Assessing particulate matter (PM2.5) concentrations and variability across Maharashtra using satellite data and machine learning techniques
Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attri...
Saved in:
Published in | Discover sustainability Vol. 6; no. 1; pp. 238 - 20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
04.04.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2662-9984 2662-9984 |
DOI | 10.1007/s43621-025-01082-3 |
Cover
Abstract | Airborne fine particulate matter (PM
2.5
) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM
2.5
exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM
2.5
concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM
2.5
concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM
2.5
modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R
2
= 0.87, RMSE = 12.57 µg/m
3
, MAE = 6.96 µg/m
3
), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R
2
values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM
2.5
and its environmental factors. This study identified key PM
2.5
hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM
2.5
concentrations reaching 46.34 µg/m
3
, far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m
3
. Seasonal analysis revealed significant variability, with the highest PM
2.5
concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM
2.5
hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra. |
---|---|
AbstractList | Abstract Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R2 = 0.87, RMSE = 12.57 µg/m3, MAE = 6.96 µg/m3), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM2.5 and its environmental factors. This study identified key PM2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM2.5 concentrations reaching 46.34 µg/m3, far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m3. Seasonal analysis revealed significant variability, with the highest PM2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra. Airborne fine particulate matter (PM 2.5 ) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM 2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM 2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM 2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM 2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R 2 = 0.87, RMSE = 12.57 µg/m 3 , MAE = 6.96 µg/m 3 ), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R 2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM 2.5 and its environmental factors. This study identified key PM 2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM 2.5 concentrations reaching 46.34 µg/m 3 , far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m 3 . Seasonal analysis revealed significant variability, with the highest PM 2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM 2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra. Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health, contributing to respiratory and cardiovascular diseases, and increasing the risk of premature mortality. The World Health Organization (WHO) attributes millions of deaths annually to PM2.5 exposure, making it a critical subject of study for both environmental and public health research. In this context, the present study aims to predict PM2.5 concentrations across Maharashtra, India, for the year 2023, employing machine learning models to improve spatial and temporal air quality assessments. The analysis utilizes daily station-specific datasets, incorporating PM2.5 concentrations, Fine Aerosol Optical Depth (FAOD), wind components (u and v), relative humidity (RH), and air temperature (TEMP) to improve prediction accuracy. Four regression models were applied: Random Forest (RF), Multiple Linear Regression (MLR), Linear Regression (LR), and Lasso Regression, using a combination of Fine Aerosol Optical Depth (FAOD) with meteorological data from Google Earth Engine and ground-based observations from Central Pollution Control Board (CPCB) monitoring stations. The study emphasizes the importance of utilizing FAOD as a more refined metric for fine-mode aerosol concentration in PM2.5 modeling, compared to conventional AOD. The RF model achieved the highest accuracy (R2 = 0.87, RMSE = 12.57 µg/m3, MAE = 6.96 µg/m3), outperforming MLR, LR, and Lasso Regression, which showed significantly lower R2 values. This highlights the RF model’s effectiveness in capturing the non-linear relationships between PM2.5 and its environmental factors. This study identified key PM2.5 hotspots in Maharashtra, particularly in densely urbanized areas like Mumbai, Thane, and Pune, with annual PM2.5 concentrations reaching 46.34 µg/m3, far exceeding the Indian National Ambient Air Quality Standards (NAAQS) of 40 µg/m3. Seasonal analysis revealed significant variability, with the highest PM2.5 concentrations observed during the winter months, while levels significantly decreased during the monsoon due to higher rainfall and increased atmospheric moisture. The study identifies key PM2.5 hotspots in urban areas, offering crucial insights for policymakers and urban planners to implement targeted air quality interventions. These findings support improved public health and sustainable environmental management in Maharashtra. |
ArticleNumber | 238 |
Author | Roy, Sujit Kumar Karim, Masud Chatterjee, Uday Kunjir, Ganesh Machhindra Das, Sandipan Tikle, Suvarna |
Author_xml | – sequence: 1 givenname: Ganesh Machhindra surname: Kunjir fullname: Kunjir, Ganesh Machhindra organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Department of Computer Science, Shri Saibaba College, Savitribai Phule Pune University – sequence: 2 givenname: Suvarna surname: Tikle fullname: Tikle, Suvarna organization: Environmental Modeling Division, Max Planck Institute for Meteorology – sequence: 3 givenname: Sandipan orcidid: 0000-0002-8474-2321 surname: Das fullname: Das, Sandipan email: sandipan@sig.ac.in, sandipanraj2002@gmail.com organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University) – sequence: 4 givenname: Masud orcidid: 0009-0000-1307-7769 surname: Karim fullname: Karim, Masud organization: Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University) – sequence: 5 givenname: Sujit Kumar orcidid: 0000-0003-4465-9053 surname: Roy fullname: Roy, Sujit Kumar organization: Institute of Water and Flood Management, Bangladesh University of Engineering and Technology (BUET) – sequence: 6 givenname: Uday orcidid: 0000-0001-9933-8324 surname: Chatterjee fullname: Chatterjee, Uday organization: Department of Geography, Bhatter College, Dantan, Vidyasagar University |
BookMark | eNp9kbtuFDEUhq0oSISQF6CylAaKCb6t7SmjiECkREkBtXXGl12vZj2L7UXKM-Sl8c4gQkXlI-v7P1_-d-g0Tckj9IGSK0qI-lwEl4x2hK06QolmHT9BZ0xK1vW9Fqf_zG_RRSlbQghTvSBKn6GX61J8KTGt8R5yjfYwQvV4B7X6jD8-PbCr1Sdsp2R9qhlqnFLBkBz-BTnCEMdYnzHYPJWCH2ADGcqmcfgwK0tzjQ3x2EGFObcDu4nJ49FDTkemertJ8efBl_foTYCx-Is_6zn6cfvl-8237v7x693N9X1nuWa1E5pIJQUo66ij4IQQTmnorYDeSeeZ0HIVeJu58moQgTGqnaaBhsGKQfFzdLd43QRbs89xB_nZTBDNvDHltZm_YvRmCJoQygZGlRZ9oJoLKazXQloWLKXNdbm49nk6vqGa7XTIqV3fcKqlUFyrVaPYQs0flX34eyol5tihWTo0rUMzd2h4C_ElVBqc1j6_qv-T-g0ig6Hm |
Cites_doi | 10.1016/j.rineng.2024.102039 10.1088/1755-1315/17/1/012268 10.3390/rs12020264 10.1016/j.atmosenv.2017.02.023 10.1007/s11244-024-01957-1 10.5194/acp-18-8849-2018 10.1016/j.envpol.2018.08.029 10.1016/J.APR.2023.101976 10.1016/j.atmosenv.2015.02.030 10.1016/j.renene.2020.01.057 10.1016/J.ATMOSENV.2019.117205 10.4209/aaqr.220082 10.1007/s13762-022-04241-5 10.1016/j.scitotenv.2017.08.209 10.1016/j.scitotenv.2018.04.251 10.14569/IJACSA.2023.0140538 10.1007/s11869-021-01126-3 10.1016/j.renene.2020.01.140 10.1007/s40899-022-00682-5 10.1016/j.envsoft.2019.104620 10.1016/j.atmosenv.2021.118302 10.1016/j.envres.2012.11.003 10.1007/s10661-024-12925-3 10.1038/s41586-019-0912-1 10.1007/s10661-024-13336-0 10.1016/S0140-6736(17)30505-6 10.22034/gjesm.2019.03.01 10.1016/j.procs.2020.03.258 10.1007/s11356-018-3763-7 10.1016/j.atmosenv.2020.117666 10.1016/j.geogeo.2024.100346 10.1016/j.apr.2020.06.011 10.2147/IDR.S177247 10.1080/10962247.2012.701193 10.1016/j.envpol.2017.10.025 10.1109/JSTARS.2020.3002671 10.3390/rs8030262 10.1016/j.atmosenv.2020.117451 10.1007/s11869-017-0514-8 10.1016/j.buildenv.2018.04.042 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s43621-025-01082-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health |
EISSN | 2662-9984 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_bf80012b217849f183464ce846c2fc11 10_1007_s43621_025_01082_3 |
GeographicLocations | Western Ghats Arabian Sea Maharashtra India Madhya Pradesh India India |
GeographicLocations_xml | – name: Western Ghats – name: Arabian Sea – name: Madhya Pradesh India – name: India – name: Maharashtra India |
GrantInformation_xml | – fundername: Symbiosis International (Deemed University) |
GroupedDBID | 0R~ AAJSJ AAKKN AASML ABEEZ ACACY ACULB ACVER AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR C24 C6C CCPQU EBLON EBS GROUPED_DOAJ M~E OK1 PHGZT PIMPY SOJ AAYXX CITATION PHGZM ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c382t-4806764a7cd1d1ad444d78a9c4a9d6de24865f39d637e7b4f2218d81f1fbc4b73 |
IEDL.DBID | BENPR |
ISSN | 2662-9984 |
IngestDate | Wed Aug 27 00:56:36 EDT 2025 Mon Jun 30 11:54:25 EDT 2025 Tue Jul 01 05:16:06 EDT 2025 Sat Apr 05 01:12:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Satellite remote sensing Fine particulate matter (PM ) Fine mode aerosol optical depth (FAOD) Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-4806764a7cd1d1ad444d78a9c4a9d6de24865f39d637e7b4f2218d81f1fbc4b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4465-9053 0009-0000-1307-7769 0000-0001-9933-8324 0000-0002-8474-2321 |
OpenAccessLink | https://www.proquest.com/docview/3186473875?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3186473875 |
PQPubID | 5642919 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf80012b217849f183464ce846c2fc11 proquest_journals_3186473875 crossref_primary_10_1007_s43621_025_01082_3 springer_journals_10_1007_s43621_025_01082_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-04 |
PublicationDateYYYYMMDD | 2025-04-04 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Hamburg |
PublicationTitle | Discover sustainability |
PublicationTitleAbbrev | Discov Sustain |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | X Xu (1082_CR3) 2021 P Muthukumar (1082_CR13) 2022; 15 K Kumar (1082_CR36) 2023; 20 Y Zhan (1082_CR34) 2017; 155 A Masood (1082_CR31) 2020; 167 HJ Chu (1082_CR1) 2019; 26 Y Xu (1082_CR16) 2018; 242 G Zhang (1082_CR4) 2020 N Islam (1082_CR39) 2023; 23 N Nabipour (1082_CR23) 2020 N Nabipour (1082_CR32) 2020; 152 A Bose (1082_CR38) 2024 S Cakir (1082_CR19) 2020; 11 Z Liu (1082_CR17) 2018; 18 T Zheng (1082_CR10) 2020 H Weizhen (1082_CR25) 2014 AJ Cohen (1082_CR2) 2017; 389 JJ Cao (1082_CR33) 2012; 62 M Reichstein (1082_CR22) 2019; 566 Y Bai (1082_CR6) 2016 M Haque (1082_CR15) 2018; 11 Q Jiang (1082_CR30) 2018; 11 M Unik (1082_CR40) 2023; 14 AR Lakra (1082_CR7) 2025; 4 L Li (1082_CR21) 2020; 12 D Sonntag (1082_CR41) 1990; 40 M Nasar-u-Minallah (1082_CR42) 2024; 196 J Ma (1082_CR9) 2021 I Kayes (1082_CR18) 2019; 5 D Ruidas (1082_CR35) 2022; 8 G Chen (1082_CR12) 2018; 636 X Feng (1082_CR20) 2015 KH Jodhani (1082_CR37) 2024; 67 X Hu (1082_CR11) 2013; 121 S Chen (1082_CR29) 2020 KH Jodhani (1082_CR14) 2024 H Tan (1082_CR8) 2020; 223 BZ Xin Fang (1082_CR27) 2022; 1 Z Wang (1082_CR28) 2018 M Nasar-u-Minallah (1082_CR43) 2024; 196 F Yao (1082_CR5) 2018; 618 Z Hanbin (1082_CR24) 2020 K De Hoogh (1082_CR26) 2018 |
References_xml | – year: 2024 ident: 1082_CR14 publication-title: Results Eng doi: 10.1016/j.rineng.2024.102039 – year: 2014 ident: 1082_CR25 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/17/1/012268 – volume: 12 start-page: 1 issue: 2 year: 2020 ident: 1082_CR21 publication-title: Remote Sens doi: 10.3390/rs12020264 – volume: 155 start-page: 129 year: 2017 ident: 1082_CR34 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2017.02.023 – volume: 67 start-page: 961 issue: 15–16 year: 2024 ident: 1082_CR37 publication-title: Top Catal doi: 10.1007/s11244-024-01957-1 – volume: 18 start-page: 8849 issue: 12 year: 2018 ident: 1082_CR17 publication-title: Atmos Chem Phys doi: 10.5194/acp-18-8849-2018 – volume: 242 start-page: 1417 year: 2018 ident: 1082_CR16 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.08.029 – year: 2024 ident: 1082_CR38 publication-title: Atmos Pollut Res doi: 10.1016/J.APR.2023.101976 – year: 2015 ident: 1082_CR20 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.02.030 – year: 2020 ident: 1082_CR24 publication-title: Renew Energy doi: 10.1016/j.renene.2020.01.057 – volume: 40 start-page: 340 issue: 5 year: 1990 ident: 1082_CR41 publication-title: Z Meteorol – volume: 223 year: 2020 ident: 1082_CR8 publication-title: Atmos Environ doi: 10.1016/J.ATMOSENV.2019.117205 – volume: 23 start-page: 1 issue: 1 year: 2023 ident: 1082_CR39 publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.220082 – volume: 20 start-page: 5333 issue: 5 year: 2023 ident: 1082_CR36 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-022-04241-5 – volume: 618 start-page: 819 year: 2018 ident: 1082_CR5 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.08.209 – volume: 636 start-page: 52 year: 2018 ident: 1082_CR12 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.04.251 – volume: 14 start-page: 359 issue: 5 year: 2023 ident: 1082_CR40 publication-title: Int J Adv Comput Sci Appl doi: 10.14569/IJACSA.2023.0140538 – volume: 15 start-page: 1221 issue: 7 year: 2022 ident: 1082_CR13 publication-title: Air Qual Atmos Heal doi: 10.1007/s11869-021-01126-3 – volume: 152 start-page: 1086 year: 2020 ident: 1082_CR32 publication-title: Renew Energy doi: 10.1016/j.renene.2020.01.140 – volume: 8 start-page: 1 issue: 4 year: 2022 ident: 1082_CR35 publication-title: Sustain Water Resour Manag doi: 10.1007/s40899-022-00682-5 – year: 2020 ident: 1082_CR29 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2019.104620 – year: 2021 ident: 1082_CR3 publication-title: Atmos.= Environ doi: 10.1016/j.atmosenv.2021.118302 – volume: 121 start-page: 1 issue: December year: 2013 ident: 1082_CR11 publication-title: Environ Res doi: 10.1016/j.envres.2012.11.003 – volume: 196 start-page: 865 year: 2024 ident: 1082_CR43 publication-title: Environ Monit Assess doi: 10.1007/s10661-024-12925-3 – volume: 566 start-page: 195 issue: 7743 year: 2019 ident: 1082_CR22 publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 196 start-page: 1269 year: 2024 ident: 1082_CR42 publication-title: Environ Monit Assess doi: 10.1007/s10661-024-13336-0 – volume: 389 start-page: 1907 issue: 10082 year: 2017 ident: 1082_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(17)30505-6 – volume: 5 start-page: 265 issue: 3 year: 2019 ident: 1082_CR18 publication-title: Glob J Environ Sci Manag doi: 10.22034/gjesm.2019.03.01 – volume: 167 start-page: 2101 issue: 2019 year: 2020 ident: 1082_CR31 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.258 – year: 2020 ident: 1082_CR23 publication-title: Renew Energy doi: 10.1016/j.renene.2020.01.140 – volume: 26 start-page: 1902 issue: 2 year: 2019 ident: 1082_CR1 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-3763-7 – year: 2021 ident: 1082_CR9 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2020.117666 – volume: 1 start-page: 16 year: 2022 ident: 1082_CR27 publication-title: Remote Sens – volume: 4 issue: 1 year: 2025 ident: 1082_CR7 publication-title: Geosystems Geoenviron doi: 10.1016/j.geogeo.2024.100346 – volume: 11 start-page: 2327 issue: 12 year: 2020 ident: 1082_CR19 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2020.06.011 – volume: 11 start-page: 2321 year: 2018 ident: 1082_CR15 publication-title: Infect Drug Resist doi: 10.2147/IDR.S177247 – volume: 62 start-page: 1214 issue: 10 year: 2012 ident: 1082_CR33 publication-title: J Air Waste Manag Assoc doi: 10.1080/10962247.2012.701193 – year: 2018 ident: 1082_CR26 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.10.025 – year: 2020 ident: 1082_CR4 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2020.3002671 – year: 2016 ident: 1082_CR6 publication-title: Remote Sens doi: 10.3390/rs8030262 – year: 2020 ident: 1082_CR10 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2020.117451 – volume: 11 start-page: 23 issue: 1 year: 2018 ident: 1082_CR30 publication-title: Air Qual Atmos Heal doi: 10.1007/s11869-017-0514-8 – year: 2018 ident: 1082_CR28 publication-title: Build Environ doi: 10.1016/j.buildenv.2018.04.042 |
SSID | ssj0002794078 |
Score | 2.2914352 |
Snippet | Airborne fine particulate matter (PM
2.5
) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health,... Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human health,... Abstract Airborne fine particulate matter (PM2.5) is recognized globally as one of the most hazardous air pollutants due to its profound impact on human... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 238 |
SubjectTerms | Accuracy Aerosols Air pollution Earth and Environmental Science Environment Fine mode aerosol optical depth (FAOD) Fine particulate matter (PM2.5) Ground stations Machine learning Neural networks Outdoor air quality Public health Remote sensing Satellite remote sensing Sustainable Development |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtswDBaKnNbDsK4tmi0bdOihxeYulhhJPm7DgqJAih4aIDdB1s-GAfGKORnQZ9hLj6KdNB0w7NKbYMsCLdIiaZIfGTtNIjlZyXGhQ_5bpUQsTPBoyMmxU7oMeuIpy_daXc7hajFZ7LT6yjlhHTxwt3Ef6mSySq7RdDZQJZRAUOAjqk0vku-qesfVeMeZ-k7htCoHqPoqGaqVAzyq0XMWOVcN9V4hH2kiAux_ZGX-FRglfTN9wZ73hiL_2BF4wPZi85Lt78AHHrLfXcQWx_yOXiS34op8SZCZ_OxmJi4m59znwsSmR8dtuWsC_4UOcofPfc8dUcdnLiM3t99wHl_Tkq0jsE5cMGeR0nNLyryMvG818ZVvEWDbIzaffrn9fFn0zRUKL41YFWBQTylw2ocylC4AQNDGVR5cFVSIAoyaJIljqaOuIQk0BoIpU5lqD7WWx2zQ_GjiCeN5GbQCIeUonYHSoQuWI65e5PZmSgzZu81G27sOQ8Nu0ZKJLRbZYoktVg7Zp8yL7cyMf00XUCpsLxX2f1IxZKMNJ23_UbYWjy8FWqKHNmTvN9x9uP1vkl49BUmv2TNB0pcTf0ZssPq5jm_QoFnVb0l2_wA_se7L priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxUxEA5aL3oQWxWf1pJDD4qudJPZJHtUsRSh4sFCbyGbHxWh29J9Lfg39J_uzLzs04oevIXdJIT9ksnMzsw3QuwWVYLu9V5jE_2tMio3LkVU5PReMLZNtosc5fvFHBzB5-PuuCaFTXO0--ySZEm9TnYDlLVo-ioKNsOLq9F3xb2ONhC5aGuOww92pfXknKoZMn8feusWYrL-WxrmH05Rvmv2H4mHVUmU71eoboo7edwSD36jDnwsrlfeWmzLc0afynBlecp0mfLV10P1rnstIyUljpUZd5JhTPIKjeMVN_dPGXh18jAQa_P0HfvJS55yCkzUiRNSBCmPO-WoyyxrmYkTuWZ_nZ6Io_1P3z4eNLWwQhO1U8sGHN5RBoKNqU1tSACQrAt9hNAnk7ICZ7qisa1ttgMUhYpAcm1pyxBhsPqp2BjPxvxMSJoGNUAo5KFz0AY0v8jbGhWVNjNqId7MH9qfr_gz_JopmWHxCItnWLxeiA-ExboncV_zg7OLE1-Pkh-KIyVtQGPKQV9QJoGBmFGRiqrEtl2I7RlJXw_k5FF0GbAarbOFeDuj--v1v5f0_P-6vxD3Fe8zCu_ZFhvLi8v8EtWW5bDDu_QGkbfkAA priority: 102 providerName: Springer Nature |
Title | Assessing particulate matter (PM2.5) concentrations and variability across Maharashtra using satellite data and machine learning techniques |
URI | https://link.springer.com/article/10.1007/s43621-025-01082-3 https://www.proquest.com/docview/3186473875 https://doaj.org/article/bf80012b217849f183464ce846c2fc11 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t3QsIIRggOkblBx5AEGhsx3YfEGLVpglp1YSYtDfLsePxsrQs3ST-Bv5p7hynY0jwUkVNYkW5y93n-_EdwKvIoxMzMS10oGiV4k1hgkcgJ6ZO6TLoyqcq34U6PpNfzqvzLVgMvTBUVjnYxGSow9JTjPwD6p6SWiC8_rT6UdDUKMquDiM0XB6tED4mirFt2EGTXE1HsHNwuDj9uom6cFQ_dIq5eyb10Ek04bij5lTDhv6wEHc8VCLyv4M-_0qYJj909AgeZgDJPvcSfwxbTbsL9_-gFdyFB30sjvUtRk_gV5_ZxXNslTSFRnY17DJRa7LXpyf8ffWGeWpgbDOLbsdcG9gNbqR7Hu-fzKWnZSeOGJ6773gdu05Ldi6ReuKCVG2a7rtMFZoNyyMpLtiGKbZ7CmdHh9_mx0UewlB4Yfi6kAb9mZJO-1CG0gUpZdDGzbx0s6BCw6VRVRR4LHSjaxk5goZgyljG2stai2cwapdt8xwYLYNoUUbK5hlZOtyqUWbWcxqDpvgY3g4v3q56rg27YVVOYrIoJpvEZMUYDkg2myuJJzv9sby6sPmzs3U0BOhq3HgZOYtov6SSvkHQ5Xn0ZTmG_UGyNn-8nb1VtTG8G6R9e_rfj7T3_9VewD2e9IxKf_ZhtL66bl4ipFnXk6ynE9iec0m_aj5J4YHfq3T1jQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAIISggAgX2ABIIDPXuxuscKkShVUqbqEKt1Nt2vY9yqRPqFNTfwH_itzGzXqcUCW69WX6MLM943vMNwPPAgxFDsZYpR9mqgvusdBYdObFmCpU7NbCxy3dSjA7k58PB4RL86mZhqK2y04lRUbuppRz5O5S9QiqB7vX72beMtkZRdbVboWHSagW3HiHG0mDHjj__gSFcs779Cfn9gvOtzf2PoyxtGcisKPk8kyUq7EIaZV3ucuOklE6VZmilGbrCeS7LYhAEHgvlVSUDR6voyjzkobKyUgLpXoNlSQmUHixvbE72viyyPBzFHY1wmtaJM3sSTQZG8Jx65tD-ZuKSRYyLAy55u38VaKPd27oDt5PDyj60EnYXlny9Ajf_gDFcgVtt7o-1I0334GdbScZrbBYlk1aEeXYSoTzZy70xfzt4xSwNTNYJtbdhpnbsOwbuLW74OTPxbdnYEKJ08xXvY2eRZGMiiCgSpO7W-NxJ7Aj1LK3AOGYLZNrmPhxcCTseQK-e1v4hMCKD3qkMVD0sZW4wNKRKsOW0dq3gfXjdfXg9a7E99ALFObJJI5t0ZJMWfdgg3izuJFzueGJ6eqzTb66rUJIDWWGgV8phQH0pC2k9OnmWB5vnfVjtOKuTsmj0hWj34U3H7YvL_36lR_-n9gyuj_bHu3p3e7LzGG7wKHPUdrQKvfnpmX-C7tS8eppklsHRVf8mvwEX8i_b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fTxQxEJ8gJEZjjKLGU9Q-aKLRFbbttb0HYkS4gMjlYiThrXT7B17YO9hDw2fwm_mpnHa7h5joG2-b3e5kszOdP52Z3wC8DDQYNmBrhXTxtEpQXyhn0ZFja0bI0sm-TVW-I7G9zz8f9A8W4FfXCxPLKjudmBS1m9h4Rr6Ksie4ZOher4ZcFjHeHH6YnhZxglTMtHbjNEwes-DWE9xYbvLY9Rc_MJxr1nc2kfevKB1uffu0XeSJA4Vlis4KrlB5C26kdaUrjeOcO6nMwHIzcMJ5ypXoB4bXTHpZ8UDRQjpVhjJUlleSId0bsCTR6mMguLSxNRp_nZ_4UBR9NMi5cyf173E0HxjN01g_h7a4YFesYxoicMXz_StZm2zg8B7czc4r-dhK231Y8PUy3P4D0nAZ7rTngKRtb3oAP9usMj4j0ySlcVyYJycJ1pO8Hu_R9_03xMbmyToj-DbE1I58xyC-xRC_ICZ9LdkzEV26OcZ15DyRbEwCFEWCsdI1vXeSqkM9yeMwjsgcpbZ5CPvXwo5HsFhPav8YSCSDnioPMZOoeGkwTIxZYUvjCDZBe_C2-_F62uJ86Dmic2KTRjbpxCbNerAReTNfGTG6043J2ZHOW15XQUVnssKgT_FBQN3JBbceHT5Lgy3LHqx0nNVZcTT6Usx78K7j9uXjf3_Sk_9TewE3cbvoLzuj3adwiyaRixVIK7A4Ozv3z9CzmlXPs8gSOLzuXfIbcTg0Hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+particulate+matter+%28PM2.5%29+concentrations+and+variability+across+Maharashtra+using+satellite+data+and+machine+learning+techniques&rft.jtitle=Discover+sustainability&rft.au=Kunjir%2C+Ganesh+Machhindra&rft.au=Tikle%2C+Suvarna&rft.au=Das%2C+Sandipan&rft.au=Karim%2C+Masud&rft.date=2025-04-04&rft.issn=2662-9984&rft.eissn=2662-9984&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1007%2Fs43621-025-01082-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43621_025_01082_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-9984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-9984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-9984&client=summon |