Multi-objective particle swarm-differential evolution algorithm
A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing metho...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 28; no. 2; pp. 407 - 418 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.02.2017
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-015-2073-y | 
Cover
| Abstract | A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing method and is applied to dynamically adjust the percentage of use of PSO and DE. In addition, the mutation operation of DE is improved, to satisfy that the proposed algorithm has different mutation operation in different searching stage. As a result, the capability of the local searching is enhanced and the prematurity of the population is restrained. The effectiveness of the proposed method has been validated through comprehensive tests using benchmark test functions. The numerical results obtained by this algorithm are compared with those obtained by the improved non-dominated sorting genetic algorithm (NSGA-II) and the other algorithms mentioned in the literature. The results show the effectiveness of the proposed MOPSDE algorithm. | 
    
|---|---|
| AbstractList | A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing method and is applied to dynamically adjust the percentage of use of PSO and DE. In addition, the mutation operation of DE is improved, to satisfy that the proposed algorithm has different mutation operation in different searching stage. As a result, the capability of the local searching is enhanced and the prematurity of the population is restrained. The effectiveness of the proposed method has been validated through comprehensive tests using benchmark test functions. The numerical results obtained by this algorithm are compared with those obtained by the improved non-dominated sorting genetic algorithm (NSGA-II) and the other algorithms mentioned in the literature. The results show the effectiveness of the proposed MOPSDE algorithm. | 
    
| Author | Su, Yi-xin Chi, Rui  | 
    
| Author_xml | – sequence: 1 givenname: Yi-xin surname: Su fullname: Su, Yi-xin email: suyixin@whut.edu.cn organization: School of Automation, Wuhan University of Technology – sequence: 2 givenname: Rui surname: Chi fullname: Chi, Rui email: rui85@126.com organization: School of Automation, Wuhan University of Technology  | 
    
| BookMark | eNp9kD1PwzAQhi0EEm3hB7BFYjbcxXaTTAhVfElFLDBbjmMXV2lcbKeo_55EZUBIMN1w73P36pmS4853hpALhCsEKK4jgMiRAgqaQ8Ho_ohMkDNGGYjymEyg4sN2ztkpmca4BgA-L8WE3Dz3bXLU12ujk9uZbKtCcro1WfxUYUMbZ60JpktOtZnZ-bZPzneZalc-uPS-OSMnVrXRnH_PGXm7v3tdPNLly8PT4nZJNSvzNHYCjdiA5hbRVJrVVhiuRMMscBRG21JpXdW8ZmixtjDHHGqFwjbWVhWbkcvD3W3wH72JSa59H7rhpcSyhKLiecGGVHFI6eBjDMZK7ZIaG6egXCsR5GhLHmzJwZYcbcn9QOIvchvcRoX9v0x-YOKQ7VYm_Oj0J_QFCZ6AJA | 
    
| CitedBy_id | crossref_primary_10_1007_s00366_022_01675_w crossref_primary_10_1007_s00521_020_05258_y crossref_primary_10_23919_CSMS_2021_0017 crossref_primary_10_1016_j_compeleceng_2017_11_021 crossref_primary_10_1016_j_cmpb_2022_106752 crossref_primary_10_1155_2022_3302983 crossref_primary_10_1016_j_ijepes_2024_110282 crossref_primary_10_1016_j_neucom_2019_02_063 crossref_primary_10_3390_en13051254 crossref_primary_10_1007_s00158_017_1793_2 crossref_primary_10_1007_s00521_017_3012_x crossref_primary_10_1016_j_rineng_2025_104152 crossref_primary_10_1177_0954406221997486 crossref_primary_10_3934_mbe_2022410 crossref_primary_10_1299_jamdsm_2021jamdsm0037 crossref_primary_10_1371_journal_pone_0276225 crossref_primary_10_1515_cait_2017_0030 crossref_primary_10_3390_math7020146 crossref_primary_10_1016_j_cemconcomp_2023_105073 crossref_primary_10_1016_j_sigpro_2019_107292 crossref_primary_10_1088_1361_6560_acf5c5 crossref_primary_10_1088_1755_1315_617_1_012010 crossref_primary_10_1016_j_tre_2019_05_006 crossref_primary_10_1007_s00521_021_05939_2 crossref_primary_10_1109_ACCESS_2019_2951628 crossref_primary_10_1186_s13638_021_01951_1 crossref_primary_10_1109_ACCESS_2020_3007846 crossref_primary_10_1142_S0218001421500014 crossref_primary_10_1142_S0219265921430337 crossref_primary_10_1007_s10489_020_01733_0 crossref_primary_10_1155_2019_7051248 crossref_primary_10_3390_en12152842 crossref_primary_10_1007_s00521_018_3348_x crossref_primary_10_2478_mjpaa_2021_0019  | 
    
| Cites_doi | 10.1007/978-3-642-35533-2_15 10.1007/3-540-45356-3_83 10.1109/CEC.2002.1004388 10.1109/4235.797969 10.1162/evco.1994.2.3.221 10.1023/A:1008202821328 10.1109/TEVC.2004.826067 10.1109/ICNN.1995.488968 10.1109/4235.996017  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Natural Computing Applications Forum 2015 Copyright Springer Science & Business Media 2017  | 
    
| Copyright_xml | – notice: The Natural Computing Applications Forum 2015 – notice: Copyright Springer Science & Business Media 2017  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s00521-015-2073-y | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 418 | 
    
| ExternalDocumentID | 10_1007_s00521_015_2073_y | 
    
| GrantInformation_xml | – fundername: the Natural Science Foundation of Hubei Province, China grantid: #2015cfb586 ; #2013CFB335  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c382t-2070c11d0c4f11e9c3bf5e4a5d3f0415ecf8acc9b4b31f1bf06120ba15fdff993 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Fri Jul 25 04:57:01 EDT 2025 Wed Oct 01 02:25:42 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Fri Feb 21 02:34:22 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Differential evolution Multi-objective optimization Scale factor Particle swarm optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c382t-2070c11d0c4f11e9c3bf5e4a5d3f0415ecf8acc9b4b31f1bf06120ba15fdff993 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1880794273 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_1880794273 crossref_citationtrail_10_1007_s00521_015_2073_y crossref_primary_10_1007_s00521_015_2073_y springer_journals_10_1007_s00521_015_2073_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-02-01 | 
    
| PublicationDateYYYYMMDD | 2017-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2017 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Hernández-DomínguezJSToscano-PulidoGCoello CoelloACA multi-objective particle swarm optimizer enhanced with a differential evolution schemeArtif Evol2012Berlin, HeidelbergSpringer16918010.1007/978-3-642-35533-2_15 Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput20048325627910.1109/TEVC.2004.826067 Hu X, Eberhart RC (2002) Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: IEEE congress on evolutionary computation (CEC 2002). Honolulu. Hawaii, USA, pp 1677–1681 ZitzlerEThieleLMulti-objective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 Coello CoelloCALamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007Berlin, Heidelberg, New YorkSpringer Science & Business Media1142.90029 HaoZFGuoGHHuangHA particle swarm optimization algorithm with differential evolutionIEEE Int Conf Syst Mach Learn Cybernet200721031103510.1109/ICMLC.2007.4370294 DebKPratapAAgarwalSMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001-evolutionary method for design: optimization and control for industrial problem, K.C. Giannakoglou, Ed., pp 95–100 Coello Coello CA, Lechuga MS et al (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. New Jersey, pp 1051–1056 Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE, Piscataway, pp 82–87 WangXSHaoMLChengYHLeiRHPDE-PEDA: a new Pareto-based multi-objective optimization algorithmJ Univ Comput Sci200915472274125118441216.90080 SrinivasNDebKMulti-objective function optimization using non-dominated sorting genetic algorithmsEvol Comput19942322124810.1162/evco.1994.2.3.221 BazaraaMSSheraliHDShettyCMNonlinear programming, theory and algorithm[m]1979New YorkAcademic Press0476.90035 WuLHWangYNChenZLModified differential evolution algorithm for mixed-integer non-linear programming problemsJ Chin Comput Syst2007284666669 Knowles J, Corne D (1999) The Pareto archived evolutionary strategy: a new baseline algorithm for multi-objective optimization. In: Proceedings of the conference on evolutionary computation. IEEE Press, Piscataway, NJ, pp 98–105 DebKMulti-objective optimization using evolutionary algorithms2001ChichesterWiley0970.90091 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE Intentional joint conference on neural networks. IEEE Press, pp 1942–1948 StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135 JoshuaTKDavidJSMatthewDCTesting of a spreading mechanism to promote diversity in multi-objective particle swarm optimizationOptim Eng2014162279302 Van Veldhuizen DA and Lamont GB (1998) evolutionary computation and convergence to a Pareto Front. In: Late breaking papers at the genetic programming 1998 conference. Stanford University, pp 221–228 DebKAgrawalSPratapAMeyarivanTA fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-IILect Notes Comput Sci2000191784985810.1007/3-540-45356-3_83 JS Hernández-Domínguez (2073_CR12) 2012 R Storn (2073_CR13) 1997; 11 TK Joshua (2073_CR10) 2014; 16 K Deb (2073_CR3) 2002; 6 N Srinivas (2073_CR2) 1994; 2 XS Wang (2073_CR17) 2009; 15 2073_CR1 CA Coello Coello (2073_CR9) 2004; 8 K Deb (2073_CR19) 2000; 1917 CA Coello Coello (2073_CR21) 2007 K Deb (2073_CR14) 2001 2073_CR18 2073_CR7 E Zitzler (2073_CR4) 1999; 3 2073_CR6 ZF Hao (2073_CR16) 2007; 2 2073_CR5 2073_CR11 MS Bazaraa (2073_CR20) 1979 LH Wu (2073_CR15) 2007; 28 2073_CR8  | 
    
| References_xml | – reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001-evolutionary method for design: optimization and control for industrial problem, K.C. Giannakoglou, Ed., pp 95–100 – reference: WangXSHaoMLChengYHLeiRHPDE-PEDA: a new Pareto-based multi-objective optimization algorithmJ Univ Comput Sci200915472274125118441216.90080 – reference: Coello Coello CA, Lechuga MS et al (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. New Jersey, pp 1051–1056 – reference: BazaraaMSSheraliHDShettyCMNonlinear programming, theory and algorithm[m]1979New YorkAcademic Press0476.90035 – reference: Hu X, Eberhart RC (2002) Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: IEEE congress on evolutionary computation (CEC 2002). Honolulu. Hawaii, USA, pp 1677–1681 – reference: DebKMulti-objective optimization using evolutionary algorithms2001ChichesterWiley0970.90091 – reference: Knowles J, Corne D (1999) The Pareto archived evolutionary strategy: a new baseline algorithm for multi-objective optimization. In: Proceedings of the conference on evolutionary computation. IEEE Press, Piscataway, NJ, pp 98–105 – reference: Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE, Piscataway, pp 82–87 – reference: Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE Intentional joint conference on neural networks. IEEE Press, pp 1942–1948 – reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135 – reference: Coello CoelloCALamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007Berlin, Heidelberg, New YorkSpringer Science & Business Media1142.90029 – reference: JoshuaTKDavidJSMatthewDCTesting of a spreading mechanism to promote diversity in multi-objective particle swarm optimizationOptim Eng2014162279302 – reference: Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput20048325627910.1109/TEVC.2004.826067 – reference: Hernández-DomínguezJSToscano-PulidoGCoello CoelloACA multi-objective particle swarm optimizer enhanced with a differential evolution schemeArtif Evol2012Berlin, HeidelbergSpringer16918010.1007/978-3-642-35533-2_15 – reference: DebKAgrawalSPratapAMeyarivanTA fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-IILect Notes Comput Sci2000191784985810.1007/3-540-45356-3_83 – reference: HaoZFGuoGHHuangHA particle swarm optimization algorithm with differential evolutionIEEE Int Conf Syst Mach Learn Cybernet200721031103510.1109/ICMLC.2007.4370294 – reference: Van Veldhuizen DA and Lamont GB (1998) evolutionary computation and convergence to a Pareto Front. In: Late breaking papers at the genetic programming 1998 conference. Stanford University, pp 221–228 – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: ZitzlerEThieleLMulti-objective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969 – reference: SrinivasNDebKMulti-objective function optimization using non-dominated sorting genetic algorithmsEvol Comput19942322124810.1162/evco.1994.2.3.221 – reference: WuLHWangYNChenZLModified differential evolution algorithm for mixed-integer non-linear programming problemsJ Chin Comput Syst2007284666669 – ident: 2073_CR6 – start-page: 169 volume-title: Artif Evol year: 2012 ident: 2073_CR12 doi: 10.1007/978-3-642-35533-2_15 – volume: 1917 start-page: 849 year: 2000 ident: 2073_CR19 publication-title: Lect Notes Comput Sci doi: 10.1007/3-540-45356-3_83 – ident: 2073_CR5 – ident: 2073_CR11 – ident: 2073_CR7 doi: 10.1109/CEC.2002.1004388 – volume-title: Evolutionary algorithms for solving multi-objective problems year: 2007 ident: 2073_CR21 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 2073_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 28 start-page: 666 issue: 4 year: 2007 ident: 2073_CR15 publication-title: J Chin Comput Syst – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 2073_CR2 publication-title: Evol Comput doi: 10.1162/evco.1994.2.3.221 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 2073_CR14 – ident: 2073_CR18 – ident: 2073_CR1 – volume: 15 start-page: 722 issue: 4 year: 2009 ident: 2073_CR17 publication-title: J Univ Comput Sci – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 2073_CR13 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 2073_CR9 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826067 – ident: 2073_CR8 doi: 10.1109/ICNN.1995.488968 – volume: 16 start-page: 279 issue: 2 year: 2014 ident: 2073_CR10 publication-title: Optim Eng – volume-title: Nonlinear programming, theory and algorithm[m] year: 1979 ident: 2073_CR20 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 2073_CR3 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 2 start-page: 1031 year: 2007 ident: 2073_CR16 publication-title: IEEE Int Conf Syst Mach Learn Cybernet  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.2898476 | 
    
| Snippet | A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 407 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Evolutionary algorithms Evolutionary computation Genetic algorithms Image Processing and Computer Vision Multiple objective analysis Mutation Original Article Particle swarm optimization Probability and Statistics in Computer Science Searching Simulated annealing Sorting algorithms  | 
    
| Title | Multi-objective particle swarm-differential evolution algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s00521-015-2073-y https://www.proquest.com/docview/1880794273  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-6Xbz4Fqdz9OBJCTRNsqYnmbI5FIeIg3kqSZr4YC-2quy_N-mSOUUFTz00CeV75ff1ewFwHOEYZ5FkkGvDBiJUArkQDGImQxlpA6KpLRS-6dTbXXLVoz1Xxz312e4-JFlY6kWxm_2DaV1fajgbYzhbBWVqu3kZIe5GjaViyGIOp3FbbEoPwT6U-dMRXy-jT4T5LSha3DWtTbDuQGLQmHN1C6yo4TbY8AMYAqePO-CsKJ-FI_EyN1vB2AlCMH3nkwH000-MFvcD9eakLOD9x9HkOX8a7IJuq3l_0YZuIgKUmEW5_epQIpSFkmiEVCKx0FQRTjOsba29kppxKRNBBEYaCW0BTCg4ojrT2kCRPVAajoZqHwSJNo5Hxqg2Lg-pY51oZI5mdZUxwmMZV0DoSZNK1y7cTq3op4tGxwU1U0PN1FIznVXAyWLLeN4r46_FVU_v1KnNNLXN4YyBMJCqAk49D5Ze_3bYwb9WH4K1yF7ORe51FZTyyas6MtAiFzVQblw-XDfN87zZub2rFaL1AewWybI | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgUyMAEspTETuNMqEKgAm2nVupm2Y7NQ32pLaD-e-zULgUBEnOcU3TP73K-O4DzGKc4jyVFXBsxEKEyxIWgCFMZylgbEJ3YRuFmq1rvkPtu0nV93BN_292XJAtPvWh2s38wbeqbGMmmGM1WYc3Or7ID8ztxbakZstjDadIWe6WHYF_K_InE12D0iTC_FUWLWHO7DZsOJAa1uVR3YEUNdmHLL2AInD3uwVXRPouG4mXutoKRU4Rg8s7HfeS3nxgr7gXqzWlZwHuPw_Hz9Km_D53bm_Z1HbmNCEhiGk_tV4cyivJQEh1FKpNY6EQRnuRY2157JTXlUmaCCBzpSGgLYELBo0TnWhsocgClwXCgDiHItEk8cppok_KQKtaZjgxpWlU5JTyVaRlCzxom3bhwu7WixxaDjgtuMsNNZrnJZmW4WLwyms_K-OtwxfObObOZMDsczjgIA6nKcOllsPT4N2JH_zp9Buv1drPBGneth2PYiG2gLu5hV6A0Hb-qEwMzpuK0UKsP3LHJcA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n9sEnJaxt0jV9kqGOeRs-ONhbSNLEC1s3tqrs35u0yZyigs9ND-Vccr7TcwPgOEQxSkNBIFNaDJjLBDLOCURE-CJUGkRHplH4rtNod_F1L-rZPacTV-3uUpJlT4OZ0pTl9VGq6rPGN_M304TBkZZyjOB0ESxhMydBK3Q3bM41RhY7OXUIY8p7MHJpzZ9IfHVMn2jzW4K08DutdbBqAaPXLCW8ARZktgnW3DIGz9rmFjgrWmnhkL-UV5g3skrhTd7ZeADdJhRt0X1PvlmN81j_cTh-zp8G26Dbunw4b0O7HQEKRMLcfLUvgiD1BVZBIBOBuIokZlGKlOm7l0IRJkTCMUeBCrgyYMbnLIhUqpSGJTugkg0zuQu8ROkgJCWR0uEPbiCVqECTJg2ZEsxiEVeB71hDhR0dbjZY9Ols6HHBTaq5SQ036bQKTmavjMq5GX8drjl-U2tCE2oGxenLQsOrKjh1Mph7_BuxvX-dPgLL9xctenvVudkHK6Hx2UVJdg1U8vGrPNCII-eHhVZ9AK2Czaw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+particle+swarm-differential+evolution+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Yi-xin%2C+Su&rft.au=Chi%2C+Rui&rft.date=2017-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=2&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1007%2Fs00521-015-2073-y&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |