Classification and Geometry of General Perceptual Manifolds
Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds...
Saved in:
Published in | Physical review. X Vol. 8; no. 3; p. 031003 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2160-3308 2160-3308 |
DOI | 10.1103/PhysRevX.8.031003 |
Cover
Abstract | Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, includingℓ2ellipsoids prototypical of strictly convex manifolds,ℓ1balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks. |
---|---|
AbstractList | Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including ℓ_{2} ellipsoids prototypical of strictly convex manifolds, ℓ_{1} balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks. Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, includingℓ2ellipsoids prototypical of strictly convex manifolds,ℓ1balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks. |
ArticleNumber | 031003 |
Author | Lee, Daniel D. Sompolinsky, Haim Chung, SueYeon |
Author_xml | – sequence: 1 givenname: SueYeon surname: Chung fullname: Chung, SueYeon – sequence: 2 givenname: Daniel D. surname: Lee fullname: Lee, Daniel D. – sequence: 3 givenname: Haim surname: Sompolinsky fullname: Sompolinsky, Haim |
BookMark | eNp1UE1LAzEUDFLBWvsDvC143ppssvnAkxSthYpFevAWstlEU7abmqRC_73brgURfJc3vDczDHMJBq1vDQDXCE4Qgvh2-bGPr-brbcInECMI8RkYFojCHGPIB7_wBRjHuIbdUIgIY0NwN21UjM46rZLzbabaOpsZvzEp7DNvO9yaoJpsaYI227Tr4LNqnfVNHa_AuVVNNOOfPQKrx4fV9ClfvMzm0_tFrjEvUl5YohmzvOZUCMuoJqYudV0hSyhhGlUYiULrElMoKm4hNEZRRbQtLRPG4hGY97a1V2u5DW6jwl565eTx4MO7VCE53RgpOKkx07SqBCUFLyuLCMTWQIy7Fzp43fRe2-A_dyYmufa70HbpZVGWkCKCRdmxWM_SwccYjJXapWM_KSjXSATloXd56l1y2ffeKdEf5Snv_5pvjHqI9Q |
CitedBy_id | crossref_primary_10_1103_PhysRevE_111_035302 crossref_primary_10_21468_SciPostPhys_18_1_039 crossref_primary_10_2139_ssrn_3967676 crossref_primary_10_1103_PhysRevResearch_5_043044 crossref_primary_10_1103_PhysRevLett_131_027301 crossref_primary_10_1103_PhysRevResearch_6_023057 crossref_primary_10_1162_neco_a_01119 crossref_primary_10_3389_fncom_2023_1197031 crossref_primary_10_1103_PhysRevE_102_032119 crossref_primary_10_1063_5_0147231 crossref_primary_10_1016_j_neunet_2022_07_003 crossref_primary_10_1162_jocn_a_01544 crossref_primary_10_1109_TPAMI_2024_3510048 crossref_primary_10_1088_1751_8121_ab82dd crossref_primary_10_1103_RevModPhys_91_045002 crossref_primary_10_1088_1742_5468_ad3a60 crossref_primary_10_1103_PhysRevX_11_031059 crossref_primary_10_7554_eLife_82566 crossref_primary_10_1103_PhysRevResearch_2_023169 crossref_primary_10_1088_1751_8121_ab3709 crossref_primary_10_1103_PhysRevLett_131_118401 crossref_primary_10_1167_18_13_2 crossref_primary_10_1103_Physics_16_108 crossref_primary_10_1103_PhysRevX_10_041044 crossref_primary_10_7554_eLife_91685 crossref_primary_10_1088_2632_2153_ad2feb crossref_primary_10_1103_PhysRevLett_125_120601 crossref_primary_10_1103_PhysRevLett_124_048302 crossref_primary_10_7554_eLife_91685_3 crossref_primary_10_1088_1742_5468_adb1d6 crossref_primary_10_1103_PhysRevE_106_024126 crossref_primary_10_1109_TIFS_2023_3318969 crossref_primary_10_1103_PhysRevE_103_022404 |
Cites_doi | 10.1016/j.neuron.2012.01.010 10.1088/0305-4470/25/13/019 10.1103/PhysRevE.64.031907 10.1103/PhysRevE.82.011903 10.1126/science.290.5500.2319 10.1038/nrn3565 10.1016/j.tics.2007.06.010 10.7554/eLife.22630 10.1209/0295-5075/4/4/016 10.1561/2200000006 10.1016/j.neuron.2017.01.030 10.1088/0305-4470/28/16/005 10.1126/science.290.5500.2268 10.1162/neco_a_01119 10.1162/neco.1992.4.4.605 10.1088/0305-4470/21/1/030 10.1007/BF02776085 10.1126/science.290.5500.2323 10.1017/CBO9780511804441 10.1088/0305-4470/27/22/012 10.1109/PGEC.1965.264137 10.1112/blms/1.3.257 10.1371/journal.pcbi.1003963 10.1103/PhysRevE.93.060301 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1103/PhysRevX.8.031003 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2160-3308 |
ExternalDocumentID | oai_doaj_org_article_984d37c6bb964285bf1403fe0339841f 10_1103_PhysRevX_8_031003 |
GroupedDBID | 3MX 5VS 88I AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c382t-2f4c77f8d8699f76c4ed5cdb1f4647c1b3192cc53609b8f00eea6a4cf5f79ef3 |
IEDL.DBID | 8FG |
ISSN | 2160-3308 |
IngestDate | Wed Aug 27 01:13:32 EDT 2025 Fri Jul 25 12:07:47 EDT 2025 Thu Apr 24 23:05:18 EDT 2025 Tue Jul 01 01:33:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-2f4c77f8d8699f76c4ed5cdb1f4647c1b3192cc53609b8f00eea6a4cf5f79ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2550614395?pq-origsite=%requestingapplication% |
PQID | 2550614395 |
PQPubID | 5161131 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_984d37c6bb964285bf1403fe0339841f proquest_journals_2550614395 crossref_citationtrail_10_1103_PhysRevX_8_031003 crossref_primary_10_1103_PhysRevX_8_031003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180701 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. X |
PublicationYear | 2018 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | C. Szegedy (PhysRevX.8.031003Cc29R1) 2015 R. Vershynin (PhysRevX.8.031003Cc25R1) 2015 J. Deng (PhysRevX.8.031003Cc28R1) 2009 R. T. Rockafellar (PhysRevX.8.031003Cc20R1) 2015 PhysRevX.8.031003Cc18R1 B. Poole (PhysRevX.8.031003Cc6R1) 2016 PhysRevX.8.031003Cc10R1 PhysRevX.8.031003Cc33R1 PhysRevX.8.031003Cc11R1 PhysRevX.8.031003Cc32R1 PhysRevX.8.031003Cc12R1 PhysRevX.8.031003Cc35R1 PhysRevX.8.031003Cc13R1 W. Kinzel (PhysRevX.8.031003Cc19R1) 1991 PhysRevX.8.031003Cc34R1 PhysRevX.8.031003Cc37R1 PhysRevX.8.031003Cc15R1 PhysRevX.8.031003Cc36R1 PhysRevX.8.031003Cc5R1 M. A. Ranzato (PhysRevX.8.031003Cc7R1) PhysRevX.8.031003Cc3R1 PhysRevX.8.031003Cc4R1 PhysRevX.8.031003Cc31R1 PhysRevX.8.031003Cc8R1 A. A. Giannopoulos (PhysRevX.8.031003Cc24R1) 2000 S. Boyd (PhysRevX.8.031003Cc17R1) 2004 V. Vapnik (PhysRevX.8.031003Cc14R1) 1998 J.-J. Moreau (PhysRevX.8.031003Cc21R1) 1962; 225 PhysRevX.8.031003Cc22R1 I. Goodfellow (PhysRevX.8.031003Cc9R1) 2009 PhysRevX.8.031003Cc23R1 PhysRevX.8.031003Cc1R1 PhysRevX.8.031003Cc26R1 PhysRevX.8.031003Cc2R1 PhysRevX.8.031003Cc27R1 |
References_xml | – ident: PhysRevX.8.031003Cc5R1 doi: 10.1016/j.neuron.2012.01.010 – ident: PhysRevX.8.031003Cc32R1 doi: 10.1088/0305-4470/25/13/019 – ident: PhysRevX.8.031003Cc37R1 doi: 10.1103/PhysRevE.64.031907 – volume-title: Models of Neural Networks year: 1991 ident: PhysRevX.8.031003Cc19R1 – volume: 225 start-page: 238 issn: 0001-4036 year: 1962 ident: PhysRevX.8.031003Cc21R1 publication-title: C.R. Hebd. Seances Acad. Sci. – ident: PhysRevX.8.031003Cc26R1 doi: 10.1103/PhysRevE.82.011903 – ident: PhysRevX.8.031003Cc35R1 doi: 10.1126/science.290.5500.2319 – volume-title: Advances in Neural Information Processing Systems year: 2009 ident: PhysRevX.8.031003Cc9R1 – ident: PhysRevX.8.031003Cc2R1 doi: 10.1038/nrn3565 – issn: 1049-5258 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: PhysRevX.8.031003Cc6R1 – volume-title: Geometric Aspects of Functional Analysis year: 2000 ident: PhysRevX.8.031003Cc24R1 – ident: PhysRevX.8.031003Cc1R1 doi: 10.1016/j.tics.2007.06.010 – ident: PhysRevX.8.031003Cc3R1 doi: 10.7554/eLife.22630 – ident: PhysRevX.8.031003Cc13R1 doi: 10.1209/0295-5075/4/4/016 – ident: PhysRevX.8.031003Cc8R1 doi: 10.1561/2200000006 – volume-title: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on (2007) ident: PhysRevX.8.031003Cc7R1 – ident: PhysRevX.8.031003Cc27R1 doi: 10.1016/j.neuron.2017.01.030 – volume-title: Sampling Theory, A Renaissance year: 2015 ident: PhysRevX.8.031003Cc25R1 – volume-title: Convex Analysis year: 2015 ident: PhysRevX.8.031003Cc20R1 – ident: PhysRevX.8.031003Cc33R1 doi: 10.1088/0305-4470/28/16/005 – ident: PhysRevX.8.031003Cc4R1 doi: 10.1126/science.290.5500.2268 – volume-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on year: 2009 ident: PhysRevX.8.031003Cc28R1 – ident: PhysRevX.8.031003Cc22R1 doi: 10.1162/neco_a_01119 – volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: PhysRevX.8.031003Cc29R1 – ident: PhysRevX.8.031003Cc36R1 doi: 10.1162/neco.1992.4.4.605 – ident: PhysRevX.8.031003Cc12R1 doi: 10.1088/0305-4470/21/1/030 – ident: PhysRevX.8.031003Cc31R1 doi: 10.1007/BF02776085 – ident: PhysRevX.8.031003Cc34R1 doi: 10.1126/science.290.5500.2323 – volume-title: Convex Optimization year: 2004 ident: PhysRevX.8.031003Cc17R1 doi: 10.1017/CBO9780511804441 – ident: PhysRevX.8.031003Cc18R1 doi: 10.1088/0305-4470/27/22/012 – ident: PhysRevX.8.031003Cc11R1 doi: 10.1109/PGEC.1965.264137 – volume-title: Statistical Learning Theory year: 1998 ident: PhysRevX.8.031003Cc14R1 – ident: PhysRevX.8.031003Cc23R1 doi: 10.1112/blms/1.3.257 – ident: PhysRevX.8.031003Cc10R1 doi: 10.1371/journal.pcbi.1003963 – ident: PhysRevX.8.031003Cc15R1 doi: 10.1103/PhysRevE.93.060301 |
SSID | ssj0000601477 |
Score | 2.57004 |
Snippet | Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 031003 |
SubjectTerms | Algorithms Circuits Classification Dichotomies Geometry Machine learning Manifolds (mathematics) Mathematical models Neural networks Object recognition Polytopes Representations Sparsity Statistical mechanics Statistical methods |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0yEHwRP3E6pQ8-Cd3SJmkSfFJxDmEiMmFvIZ8gzE62TvDfm6TtGAj64ltp0w_ObXLPpafnAnBpqSFGFjL1qYulWBmVSsVk6qmrtTKYmKnw7_D4qRi94scpmW60-gqasNoeuAZuwBk2iOpCKR6oMlEuOMw5CxHyhzIXVl_I4UYxVa_BnvpT2nzGzCAaBEHli_2c9lk_uGG2TbKaRBT9-n8sxzHHDPfAbkMOk5v6ofbBli0PwHYUaerlIbiOHSyDtifCmcjSJA92_m6rxVcyd0ljIZ0812KVld8cy_LNzWdmeQQmw_vJ3Shtmh-kGrG8SnOHNaWOGVZw7mihsTVEG5U5XGCqM-XnTq41QQXkijkIPbSFxNoRR7l16Bh0ynlpT0CCLckUybRC0GJ_QUWRIpIZaHwmMnneBbAFQujGGDz0p5iJWCBAJFrsBBM1dl1wtT7lo3bF-G3wbUB3PTAYWscdPsyiCbP4K8xd0GtjI5pZthS-HAoFLeLk9D_ucQZ2PB1itRi3BzrVYmXPPeWo1EV8u74BkEHT5A priority: 102 providerName: Directory of Open Access Journals |
Title | Classification and Geometry of General Perceptual Manifolds |
URI | https://www.proquest.com/docview/2550614395 https://doaj.org/article/984d37c6bb964285bf1403fe0339841f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA7qELyInzidowdPQjVtkibFgzhxDmFDRGG3kE8RtNVtCv57kzSdB8FbadIenuT9zJvnBeDEUE20KETqTBdLsdQyFZKJ1LmuxghPYib93eHxpBg94bspmcaE2zyWVbY6MShqXSufIz93rq8PXlBJLt8_Ut81yp-uxhYaq6CT5c7W-pviw9tljsVzjWBK42FmBtG5L6t8MF_TM3bmOTHbVlnRHAXW_j9KOVia4RbYjC5ictWs6TZYMdUOWA-lmmq-Cy5CH0tf4RNATUSlk1tTv5nF7DupbRKJpJP7pmTl0z2ORfVi61c93wOPw5vH61EaWyCkCrF8keYWK0ot06woS0sLhY0mSsvM4gJTlUknQblSBBWwlMxC6AAuBFaWWFoai_bBWlVX5gAk2JBMkkxJBA12P5QUSSKYhtrZI53nXQBbILiK9OC-S8UrD2ECRLzFjjPeYNcFp8tP3htujP8mDzy6y4me1jq8qGfPPEoJLxnWiKpCytLHRURaTydoDUTIDWW2C3rt2vAoa3P-uzMO_x8-AhvO3WFNsW0PrC1mn-bYuRQL2Q_7pg86g5vJ_UM_BOY_y47O3A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IJ5iS4Ec4IKU1ont2FFVIQotW9pdVdUi7c3yE1Vqk7K7peqP479hO85yQOqttyh2LGU89jw8_j6A95YZamQlc2-6eE6UUblUXObedbVWBhAzFe4OjyfV6Af5PqOzNfjT34UJZZX9nhg3atPqkCPf8a5vCF5wTT9d_coDa1Q4Xe0pNGSiVjB7EWIsXew4trc3PoRb7B199fP9oSwPD6ZfRnliGcg15uUyLx3RjDlueFXXjlWaWEO1UYUjFWG6UF5JS60prlCtuEPI_0MliXbUsdo67Id9AOsk5E8GsL5_MDk9WyV5AtgJYSydphYI74S6zjP7e7bNtwMoZ8_VlexhpA34zypEU3f4BB4nHzX73CnVU1izzTN4GGtF9eI57EYizVBiFGc1k43Jvtn20i7nt1nrsoRknZ12NTPX_nEsm3PXXpjFC5jeh3RewqBpG_sKMmJpoWihFUaW-AEVw4pKbpDxBtGU5RBQLwihEz55oMm4EDFOQVj0shNcdLIbwsfVJ1cdOMddnfeDdFcdA652fNHOf4q0TEXNicFMV0rVITCjygU8Q2cRxr6pcEPY6udGpMW-EP9Uc_Pu5nfwaDQdn4iTo8nxa9jwvhfvKn-3YLCcX9s33r9ZqrdJizIQ96y3fwGGQRCV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+Geometry+of+General+Perceptual+Manifolds&rft.jtitle=Physical+review.+X&rft.au=Chung%2C+SueYeon&rft.au=Lee%2C+Daniel+D&rft.au=Sompolinsky%2C+Haim&rft.date=2018-07-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevX.8.031003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |