Classification and Geometry of General Perceptual Manifolds

Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 8; no. 3; p. 031003
Main Authors Chung, SueYeon, Lee, Daniel D., Sompolinsky, Haim
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.07.2018
Subjects
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.8.031003

Cover

Abstract Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, includingℓ2ellipsoids prototypical of strictly convex manifolds,ℓ1balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks.
AbstractList Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including ℓ_{2} ellipsoids prototypical of strictly convex manifolds, ℓ_{1} balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks.
Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here, we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show how special anchor points on the manifolds can be used to define novel geometrical measures of radius and dimension, which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, includingℓ2ellipsoids prototypical of strictly convex manifolds,ℓ1balls representing polytopes with finite samples, and ring manifolds exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom. The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses as well as to artificial deep networks trained for object recognition tasks.
ArticleNumber 031003
Author Lee, Daniel D.
Sompolinsky, Haim
Chung, SueYeon
Author_xml – sequence: 1
  givenname: SueYeon
  surname: Chung
  fullname: Chung, SueYeon
– sequence: 2
  givenname: Daniel D.
  surname: Lee
  fullname: Lee, Daniel D.
– sequence: 3
  givenname: Haim
  surname: Sompolinsky
  fullname: Sompolinsky, Haim
BookMark eNp1UE1LAzEUDFLBWvsDvC143ppssvnAkxSthYpFevAWstlEU7abmqRC_73brgURfJc3vDczDHMJBq1vDQDXCE4Qgvh2-bGPr-brbcInECMI8RkYFojCHGPIB7_wBRjHuIbdUIgIY0NwN21UjM46rZLzbabaOpsZvzEp7DNvO9yaoJpsaYI227Tr4LNqnfVNHa_AuVVNNOOfPQKrx4fV9ClfvMzm0_tFrjEvUl5YohmzvOZUCMuoJqYudV0hSyhhGlUYiULrElMoKm4hNEZRRbQtLRPG4hGY97a1V2u5DW6jwl565eTx4MO7VCE53RgpOKkx07SqBCUFLyuLCMTWQIy7Fzp43fRe2-A_dyYmufa70HbpZVGWkCKCRdmxWM_SwccYjJXapWM_KSjXSATloXd56l1y2ffeKdEf5Snv_5pvjHqI9Q
CitedBy_id crossref_primary_10_1103_PhysRevE_111_035302
crossref_primary_10_21468_SciPostPhys_18_1_039
crossref_primary_10_2139_ssrn_3967676
crossref_primary_10_1103_PhysRevResearch_5_043044
crossref_primary_10_1103_PhysRevLett_131_027301
crossref_primary_10_1103_PhysRevResearch_6_023057
crossref_primary_10_1162_neco_a_01119
crossref_primary_10_3389_fncom_2023_1197031
crossref_primary_10_1103_PhysRevE_102_032119
crossref_primary_10_1063_5_0147231
crossref_primary_10_1016_j_neunet_2022_07_003
crossref_primary_10_1162_jocn_a_01544
crossref_primary_10_1109_TPAMI_2024_3510048
crossref_primary_10_1088_1751_8121_ab82dd
crossref_primary_10_1103_RevModPhys_91_045002
crossref_primary_10_1088_1742_5468_ad3a60
crossref_primary_10_1103_PhysRevX_11_031059
crossref_primary_10_7554_eLife_82566
crossref_primary_10_1103_PhysRevResearch_2_023169
crossref_primary_10_1088_1751_8121_ab3709
crossref_primary_10_1103_PhysRevLett_131_118401
crossref_primary_10_1167_18_13_2
crossref_primary_10_1103_Physics_16_108
crossref_primary_10_1103_PhysRevX_10_041044
crossref_primary_10_7554_eLife_91685
crossref_primary_10_1088_2632_2153_ad2feb
crossref_primary_10_1103_PhysRevLett_125_120601
crossref_primary_10_1103_PhysRevLett_124_048302
crossref_primary_10_7554_eLife_91685_3
crossref_primary_10_1088_1742_5468_adb1d6
crossref_primary_10_1103_PhysRevE_106_024126
crossref_primary_10_1109_TIFS_2023_3318969
crossref_primary_10_1103_PhysRevE_103_022404
Cites_doi 10.1016/j.neuron.2012.01.010
10.1088/0305-4470/25/13/019
10.1103/PhysRevE.64.031907
10.1103/PhysRevE.82.011903
10.1126/science.290.5500.2319
10.1038/nrn3565
10.1016/j.tics.2007.06.010
10.7554/eLife.22630
10.1209/0295-5075/4/4/016
10.1561/2200000006
10.1016/j.neuron.2017.01.030
10.1088/0305-4470/28/16/005
10.1126/science.290.5500.2268
10.1162/neco_a_01119
10.1162/neco.1992.4.4.605
10.1088/0305-4470/21/1/030
10.1007/BF02776085
10.1126/science.290.5500.2323
10.1017/CBO9780511804441
10.1088/0305-4470/27/22/012
10.1109/PGEC.1965.264137
10.1112/blms/1.3.257
10.1371/journal.pcbi.1003963
10.1103/PhysRevE.93.060301
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1103/PhysRevX.8.031003
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_984d37c6bb964285bf1403fe0339841f
10_1103_PhysRevX_8_031003
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c382t-2f4c77f8d8699f76c4ed5cdb1f4647c1b3192cc53609b8f00eea6a4cf5f79ef3
IEDL.DBID 8FG
ISSN 2160-3308
IngestDate Wed Aug 27 01:13:32 EDT 2025
Fri Jul 25 12:07:47 EDT 2025
Thu Apr 24 23:05:18 EDT 2025
Tue Jul 01 01:33:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-2f4c77f8d8699f76c4ed5cdb1f4647c1b3192cc53609b8f00eea6a4cf5f79ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2550614395?pq-origsite=%requestingapplication%
PQID 2550614395
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_984d37c6bb964285bf1403fe0339841f
proquest_journals_2550614395
crossref_citationtrail_10_1103_PhysRevX_8_031003
crossref_primary_10_1103_PhysRevX_8_031003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 20180701
  day: 01
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. X
PublicationYear 2018
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References C. Szegedy (PhysRevX.8.031003Cc29R1) 2015
R. Vershynin (PhysRevX.8.031003Cc25R1) 2015
J. Deng (PhysRevX.8.031003Cc28R1) 2009
R. T. Rockafellar (PhysRevX.8.031003Cc20R1) 2015
PhysRevX.8.031003Cc18R1
B. Poole (PhysRevX.8.031003Cc6R1) 2016
PhysRevX.8.031003Cc10R1
PhysRevX.8.031003Cc33R1
PhysRevX.8.031003Cc11R1
PhysRevX.8.031003Cc32R1
PhysRevX.8.031003Cc12R1
PhysRevX.8.031003Cc35R1
PhysRevX.8.031003Cc13R1
W. Kinzel (PhysRevX.8.031003Cc19R1) 1991
PhysRevX.8.031003Cc34R1
PhysRevX.8.031003Cc37R1
PhysRevX.8.031003Cc15R1
PhysRevX.8.031003Cc36R1
PhysRevX.8.031003Cc5R1
M. A. Ranzato (PhysRevX.8.031003Cc7R1)
PhysRevX.8.031003Cc3R1
PhysRevX.8.031003Cc4R1
PhysRevX.8.031003Cc31R1
PhysRevX.8.031003Cc8R1
A. A. Giannopoulos (PhysRevX.8.031003Cc24R1) 2000
S. Boyd (PhysRevX.8.031003Cc17R1) 2004
V. Vapnik (PhysRevX.8.031003Cc14R1) 1998
J.-J. Moreau (PhysRevX.8.031003Cc21R1) 1962; 225
PhysRevX.8.031003Cc22R1
I. Goodfellow (PhysRevX.8.031003Cc9R1) 2009
PhysRevX.8.031003Cc23R1
PhysRevX.8.031003Cc1R1
PhysRevX.8.031003Cc26R1
PhysRevX.8.031003Cc2R1
PhysRevX.8.031003Cc27R1
References_xml – ident: PhysRevX.8.031003Cc5R1
  doi: 10.1016/j.neuron.2012.01.010
– ident: PhysRevX.8.031003Cc32R1
  doi: 10.1088/0305-4470/25/13/019
– ident: PhysRevX.8.031003Cc37R1
  doi: 10.1103/PhysRevE.64.031907
– volume-title: Models of Neural Networks
  year: 1991
  ident: PhysRevX.8.031003Cc19R1
– volume: 225
  start-page: 238
  issn: 0001-4036
  year: 1962
  ident: PhysRevX.8.031003Cc21R1
  publication-title: C.R. Hebd. Seances Acad. Sci.
– ident: PhysRevX.8.031003Cc26R1
  doi: 10.1103/PhysRevE.82.011903
– ident: PhysRevX.8.031003Cc35R1
  doi: 10.1126/science.290.5500.2319
– volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: PhysRevX.8.031003Cc9R1
– ident: PhysRevX.8.031003Cc2R1
  doi: 10.1038/nrn3565
– issn: 1049-5258
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: PhysRevX.8.031003Cc6R1
– volume-title: Geometric Aspects of Functional Analysis
  year: 2000
  ident: PhysRevX.8.031003Cc24R1
– ident: PhysRevX.8.031003Cc1R1
  doi: 10.1016/j.tics.2007.06.010
– ident: PhysRevX.8.031003Cc3R1
  doi: 10.7554/eLife.22630
– ident: PhysRevX.8.031003Cc13R1
  doi: 10.1209/0295-5075/4/4/016
– ident: PhysRevX.8.031003Cc8R1
  doi: 10.1561/2200000006
– volume-title: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on (2007)
  ident: PhysRevX.8.031003Cc7R1
– ident: PhysRevX.8.031003Cc27R1
  doi: 10.1016/j.neuron.2017.01.030
– volume-title: Sampling Theory, A Renaissance
  year: 2015
  ident: PhysRevX.8.031003Cc25R1
– volume-title: Convex Analysis
  year: 2015
  ident: PhysRevX.8.031003Cc20R1
– ident: PhysRevX.8.031003Cc33R1
  doi: 10.1088/0305-4470/28/16/005
– ident: PhysRevX.8.031003Cc4R1
  doi: 10.1126/science.290.5500.2268
– volume-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
  year: 2009
  ident: PhysRevX.8.031003Cc28R1
– ident: PhysRevX.8.031003Cc22R1
  doi: 10.1162/neco_a_01119
– volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: PhysRevX.8.031003Cc29R1
– ident: PhysRevX.8.031003Cc36R1
  doi: 10.1162/neco.1992.4.4.605
– ident: PhysRevX.8.031003Cc12R1
  doi: 10.1088/0305-4470/21/1/030
– ident: PhysRevX.8.031003Cc31R1
  doi: 10.1007/BF02776085
– ident: PhysRevX.8.031003Cc34R1
  doi: 10.1126/science.290.5500.2323
– volume-title: Convex Optimization
  year: 2004
  ident: PhysRevX.8.031003Cc17R1
  doi: 10.1017/CBO9780511804441
– ident: PhysRevX.8.031003Cc18R1
  doi: 10.1088/0305-4470/27/22/012
– ident: PhysRevX.8.031003Cc11R1
  doi: 10.1109/PGEC.1965.264137
– volume-title: Statistical Learning Theory
  year: 1998
  ident: PhysRevX.8.031003Cc14R1
– ident: PhysRevX.8.031003Cc23R1
  doi: 10.1112/blms/1.3.257
– ident: PhysRevX.8.031003Cc10R1
  doi: 10.1371/journal.pcbi.1003963
– ident: PhysRevX.8.031003Cc15R1
  doi: 10.1103/PhysRevE.93.060301
SSID ssj0000601477
Score 2.57004
Snippet Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 031003
SubjectTerms Algorithms
Circuits
Classification
Dichotomies
Geometry
Machine learning
Manifolds (mathematics)
Mathematical models
Neural networks
Object recognition
Polytopes
Representations
Sparsity
Statistical mechanics
Statistical methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS8MwFA0yEHwRP3E6pQ8-Cd3SJmkSfFJxDmEiMmFvIZ8gzE62TvDfm6TtGAj64ltp0w_ObXLPpafnAnBpqSFGFjL1qYulWBmVSsVk6qmrtTKYmKnw7_D4qRi94scpmW60-gqasNoeuAZuwBk2iOpCKR6oMlEuOMw5CxHyhzIXVl_I4UYxVa_BnvpT2nzGzCAaBEHli_2c9lk_uGG2TbKaRBT9-n8sxzHHDPfAbkMOk5v6ofbBli0PwHYUaerlIbiOHSyDtifCmcjSJA92_m6rxVcyd0ljIZ0812KVld8cy_LNzWdmeQQmw_vJ3Shtmh-kGrG8SnOHNaWOGVZw7mihsTVEG5U5XGCqM-XnTq41QQXkijkIPbSFxNoRR7l16Bh0ynlpT0CCLckUybRC0GJ_QUWRIpIZaHwmMnneBbAFQujGGDz0p5iJWCBAJFrsBBM1dl1wtT7lo3bF-G3wbUB3PTAYWscdPsyiCbP4K8xd0GtjI5pZthS-HAoFLeLk9D_ucQZ2PB1itRi3BzrVYmXPPeWo1EV8u74BkEHT5A
  priority: 102
  providerName: Directory of Open Access Journals
Title Classification and Geometry of General Perceptual Manifolds
URI https://www.proquest.com/docview/2550614395
https://doaj.org/article/984d37c6bb964285bf1403fe0339841f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGA7qELyInzidowdPQjVtkibFgzhxDmFDRGG3kE8RtNVtCv57kzSdB8FbadIenuT9zJvnBeDEUE20KETqTBdLsdQyFZKJ1LmuxghPYib93eHxpBg94bspmcaE2zyWVbY6MShqXSufIz93rq8PXlBJLt8_Ut81yp-uxhYaq6CT5c7W-pviw9tljsVzjWBK42FmBtG5L6t8MF_TM3bmOTHbVlnRHAXW_j9KOVia4RbYjC5ictWs6TZYMdUOWA-lmmq-Cy5CH0tf4RNATUSlk1tTv5nF7DupbRKJpJP7pmTl0z2ORfVi61c93wOPw5vH61EaWyCkCrF8keYWK0ot06woS0sLhY0mSsvM4gJTlUknQblSBBWwlMxC6AAuBFaWWFoai_bBWlVX5gAk2JBMkkxJBA12P5QUSSKYhtrZI53nXQBbILiK9OC-S8UrD2ECRLzFjjPeYNcFp8tP3htujP8mDzy6y4me1jq8qGfPPEoJLxnWiKpCytLHRURaTydoDUTIDWW2C3rt2vAoa3P-uzMO_x8-AhvO3WFNsW0PrC1mn-bYuRQL2Q_7pg86g5vJ_UM_BOY_y47O3A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IJ5iS4Ec4IKU1ont2FFVIQotW9pdVdUi7c3yE1Vqk7K7peqP479hO85yQOqttyh2LGU89jw8_j6A95YZamQlc2-6eE6UUblUXObedbVWBhAzFe4OjyfV6Af5PqOzNfjT34UJZZX9nhg3atPqkCPf8a5vCF5wTT9d_coDa1Q4Xe0pNGSiVjB7EWIsXew4trc3PoRb7B199fP9oSwPD6ZfRnliGcg15uUyLx3RjDlueFXXjlWaWEO1UYUjFWG6UF5JS60prlCtuEPI_0MliXbUsdo67Id9AOsk5E8GsL5_MDk9WyV5AtgJYSydphYI74S6zjP7e7bNtwMoZ8_VlexhpA34zypEU3f4BB4nHzX73CnVU1izzTN4GGtF9eI57EYizVBiFGc1k43Jvtn20i7nt1nrsoRknZ12NTPX_nEsm3PXXpjFC5jeh3RewqBpG_sKMmJpoWihFUaW-AEVw4pKbpDxBtGU5RBQLwihEz55oMm4EDFOQVj0shNcdLIbwsfVJ1cdOMddnfeDdFcdA652fNHOf4q0TEXNicFMV0rVITCjygU8Q2cRxr6pcEPY6udGpMW-EP9Uc_Pu5nfwaDQdn4iTo8nxa9jwvhfvKn-3YLCcX9s33r9ZqrdJizIQ96y3fwGGQRCV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+Geometry+of+General+Perceptual+Manifolds&rft.jtitle=Physical+review.+X&rft.au=Chung%2C+SueYeon&rft.au=Lee%2C+Daniel+D&rft.au=Sompolinsky%2C+Haim&rft.date=2018-07-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevX.8.031003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon