Multi-objective particle swarm-differential evolution algorithm

A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing metho...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 28; no. 2; pp. 407 - 418
Main Authors Su, Yi-xin, Chi, Rui
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-015-2073-y

Cover

Abstract A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing method and is applied to dynamically adjust the percentage of use of PSO and DE. In addition, the mutation operation of DE is improved, to satisfy that the proposed algorithm has different mutation operation in different searching stage. As a result, the capability of the local searching is enhanced and the prematurity of the population is restrained. The effectiveness of the proposed method has been validated through comprehensive tests using benchmark test functions. The numerical results obtained by this algorithm are compared with those obtained by the improved non-dominated sorting genetic algorithm (NSGA-II) and the other algorithms mentioned in the literature. The results show the effectiveness of the proposed MOPSDE algorithm.
AbstractList A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential evolution (DE). During consecutive generations, a scale factor is produced by using a proposed mechanism based on the simulated annealing method and is applied to dynamically adjust the percentage of use of PSO and DE. In addition, the mutation operation of DE is improved, to satisfy that the proposed algorithm has different mutation operation in different searching stage. As a result, the capability of the local searching is enhanced and the prematurity of the population is restrained. The effectiveness of the proposed method has been validated through comprehensive tests using benchmark test functions. The numerical results obtained by this algorithm are compared with those obtained by the improved non-dominated sorting genetic algorithm (NSGA-II) and the other algorithms mentioned in the literature. The results show the effectiveness of the proposed MOPSDE algorithm.
Author Su, Yi-xin
Chi, Rui
Author_xml – sequence: 1
  givenname: Yi-xin
  surname: Su
  fullname: Su, Yi-xin
  email: suyixin@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology
– sequence: 2
  givenname: Rui
  surname: Chi
  fullname: Chi, Rui
  email: rui85@126.com
  organization: School of Automation, Wuhan University of Technology
BookMark eNp9kD1PwzAQhi0EEm3hB7BFYjbcxXaTTAhVfElFLDBbjmMXV2lcbKeo_55EZUBIMN1w73P36pmS4853hpALhCsEKK4jgMiRAgqaQ8Ho_ohMkDNGGYjymEyg4sN2ztkpmca4BgA-L8WE3Dz3bXLU12ujk9uZbKtCcro1WfxUYUMbZ60JpktOtZnZ-bZPzneZalc-uPS-OSMnVrXRnH_PGXm7v3tdPNLly8PT4nZJNSvzNHYCjdiA5hbRVJrVVhiuRMMscBRG21JpXdW8ZmixtjDHHGqFwjbWVhWbkcvD3W3wH72JSa59H7rhpcSyhKLiecGGVHFI6eBjDMZK7ZIaG6egXCsR5GhLHmzJwZYcbcn9QOIvchvcRoX9v0x-YOKQ7VYm_Oj0J_QFCZ6AJA
CitedBy_id crossref_primary_10_1007_s00366_022_01675_w
crossref_primary_10_1007_s00521_020_05258_y
crossref_primary_10_23919_CSMS_2021_0017
crossref_primary_10_1016_j_compeleceng_2017_11_021
crossref_primary_10_1016_j_cmpb_2022_106752
crossref_primary_10_1155_2022_3302983
crossref_primary_10_1016_j_ijepes_2024_110282
crossref_primary_10_1016_j_neucom_2019_02_063
crossref_primary_10_3390_en13051254
crossref_primary_10_1007_s00158_017_1793_2
crossref_primary_10_1007_s00521_017_3012_x
crossref_primary_10_1016_j_rineng_2025_104152
crossref_primary_10_1177_0954406221997486
crossref_primary_10_3934_mbe_2022410
crossref_primary_10_1299_jamdsm_2021jamdsm0037
crossref_primary_10_1371_journal_pone_0276225
crossref_primary_10_1515_cait_2017_0030
crossref_primary_10_3390_math7020146
crossref_primary_10_1016_j_cemconcomp_2023_105073
crossref_primary_10_1016_j_sigpro_2019_107292
crossref_primary_10_1088_1361_6560_acf5c5
crossref_primary_10_1088_1755_1315_617_1_012010
crossref_primary_10_1016_j_tre_2019_05_006
crossref_primary_10_1007_s00521_021_05939_2
crossref_primary_10_1109_ACCESS_2019_2951628
crossref_primary_10_1186_s13638_021_01951_1
crossref_primary_10_1109_ACCESS_2020_3007846
crossref_primary_10_1142_S0218001421500014
crossref_primary_10_1142_S0219265921430337
crossref_primary_10_1007_s10489_020_01733_0
crossref_primary_10_1155_2019_7051248
crossref_primary_10_3390_en12152842
crossref_primary_10_1007_s00521_018_3348_x
crossref_primary_10_2478_mjpaa_2021_0019
Cites_doi 10.1007/978-3-642-35533-2_15
10.1007/3-540-45356-3_83
10.1109/CEC.2002.1004388
10.1109/4235.797969
10.1162/evco.1994.2.3.221
10.1023/A:1008202821328
10.1109/TEVC.2004.826067
10.1109/ICNN.1995.488968
10.1109/4235.996017
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2015
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2015
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00521-015-2073-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 418
ExternalDocumentID 10_1007_s00521_015_2073_y
GrantInformation_xml – fundername: the Natural Science Foundation of Hubei Province, China
  grantid: #2015cfb586 ; #2013CFB335
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c382t-2070c11d0c4f11e9c3bf5e4a5d3f0415ecf8acc9b4b31f1bf06120ba15fdff993
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Fri Jul 25 04:57:01 EDT 2025
Wed Oct 01 02:25:42 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Fri Feb 21 02:34:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Differential evolution
Multi-objective optimization
Scale factor
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-2070c11d0c4f11e9c3bf5e4a5d3f0415ecf8acc9b4b31f1bf06120ba15fdff993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880794273
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_1880794273
crossref_citationtrail_10_1007_s00521_015_2073_y
crossref_primary_10_1007_s00521_015_2073_y
springer_journals_10_1007_s00521_015_2073_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Hernández-DomínguezJSToscano-PulidoGCoello CoelloACA multi-objective particle swarm optimizer enhanced with a differential evolution schemeArtif Evol2012Berlin, HeidelbergSpringer16918010.1007/978-3-642-35533-2_15
Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput20048325627910.1109/TEVC.2004.826067
Hu X, Eberhart RC (2002) Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: IEEE congress on evolutionary computation (CEC 2002). Honolulu. Hawaii, USA, pp 1677–1681
ZitzlerEThieleLMulti-objective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
Coello CoelloCALamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007Berlin, Heidelberg, New YorkSpringer Science & Business Media1142.90029
HaoZFGuoGHHuangHA particle swarm optimization algorithm with differential evolutionIEEE Int Conf Syst Mach Learn Cybernet200721031103510.1109/ICMLC.2007.4370294
DebKPratapAAgarwalSMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001-evolutionary method for design: optimization and control for industrial problem, K.C. Giannakoglou, Ed., pp 95–100
Coello Coello CA, Lechuga MS et al (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. New Jersey, pp 1051–1056
Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE, Piscataway, pp 82–87
WangXSHaoMLChengYHLeiRHPDE-PEDA: a new Pareto-based multi-objective optimization algorithmJ Univ Comput Sci200915472274125118441216.90080
SrinivasNDebKMulti-objective function optimization using non-dominated sorting genetic algorithmsEvol Comput19942322124810.1162/evco.1994.2.3.221
BazaraaMSSheraliHDShettyCMNonlinear programming, theory and algorithm[m]1979New YorkAcademic Press0476.90035
WuLHWangYNChenZLModified differential evolution algorithm for mixed-integer non-linear programming problemsJ Chin Comput Syst2007284666669
Knowles J, Corne D (1999) The Pareto archived evolutionary strategy: a new baseline algorithm for multi-objective optimization. In: Proceedings of the conference on evolutionary computation. IEEE Press, Piscataway, NJ, pp 98–105
DebKMulti-objective optimization using evolutionary algorithms2001ChichesterWiley0970.90091
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE Intentional joint conference on neural networks. IEEE Press, pp 1942–1948
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135
JoshuaTKDavidJSMatthewDCTesting of a spreading mechanism to promote diversity in multi-objective particle swarm optimizationOptim Eng2014162279302
Van Veldhuizen DA and Lamont GB (1998) evolutionary computation and convergence to a Pareto Front. In: Late breaking papers at the genetic programming 1998 conference. Stanford University, pp 221–228
DebKAgrawalSPratapAMeyarivanTA fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-IILect Notes Comput Sci2000191784985810.1007/3-540-45356-3_83
JS Hernández-Domínguez (2073_CR12) 2012
R Storn (2073_CR13) 1997; 11
TK Joshua (2073_CR10) 2014; 16
K Deb (2073_CR3) 2002; 6
N Srinivas (2073_CR2) 1994; 2
XS Wang (2073_CR17) 2009; 15
2073_CR1
CA Coello Coello (2073_CR9) 2004; 8
K Deb (2073_CR19) 2000; 1917
CA Coello Coello (2073_CR21) 2007
K Deb (2073_CR14) 2001
2073_CR18
2073_CR7
E Zitzler (2073_CR4) 1999; 3
2073_CR6
ZF Hao (2073_CR16) 2007; 2
2073_CR5
2073_CR11
MS Bazaraa (2073_CR20) 1979
LH Wu (2073_CR15) 2007; 28
2073_CR8
References_xml – reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001-evolutionary method for design: optimization and control for industrial problem, K.C. Giannakoglou, Ed., pp 95–100
– reference: WangXSHaoMLChengYHLeiRHPDE-PEDA: a new Pareto-based multi-objective optimization algorithmJ Univ Comput Sci200915472274125118441216.90080
– reference: Coello Coello CA, Lechuga MS et al (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. New Jersey, pp 1051–1056
– reference: BazaraaMSSheraliHDShettyCMNonlinear programming, theory and algorithm[m]1979New YorkAcademic Press0476.90035
– reference: Hu X, Eberhart RC (2002) Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: IEEE congress on evolutionary computation (CEC 2002). Honolulu. Hawaii, USA, pp 1677–1681
– reference: DebKMulti-objective optimization using evolutionary algorithms2001ChichesterWiley0970.90091
– reference: Knowles J, Corne D (1999) The Pareto archived evolutionary strategy: a new baseline algorithm for multi-objective optimization. In: Proceedings of the conference on evolutionary computation. IEEE Press, Piscataway, NJ, pp 98–105
– reference: Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE, Piscataway, pp 82–87
– reference: Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE Intentional joint conference on neural networks. IEEE Press, pp 1942–1948
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Global Optim1997114341359147955310.1023/A:10082028213280888.90135
– reference: Coello CoelloCALamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems2007Berlin, Heidelberg, New YorkSpringer Science & Business Media1142.90029
– reference: JoshuaTKDavidJSMatthewDCTesting of a spreading mechanism to promote diversity in multi-objective particle swarm optimizationOptim Eng2014162279302
– reference: Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput20048325627910.1109/TEVC.2004.826067
– reference: Hernández-DomínguezJSToscano-PulidoGCoello CoelloACA multi-objective particle swarm optimizer enhanced with a differential evolution schemeArtif Evol2012Berlin, HeidelbergSpringer16918010.1007/978-3-642-35533-2_15
– reference: DebKAgrawalSPratapAMeyarivanTA fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-IILect Notes Comput Sci2000191784985810.1007/3-540-45356-3_83
– reference: HaoZFGuoGHHuangHA particle swarm optimization algorithm with differential evolutionIEEE Int Conf Syst Mach Learn Cybernet200721031103510.1109/ICMLC.2007.4370294
– reference: Van Veldhuizen DA and Lamont GB (1998) evolutionary computation and convergence to a Pareto Front. In: Late breaking papers at the genetic programming 1998 conference. Stanford University, pp 221–228
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: ZitzlerEThieleLMulti-objective evolutionary algorithms: a comparative case study and the strength Pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
– reference: SrinivasNDebKMulti-objective function optimization using non-dominated sorting genetic algorithmsEvol Comput19942322124810.1162/evco.1994.2.3.221
– reference: WuLHWangYNChenZLModified differential evolution algorithm for mixed-integer non-linear programming problemsJ Chin Comput Syst2007284666669
– ident: 2073_CR6
– start-page: 169
  volume-title: Artif Evol
  year: 2012
  ident: 2073_CR12
  doi: 10.1007/978-3-642-35533-2_15
– volume: 1917
  start-page: 849
  year: 2000
  ident: 2073_CR19
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/3-540-45356-3_83
– ident: 2073_CR5
– ident: 2073_CR11
– ident: 2073_CR7
  doi: 10.1109/CEC.2002.1004388
– volume-title: Evolutionary algorithms for solving multi-objective problems
  year: 2007
  ident: 2073_CR21
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 2073_CR4
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume: 28
  start-page: 666
  issue: 4
  year: 2007
  ident: 2073_CR15
  publication-title: J Chin Comput Syst
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 2073_CR2
  publication-title: Evol Comput
  doi: 10.1162/evco.1994.2.3.221
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 2073_CR14
– ident: 2073_CR18
– ident: 2073_CR1
– volume: 15
  start-page: 722
  issue: 4
  year: 2009
  ident: 2073_CR17
  publication-title: J Univ Comput Sci
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 2073_CR13
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 2073_CR9
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– ident: 2073_CR8
  doi: 10.1109/ICNN.1995.488968
– volume: 16
  start-page: 279
  issue: 2
  year: 2014
  ident: 2073_CR10
  publication-title: Optim Eng
– volume-title: Nonlinear programming, theory and algorithm[m]
  year: 1979
  ident: 2073_CR20
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 2073_CR3
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 2
  start-page: 1031
  year: 2007
  ident: 2073_CR16
  publication-title: IEEE Int Conf Syst Mach Learn Cybernet
SSID ssj0004685
Score 2.2898476
Snippet A multi-objective particle swarm-differential evolution algorithm (MOPSDE) is proposed that combined a particle swarm optimization (PSO) with a differential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Image Processing and Computer Vision
Multiple objective analysis
Mutation
Original Article
Particle swarm optimization
Probability and Statistics in Computer Science
Searching
Simulated annealing
Sorting algorithms
Title Multi-objective particle swarm-differential evolution algorithm
URI https://link.springer.com/article/10.1007/s00521-015-2073-y
https://www.proquest.com/docview/1880794273
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA-6Xbz4Fqdz9OBJCTRNsqYnmbI5FIeIg3kqSZr4YC-2quy_N-mSOUUFTz00CeV75ff1ewFwHOEYZ5FkkGvDBiJUArkQDGImQxlpA6KpLRS-6dTbXXLVoz1Xxz312e4-JFlY6kWxm_2DaV1fajgbYzhbBWVqu3kZIe5GjaViyGIOp3FbbEoPwT6U-dMRXy-jT4T5LSha3DWtTbDuQGLQmHN1C6yo4TbY8AMYAqePO-CsKJ-FI_EyN1vB2AlCMH3nkwH000-MFvcD9eakLOD9x9HkOX8a7IJuq3l_0YZuIgKUmEW5_epQIpSFkmiEVCKx0FQRTjOsba29kppxKRNBBEYaCW0BTCg4ojrT2kCRPVAajoZqHwSJNo5Hxqg2Lg-pY51oZI5mdZUxwmMZV0DoSZNK1y7cTq3op4tGxwU1U0PN1FIznVXAyWLLeN4r46_FVU_v1KnNNLXN4YyBMJCqAk49D5Ze_3bYwb9WH4K1yF7ORe51FZTyyas6MtAiFzVQblw-XDfN87zZub2rFaL1AewWybI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgUyMAEspTETuNMqEKgAm2nVupm2Y7NQ32pLaD-e-zULgUBEnOcU3TP73K-O4DzGKc4jyVFXBsxEKEyxIWgCFMZylgbEJ3YRuFmq1rvkPtu0nV93BN_292XJAtPvWh2s38wbeqbGMmmGM1WYc3Or7ID8ztxbakZstjDadIWe6WHYF_K_InE12D0iTC_FUWLWHO7DZsOJAa1uVR3YEUNdmHLL2AInD3uwVXRPouG4mXutoKRU4Rg8s7HfeS3nxgr7gXqzWlZwHuPw_Hz9Km_D53bm_Z1HbmNCEhiGk_tV4cyivJQEh1FKpNY6EQRnuRY2157JTXlUmaCCBzpSGgLYELBo0TnWhsocgClwXCgDiHItEk8cppok_KQKtaZjgxpWlU5JTyVaRlCzxom3bhwu7WixxaDjgtuMsNNZrnJZmW4WLwyms_K-OtwxfObObOZMDsczjgIA6nKcOllsPT4N2JH_zp9Buv1drPBGneth2PYiG2gLu5hV6A0Hb-qEwMzpuK0UKsP3LHJcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n9sEnJaxt0jV9kqGOeRs-ONhbSNLEC1s3tqrs35u0yZyigs9ND-Vccr7TcwPgOEQxSkNBIFNaDJjLBDLOCURE-CJUGkRHplH4rtNod_F1L-rZPacTV-3uUpJlT4OZ0pTl9VGq6rPGN_M304TBkZZyjOB0ESxhMydBK3Q3bM41RhY7OXUIY8p7MHJpzZ9IfHVMn2jzW4K08DutdbBqAaPXLCW8ARZktgnW3DIGz9rmFjgrWmnhkL-UV5g3skrhTd7ZeADdJhRt0X1PvlmN81j_cTh-zp8G26Dbunw4b0O7HQEKRMLcfLUvgiD1BVZBIBOBuIokZlGKlOm7l0IRJkTCMUeBCrgyYMbnLIhUqpSGJTugkg0zuQu8ROkgJCWR0uEPbiCVqECTJg2ZEsxiEVeB71hDhR0dbjZY9Ols6HHBTaq5SQ036bQKTmavjMq5GX8drjl-U2tCE2oGxenLQsOrKjh1Mph7_BuxvX-dPgLL9xctenvVudkHK6Hx2UVJdg1U8vGrPNCII-eHhVZ9AK2Czaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+particle+swarm-differential+evolution+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Yi-xin%2C+Su&rft.au=Chi%2C+Rui&rft.date=2017-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=2&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1007%2Fs00521-015-2073-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon