Assessing particulate matter (PM2.5) concentrations and variability across Maharashtra using satellite data and machine learning techniques

Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attri...

Full description

Saved in:
Bibliographic Details
Published inDiscover sustainability Vol. 6; no. 1; pp. 238 - 20
Main Authors Kunjir, Ganesh Machhindra, Tikle, Suvarna, Das, Sandipan, Karim, Masud, Roy, Sujit Kumar, Chatterjee, Uday
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 04.04.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2662-9984
2662-9984
DOI10.1007/s43621-025-01082-3

Cover

Abstract Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM 2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM 2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM 2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM 2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R 2  = 0.87, RMSE = 12.57 µg/m 3 , MAE = 6.96 µg/m 3 ), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R 2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM 2.5 and its environmental factors. This study identified key PM 2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM 2.5 concentrations reaching 46.34 µg/m 3 , far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m 3 . Seasonal analysis revealed significant variability, with the highest PM 2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM 2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra.
AbstractList Abstract Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R2 = 0.87, RMSE = 12.57 µg/m3, MAE = 6.96 µg/m3), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM2.5 and its environmental factors. This study identified key PM2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM2.5 concentrations reaching 46.34 µg/m3, far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m3. Seasonal analysis revealed significant variability, with the highest PM2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra.
Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM 2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM 2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM 2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM 2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R 2  = 0.87, RMSE = 12.57 µg/m 3 , MAE = 6.96 µg/m 3 ), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R 2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM 2.5 and its environmental factors. This study identified key PM 2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM 2.5 concentrations reaching 46.34 µg/m 3 , far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m 3 . Seasonal analysis revealed significant variability, with the highest PM 2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM 2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra.
Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R2 = 0.87, RMSE = 12.57 µg/m3, MAE = 6.96 µg/m3), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM2.5 and its environmental factors. This study identified key PM2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM2.5 concentrations reaching 46.34 µg/m3, far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m3. Seasonal analysis revealed significant variability, with the highest PM2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra.
ArticleNumber 238
Author Roy, Sujit Kumar
Karim, Masud
Chatterjee, Uday
Kunjir, Ganesh Machhindra
Das, Sandipan
Tikle, Suvarna
Author_xml – sequence: 1
  givenname: Ganesh Machhindra
  surname: Kunjir
  fullname: Kunjir, Ganesh Machhindra
  organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Department of Computer Science, Shri Saibaba College, Savitribai Phule Pune University
– sequence: 2
  givenname: Suvarna
  surname: Tikle
  fullname: Tikle, Suvarna
  organization: Environmental Modeling Division, Max Planck Institute for Meteorology
– sequence: 3
  givenname: Sandipan
  orcidid: 0000-0002-8474-2321
  surname: Das
  fullname: Das, Sandipan
  email: sandipan@sig.ac.in, sandipanraj2002@gmail.com
  organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University)
– sequence: 4
  givenname: Masud
  orcidid: 0009-0000-1307-7769
  surname: Karim
  fullname: Karim, Masud
  organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University)
– sequence: 5
  givenname: Sujit Kumar
  orcidid: 0000-0003-4465-9053
  surname: Roy
  fullname: Roy, Sujit Kumar
  organization: Institute of Water and Flood Management, Bangladesh University of Engineering and Technology (BUET)
– sequence: 6
  givenname: Uday
  orcidid: 0000-0001-9933-8324
  surname: Chatterjee
  fullname: Chatterjee, Uday
  organization: Department of Geography, Bhatter College, Dantan, Vidyasagar University
BookMark eNp9kbtuFDEUhq0oSISQF6CylAaKCb6t7SmjiECkREkBtXXGl12vZj2L7UXKM-Sl8c4gQkXlI-v7P1_-d-g0Tckj9IGSK0qI-lwEl4x2hK06QolmHT9BZ0xK1vW9Fqf_zG_RRSlbQghTvSBKn6GX61J8KTGt8R5yjfYwQvV4B7X6jD8-PbCr1Sdsp2R9qhlqnFLBkBz-BTnCEMdYnzHYPJWCH2ADGcqmcfgwK0tzjQ3x2EGFObcDu4nJ49FDTkemertJ8efBl_foTYCx-Is_6zn6cfvl-8237v7x693N9X1nuWa1E5pIJQUo66ij4IQQTmnorYDeSeeZ0HIVeJu58moQgTGqnaaBhsGKQfFzdLd43QRbs89xB_nZTBDNvDHltZm_YvRmCJoQygZGlRZ9oJoLKazXQloWLKXNdbm49nk6vqGa7XTIqV3fcKqlUFyrVaPYQs0flX34eyol5tihWTo0rUMzd2h4C_ElVBqc1j6_qv-T-g0ig6Hm
Cites_doi 10.1016/j.rineng.2024.102039
10.1088/1755-1315/17/1/012268
10.3390/rs12020264
10.1016/j.atmosenv.2017.02.023
10.1007/s11244-024-01957-1
10.5194/acp-18-8849-2018
10.1016/j.envpol.2018.08.029
10.1016/J.APR.2023.101976
10.1016/j.atmosenv.2015.02.030
10.1016/j.renene.2020.01.057
10.1016/J.ATMOSENV.2019.117205
10.4209/aaqr.220082
10.1007/s13762-022-04241-5
10.1016/j.scitotenv.2017.08.209
10.1016/j.scitotenv.2018.04.251
10.14569/IJACSA.2023.0140538
10.1007/s11869-021-01126-3
10.1016/j.renene.2020.01.140
10.1007/s40899-022-00682-5
10.1016/j.envsoft.2019.104620
10.1016/j.atmosenv.2021.118302
10.1016/j.envres.2012.11.003
10.1007/s10661-024-12925-3
10.1038/s41586-019-0912-1
10.1007/s10661-024-13336-0
10.1016/S0140-6736(17)30505-6
10.22034/gjesm.2019.03.01
10.1016/j.procs.2020.03.258
10.1007/s11356-018-3763-7
10.1016/j.atmosenv.2020.117666
10.1016/j.geogeo.2024.100346
10.1016/j.apr.2020.06.011
10.2147/IDR.S177247
10.1080/10962247.2012.701193
10.1016/j.envpol.2017.10.025
10.1109/JSTARS.2020.3002671
10.3390/rs8030262
10.1016/j.atmosenv.2020.117451
10.1007/s11869-017-0514-8
10.1016/j.buildenv.2018.04.042
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s43621-025-01082-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2662-9984
EndPage 20
ExternalDocumentID oai_doaj_org_article_bf80012b217849f183464ce846c2fc11
10_1007_s43621_025_01082_3
GeographicLocations Western Ghats
Arabian Sea
Maharashtra India
Madhya Pradesh India
India
GeographicLocations_xml – name: Western Ghats
– name: Arabian Sea
– name: Madhya Pradesh India
– name: India
– name: Maharashtra India
GrantInformation_xml – fundername: Symbiosis International (Deemed University)
GroupedDBID 0R~
AAJSJ
AAKKN
AASML
ABEEZ
ACACY
ACULB
ACVER
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
C24
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
M~E
OK1
PHGZT
PIMPY
SOJ
AAYXX
CITATION
PHGZM
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c382t-4806764a7cd1d1ad444d78a9c4a9d6de24865f39d637e7b4f2218d81f1fbc4b73
IEDL.DBID BENPR
ISSN 2662-9984
IngestDate Wed Aug 27 00:56:36 EDT 2025
Mon Jun 30 11:54:25 EDT 2025
Tue Jul 01 05:16:06 EDT 2025
Sat Apr 05 01:12:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Satellite remote sensing
Fine particulate matter (PM
)
Fine mode aerosol optical depth (FAOD)
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-4806764a7cd1d1ad444d78a9c4a9d6de24865f39d637e7b4f2218d81f1fbc4b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4465-9053
0009-0000-1307-7769
0000-0001-9933-8324
0000-0002-8474-2321
OpenAccessLink https://www.proquest.com/docview/3186473875?pq-origsite=%requestingapplication%&accountid=15518
PQID 3186473875
PQPubID 5642919
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_bf80012b217849f183464ce846c2fc11
proquest_journals_3186473875
crossref_primary_10_1007_s43621_025_01082_3
springer_journals_10_1007_s43621_025_01082_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-04
PublicationDateYYYYMMDD 2025-04-04
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-04
  day: 04
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Hamburg
PublicationTitle Discover sustainability
PublicationTitleAbbrev Discov Sustain
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References X Xu (1082_CR3) 2021
P Muthukumar (1082_CR13) 2022; 15
K Kumar (1082_CR36) 2023; 20
Y Zhan (1082_CR34) 2017; 155
A Masood (1082_CR31) 2020; 167
HJ Chu (1082_CR1) 2019; 26
Y Xu (1082_CR16) 2018; 242
G Zhang (1082_CR4) 2020
N Islam (1082_CR39) 2023; 23
N Nabipour (1082_CR23) 2020
N Nabipour (1082_CR32) 2020; 152
A Bose (1082_CR38) 2024
S Cakir (1082_CR19) 2020; 11
Z Liu (1082_CR17) 2018; 18
T Zheng (1082_CR10) 2020
H Weizhen (1082_CR25) 2014
AJ Cohen (1082_CR2) 2017; 389
JJ Cao (1082_CR33) 2012; 62
M Reichstein (1082_CR22) 2019; 566
Y Bai (1082_CR6) 2016
M Haque (1082_CR15) 2018; 11
Q Jiang (1082_CR30) 2018; 11
M Unik (1082_CR40) 2023; 14
AR Lakra (1082_CR7) 2025; 4
L Li (1082_CR21) 2020; 12
D Sonntag (1082_CR41) 1990; 40
M Nasar-u-Minallah (1082_CR42) 2024; 196
J Ma (1082_CR9) 2021
I Kayes (1082_CR18) 2019; 5
D Ruidas (1082_CR35) 2022; 8
G Chen (1082_CR12) 2018; 636
X Feng (1082_CR20) 2015
KH Jodhani (1082_CR37) 2024; 67
X Hu (1082_CR11) 2013; 121
S Chen (1082_CR29) 2020
KH Jodhani (1082_CR14) 2024
H Tan (1082_CR8) 2020; 223
BZ Xin Fang (1082_CR27) 2022; 1
Z Wang (1082_CR28) 2018
M Nasar-u-Minallah (1082_CR43) 2024; 196
F Yao (1082_CR5) 2018; 618
Z Hanbin (1082_CR24) 2020
K De Hoogh (1082_CR26) 2018
References_xml – year: 2024
  ident: 1082_CR14
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.102039
– year: 2014
  ident: 1082_CR25
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/17/1/012268
– volume: 12
  start-page: 1
  issue: 2
  year: 2020
  ident: 1082_CR21
  publication-title: Remote Sens
  doi: 10.3390/rs12020264
– volume: 155
  start-page: 129
  year: 2017
  ident: 1082_CR34
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.02.023
– volume: 67
  start-page: 961
  issue: 15–16
  year: 2024
  ident: 1082_CR37
  publication-title: Top Catal
  doi: 10.1007/s11244-024-01957-1
– volume: 18
  start-page: 8849
  issue: 12
  year: 2018
  ident: 1082_CR17
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-8849-2018
– volume: 242
  start-page: 1417
  year: 2018
  ident: 1082_CR16
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.08.029
– year: 2024
  ident: 1082_CR38
  publication-title: Atmos Pollut Res
  doi: 10.1016/J.APR.2023.101976
– year: 2015
  ident: 1082_CR20
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2015.02.030
– year: 2020
  ident: 1082_CR24
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.01.057
– volume: 40
  start-page: 340
  issue: 5
  year: 1990
  ident: 1082_CR41
  publication-title: Z Meteorol
– volume: 223
  year: 2020
  ident: 1082_CR8
  publication-title: Atmos Environ
  doi: 10.1016/J.ATMOSENV.2019.117205
– volume: 23
  start-page: 1
  issue: 1
  year: 2023
  ident: 1082_CR39
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.220082
– volume: 20
  start-page: 5333
  issue: 5
  year: 2023
  ident: 1082_CR36
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-022-04241-5
– volume: 618
  start-page: 819
  year: 2018
  ident: 1082_CR5
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.08.209
– volume: 636
  start-page: 52
  year: 2018
  ident: 1082_CR12
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.04.251
– volume: 14
  start-page: 359
  issue: 5
  year: 2023
  ident: 1082_CR40
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.14569/IJACSA.2023.0140538
– volume: 15
  start-page: 1221
  issue: 7
  year: 2022
  ident: 1082_CR13
  publication-title: Air Qual Atmos Heal
  doi: 10.1007/s11869-021-01126-3
– volume: 152
  start-page: 1086
  year: 2020
  ident: 1082_CR32
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.01.140
– volume: 8
  start-page: 1
  issue: 4
  year: 2022
  ident: 1082_CR35
  publication-title: Sustain Water Resour Manag
  doi: 10.1007/s40899-022-00682-5
– year: 2020
  ident: 1082_CR29
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2019.104620
– year: 2021
  ident: 1082_CR3
  publication-title: Atmos.= Environ
  doi: 10.1016/j.atmosenv.2021.118302
– volume: 121
  start-page: 1
  issue: December
  year: 2013
  ident: 1082_CR11
  publication-title: Environ Res
  doi: 10.1016/j.envres.2012.11.003
– volume: 196
  start-page: 865
  year: 2024
  ident: 1082_CR43
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-024-12925-3
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  ident: 1082_CR22
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 196
  start-page: 1269
  year: 2024
  ident: 1082_CR42
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-024-13336-0
– volume: 389
  start-page: 1907
  issue: 10082
  year: 2017
  ident: 1082_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30505-6
– volume: 5
  start-page: 265
  issue: 3
  year: 2019
  ident: 1082_CR18
  publication-title: Glob J Environ Sci Manag
  doi: 10.22034/gjesm.2019.03.01
– volume: 167
  start-page: 2101
  issue: 2019
  year: 2020
  ident: 1082_CR31
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.258
– year: 2020
  ident: 1082_CR23
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.01.140
– volume: 26
  start-page: 1902
  issue: 2
  year: 2019
  ident: 1082_CR1
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-3763-7
– year: 2021
  ident: 1082_CR9
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2020.117666
– volume: 1
  start-page: 16
  year: 2022
  ident: 1082_CR27
  publication-title: Remote Sens
– volume: 4
  issue: 1
  year: 2025
  ident: 1082_CR7
  publication-title: Geosystems Geoenviron
  doi: 10.1016/j.geogeo.2024.100346
– volume: 11
  start-page: 2327
  issue: 12
  year: 2020
  ident: 1082_CR19
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.06.011
– volume: 11
  start-page: 2321
  year: 2018
  ident: 1082_CR15
  publication-title: Infect Drug Resist
  doi: 10.2147/IDR.S177247
– volume: 62
  start-page: 1214
  issue: 10
  year: 2012
  ident: 1082_CR33
  publication-title: J Air Waste Manag Assoc
  doi: 10.1080/10962247.2012.701193
– year: 2018
  ident: 1082_CR26
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.10.025
– year: 2020
  ident: 1082_CR4
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2020.3002671
– year: 2016
  ident: 1082_CR6
  publication-title: Remote Sens
  doi: 10.3390/rs8030262
– year: 2020
  ident: 1082_CR10
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2020.117451
– volume: 11
  start-page: 23
  issue: 1
  year: 2018
  ident: 1082_CR30
  publication-title: Air Qual Atmos Heal
  doi: 10.1007/s11869-017-0514-8
– year: 2018
  ident: 1082_CR28
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.04.042
SSID ssj0002794078
Score 2.2914352
Snippet Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health,...
Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health,...
Abstract Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 238
SubjectTerms Accuracy
Aerosols
Air pollution
Earth and Environmental Science
Environment
Fine mode aerosol optical depth (FAOD)
Fine particulate matter (PM2.5)
Ground stations
Machine learning
Neural networks
Outdoor air quality
Public health
Remote sensing
Satellite remote sensing
Sustainable Development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtswDBaKnNbDsK4tmi0bdOihxeYulhhJPm7DgqJAih4aIDdB1s-GAfGKORnQZ9hLj6KdNB0w7NKbYMsCLdIiaZIfGTtNIjlZyXGhQ_5bpUQsTPBoyMmxU7oMeuIpy_daXc7hajFZ7LT6yjlhHTxwt3Ef6mSySq7RdDZQJZRAUOAjqk0vku-qesfVeMeZ-k7htCoHqPoqGaqVAzyq0XMWOVcN9V4hH2kiAux_ZGX-FRglfTN9wZ73hiL_2BF4wPZi85Lt78AHHrLfXcQWx_yOXiS34op8SZCZ_OxmJi4m59znwsSmR8dtuWsC_4UOcofPfc8dUcdnLiM3t99wHl_Tkq0jsE5cMGeR0nNLyryMvG818ZVvEWDbIzaffrn9fFn0zRUKL41YFWBQTylw2ocylC4AQNDGVR5cFVSIAoyaJIljqaOuIQk0BoIpU5lqD7WWx2zQ_GjiCeN5GbQCIeUonYHSoQuWI65e5PZmSgzZu81G27sOQ8Nu0ZKJLRbZYoktVg7Zp8yL7cyMf00XUCpsLxX2f1IxZKMNJ23_UbYWjy8FWqKHNmTvN9x9uP1vkl49BUmv2TNB0pcTf0ZssPq5jm_QoFnVb0l2_wA_se7L
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxUxEA5aL3oQWxWf1pJDD4qudJPZJHtUsRSh4sFCbyGbHxWh29J9Lfg39J_uzLzs04oevIXdJIT9ksnMzsw3QuwWVYLu9V5jE_2tMio3LkVU5PReMLZNtosc5fvFHBzB5-PuuCaFTXO0--ySZEm9TnYDlLVo-ioKNsOLq9F3xb2ONhC5aGuOww92pfXknKoZMn8feusWYrL-WxrmH05Rvmv2H4mHVUmU71eoboo7edwSD36jDnwsrlfeWmzLc0afynBlecp0mfLV10P1rnstIyUljpUZd5JhTPIKjeMVN_dPGXh18jAQa_P0HfvJS55yCkzUiRNSBCmPO-WoyyxrmYkTuWZ_nZ6Io_1P3z4eNLWwQhO1U8sGHN5RBoKNqU1tSACQrAt9hNAnk7ICZ7qisa1ttgMUhYpAcm1pyxBhsPqp2BjPxvxMSJoGNUAo5KFz0AY0v8jbGhWVNjNqId7MH9qfr_gz_JopmWHxCItnWLxeiA-ExboncV_zg7OLE1-Pkh-KIyVtQGPKQV9QJoGBmFGRiqrEtl2I7RlJXw_k5FF0GbAarbOFeDuj--v1v5f0_P-6vxD3Fe8zCu_ZFhvLi8v8EtWW5bDDu_QGkbfkAA
  priority: 102
  providerName: Springer Nature
Title Assessing particulate matter (PM2.5) concentrations and variability across Maharashtra using satellite data and machine learning techniques
URI https://link.springer.com/article/10.1007/s43621-025-01082-3
https://www.proquest.com/docview/3186473875
https://doaj.org/article/bf80012b217849f183464ce846c2fc11
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t3QsIIRggOkblBx5AEGhsx3YfEGLVpglp1YSYtDfLsePxsrQs3ST-Bv5p7hynY0jwUkVNYkW5y93n-_EdwKvIoxMzMS10oGiV4k1hgkcgJ6ZO6TLoyqcq34U6PpNfzqvzLVgMvTBUVjnYxGSow9JTjPwD6p6SWiC8_rT6UdDUKMquDiM0XB6tED4mirFt2EGTXE1HsHNwuDj9uom6cFQ_dIq5eyb10Ek04bij5lTDhv6wEHc8VCLyv4M-_0qYJj909AgeZgDJPvcSfwxbTbsL9_-gFdyFB30sjvUtRk_gV5_ZxXNslTSFRnY17DJRa7LXpyf8ffWGeWpgbDOLbsdcG9gNbqR7Hu-fzKWnZSeOGJ6773gdu05Ldi6ReuKCVG2a7rtMFZoNyyMpLtiGKbZ7CmdHh9_mx0UewlB4Yfi6kAb9mZJO-1CG0gUpZdDGzbx0s6BCw6VRVRR4LHSjaxk5goZgyljG2stai2cwapdt8xwYLYNoUUbK5hlZOtyqUWbWcxqDpvgY3g4v3q56rg27YVVOYrIoJpvEZMUYDkg2myuJJzv9sby6sPmzs3U0BOhq3HgZOYtov6SSvkHQ5Xn0ZTmG_UGyNn-8nb1VtTG8G6R9e_rfj7T3_9VewD2e9IxKf_ZhtL66bl4ipFnXk6ynE9iec0m_aj5J4YHfq3T1jQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAIISggAgX2ABIIDPXuxuscKkShVUqbqEKt1Nt2vY9yqRPqFNTfwH_itzGzXqcUCW69WX6MLM943vMNwPPAgxFDsZYpR9mqgvusdBYdObFmCpU7NbCxy3dSjA7k58PB4RL86mZhqK2y04lRUbuppRz5O5S9QiqB7vX72beMtkZRdbVboWHSagW3HiHG0mDHjj__gSFcs779Cfn9gvOtzf2PoyxtGcisKPk8kyUq7EIaZV3ucuOklE6VZmilGbrCeS7LYhAEHgvlVSUDR6voyjzkobKyUgLpXoNlSQmUHixvbE72viyyPBzFHY1wmtaJM3sSTQZG8Jx65tD-ZuKSRYyLAy55u38VaKPd27oDt5PDyj60EnYXlny9Ajf_gDFcgVtt7o-1I0334GdbScZrbBYlk1aEeXYSoTzZy70xfzt4xSwNTNYJtbdhpnbsOwbuLW74OTPxbdnYEKJ08xXvY2eRZGMiiCgSpO7W-NxJ7Aj1LK3AOGYLZNrmPhxcCTseQK-e1v4hMCKD3qkMVD0sZW4wNKRKsOW0dq3gfXjdfXg9a7E99ALFObJJI5t0ZJMWfdgg3izuJFzueGJ6eqzTb66rUJIDWWGgV8phQH0pC2k9OnmWB5vnfVjtOKuTsmj0hWj34U3H7YvL_36lR_-n9gyuj_bHu3p3e7LzGG7wKHPUdrQKvfnpmX-C7tS8eppklsHRVf8mvwEX8i_b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fTxQxEJ8gJEZjjKLGU9Q-aKLRFbbttb0HYkS4gMjlYiThrXT7B17YO9hDw2fwm_mpnHa7h5joG2-b3e5kszOdP52Z3wC8DDQYNmBrhXTxtEpQXyhn0ZFja0bI0sm-TVW-I7G9zz8f9A8W4FfXCxPLKjudmBS1m9h4Rr6Ksie4ZOher4ZcFjHeHH6YnhZxglTMtHbjNEwes-DWE9xYbvLY9Rc_MJxr1nc2kfevKB1uffu0XeSJA4Vlis4KrlB5C26kdaUrjeOcO6nMwHIzcMJ5ypXoB4bXTHpZ8UDRQjpVhjJUlleSId0bsCTR6mMguLSxNRp_nZ_4UBR9NMi5cyf173E0HxjN01g_h7a4YFesYxoicMXz_StZm2zg8B7czc4r-dhK231Y8PUy3P4D0nAZ7rTngKRtb3oAP9usMj4j0ySlcVyYJycJ1pO8Hu_R9_03xMbmyToj-DbE1I58xyC-xRC_ICZ9LdkzEV26OcZ15DyRbEwCFEWCsdI1vXeSqkM9yeMwjsgcpbZ5CPvXwo5HsFhPav8YSCSDnioPMZOoeGkwTIxZYUvjCDZBe_C2-_F62uJ86Dmic2KTRjbpxCbNerAReTNfGTG6043J2ZHOW15XQUVnssKgT_FBQN3JBbceHT5Lgy3LHqx0nNVZcTT6Usx78K7j9uXjf3_Sk_9TewE3cbvoLzuj3adwiyaRixVIK7A4Ozv3z9CzmlXPs8gSOLzuXfIbcTg0Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+particulate+matter+%28PM2.5%29+concentrations+and+variability+across+Maharashtra+using+satellite+data+and+machine+learning+techniques&rft.jtitle=Discover+sustainability&rft.au=Kunjir%2C+Ganesh+Machhindra&rft.au=Tikle%2C+Suvarna&rft.au=Das%2C+Sandipan&rft.au=Karim%2C+Masud&rft.date=2025-04-04&rft.issn=2662-9984&rft.eissn=2662-9984&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1007%2Fs43621-025-01082-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43621_025_01082_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-9984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-9984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-9984&client=summon