theory
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HlTEt1hf7MFrqnlsdnsUiRahvrCgp7CbbIpa02ASRH-9s92kVhSq17BLHjOz80345huAQ-XbiHNp25KYDyxPcWpxTabxIhZ7ChFDNGK7dy_9Ts-7uKf3M1APQawqOinS51ZaGiXBvH9kFAcwwjE9HnEH6-RZmPMpou8GzPUur08ejIQ3tWx_NGTY5gyBI6Ws7pYbUbryxz4eS-ZHiqZ06Ukfv2ejpUzk-I0SM9xiEebLNBPvb2IwmMg-ZytwU_fwGNLJc6ssZCv6-Cnp-OcXW4XlCoqSE-M7azCj0nVYnBAo3IDu7VCWeUFELDJ9LpKx5GtOEO0SLUzyUnVykmFCgqtzokmiul0CV7wOX0gQnBNNEkE334TeWXB32rGqAQxW5HKnsHxJtR7WMYuEoGjGSDk0jnTUK4zbREiHJW3BBHd5EkvFqHIk4oMYMQCWperY3YJGOkzVNhDHS7Q0GROxxGKccqmwsOExF8yWdux6TXBrQ4RRpU6uh2QMwpqG9hQa8-nBmVRfRfM1wRrvyow6x5T1rLZxWCEMgxxCTCBTdh58c4mv2-GBZvs-LmiNfeRPz7Lz3w27sGD-_2iC2x40itdS7SMiKuRBFQSf4eEIRQ
  priority: 102
  providerName: Unpaywall
Title Robust adaptive techniques for minimization of EOG artefacts from EEG signals
URI https://dx.doi.org/10.1016/j.sigpro.2005.10.018
http://scholarbank.nus.edu.sg/handle/10635/82987
UnpaywallVersion submittedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPaiI-MT6KDl43bb7yCY9FqlWxSpqoZ6WZDcrlT4W2yJe_O3OdHdrBaHiaSFMSJhJZibLN98AnBnfxjyX1y2N8cDyjOSWJDCNF4rIM5gxhDO0-23bb3W86y7vFuA8r4UhWGXm-1OfPvPW2Ug102Y16fWqj1SIYxNXCScSFeGtwCquJ2URVhtXN6323CHb7qxYmOQtmpBX0M1gXuPeC7qq9OcKwbyo-8fvEWozUWPUW5w2vNiAtekwUR_vqt9fiEgX27CVpZKske52BwpmuAsbCwSDe3D7MNLT8YSpSCXk19icsnXMMFtlRCwyyCox2ShmzbtLRiBPKndAibfRgDWbl4xAHnhM96Fz0Xw6b1lZAwUrdKUzsXzNic-qJkKlOJohNA6PQrq1Bu9drLQj4roSSroyjrQR3Dga43uEMRyflabmHkBxOBqaQ2COFxO1mFCRxsc0l9rgw0RGUglb25HrlcDNlRaEGbs4NbnoBzmM7DVIVU2NLzmNoqpLYM1nJSm7xhJ5kdsj-HFKAgwAS2aWf5jvezl0SLbvo0Blbs8_7eXo33s5hvX0Rw4h1U6gOHmbmlNMbSa6DCuVT7ucHWD8dtr3jecvPmH5Ag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qfdAi4on1qPvga2xzbDZ9lNJDbRU8wLewm2yk0iP0QHzxtzuTo7UgKL4uE7LM7M6xfPMNwIV2Tcxzed1QGA8MR3vc8AhM4wQidDRmDEGCdu_duZ1n5-aFvxSgkffCEKwy8_2pT0-8dbZSzbRZjfv96iM14pjEVcKJREU4a7DucEtQBXb5ucR5mHbSKkzSBonn_XMJyGvaf0VHlT6tEMiLZn_8HJ-2YjlFrUXpuIsSbMxHsfx4l4PBt3jU2oHtLJFkV-led6GgR3tQ-kYvuA-9h7GaT2dMhjImr8YWhK1ThrkqI1qRYdaHycYRa963GUE8qdkBJSbjIWs224wgHnhID-C51XxqdIxsfIIR2J41M1zFic2qJgIpORoh0BYPA7qzGm9dJJUloroU0rO9KFRacG0pjO4hRnAsKnXNPoTiaDzSR8AsJyJiMSFDhaU095TGssQLPSlMZYa2UwY7V5ofZNziNOJi4Ocgsjc_VTWNveS0iqoug7H4Kk65NX6RF7k9_JUz4qP7_-XLyor5lr9Dd2S6LgpcLuz5p70c_3sv57DReep1_e713e0JbKZPOoRZO4XibDLXZ5jkzFQlOcRfjOX4Gg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HlTEt1hf7MFrqnlsdnsUiRahvrCgp7CbbIpa02ASRH-9s92kVhSq17BLHjOz80345huAQ-XbiHNp25KYDyxPcWpxTabxIhZ7ChFDNGK7dy_9Ts-7uKf3M1APQawqOinS51ZaGiXBvH9kFAcwwjE9HnEH6-RZmPMpou8GzPUur08ejIQ3tWx_NGTY5gyBI6Ws7pYbUbryxz4eS-ZHiqZ06Ukfv2ejpUzk-I0SM9xiEebLNBPvb2IwmMg-ZytwU_fwGNLJc6ssZCv6-Cnp-OcXW4XlCoqSE-M7azCj0nVYnBAo3IDu7VCWeUFELDJ9LpKx5GtOEO0SLUzyUnVykmFCgqtzokmiul0CV7wOX0gQnBNNEkE334TeWXB32rGqAQxW5HKnsHxJtR7WMYuEoGjGSDk0jnTUK4zbREiHJW3BBHd5EkvFqHIk4oMYMQCWperY3YJGOkzVNhDHS7Q0GROxxGKccqmwsOExF8yWdux6TXBrQ4RRpU6uh2QMwpqG9hQa8-nBmVRfRfM1wRrvyow6x5T1rLZxWCEMgxxCTCBTdh58c4mv2-GBZvs-LmiNfeRPz7Lz3w27sGD-_2iC2x40itdS7SMiKuRBFQSf4eEIRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+adaptive+techniques+for+minimization+of+EOG+artefacts+from+EEG+signals&rft.jtitle=Signal+processing&rft.au=Puthusserypady%2C+S.&rft.au=Ratnarajah%2C+T.&rft.date=2006-09-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=86&rft.issue=9&rft.spage=2351&rft.epage=2363&rft_id=info:doi/10.1016%2Fj.sigpro.2005.10.018&rft.externalDocID=S0165168405003774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon