SILAC quantitative proteomics analysis of ivermectin‐related proteomic profiling and molecular network alterations in human ovarian cancer cells
The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin‐treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin‐related proteomic profiling and molecular network...
Saved in:
Published in | Journal of mass spectrometry. Vol. 56; no. 1; pp. e4659 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1076-5174 1096-9888 1096-9888 |
DOI | 10.1002/jms.4659 |
Cover
Abstract | The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin‐treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin‐related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)‐based quantitative proteomics was used to study the human OC TOV‐21G cells. After TOV‐21G cells underwent 10 passages in SILAC‐labeled growth media, TOV‐21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC‐labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin‐related proteins in TOV‐21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin‐related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein‐protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin‐treated TOV‐21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA‐binding proteins, cell‐cycle progression‐related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin‐treated cells, provide the first ivermectin‐related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells. |
---|---|
AbstractList | The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin‐treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin‐related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)‐based quantitative proteomics was used to study the human OC TOV‐21G cells. After TOV‐21G cells underwent 10 passages in SILAC‐labeled growth media, TOV‐21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC‐labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin‐related proteins in TOV‐21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin‐related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein‐protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin‐treated TOV‐21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA‐binding proteins, cell‐cycle progression‐related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin‐treated cells, provide the first ivermectin‐related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells. The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin-treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin-related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to study the human OC TOV-21G cells. After TOV-21G cells underwent 10 passages in SILAC-labeled growth media, TOV-21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC-labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin-related proteins in TOV-21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin-related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein-protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin-treated TOV-21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA-binding proteins, cell-cycle progression-related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin-treated cells, provide the first ivermectin-related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells.The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin-treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin-related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to study the human OC TOV-21G cells. After TOV-21G cells underwent 10 passages in SILAC-labeled growth media, TOV-21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC-labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin-related proteins in TOV-21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin-related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein-protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin-treated TOV-21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA-binding proteins, cell-cycle progression-related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin-treated cells, provide the first ivermectin-related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells. |
Author | Desiderio, Dominic M. Li, Na Zhan, Xianquan Li, Jiajia |
Author_xml | – sequence: 1 givenname: Na surname: Li fullname: Li, Na organization: Central South University – sequence: 2 givenname: Jiajia surname: Li fullname: Li, Jiajia organization: Central South University – sequence: 3 givenname: Dominic M. surname: Desiderio fullname: Desiderio, Dominic M. organization: University of Tennessee Health Science Center – sequence: 4 givenname: Xianquan orcidid: 0000-0002-4984-3549 surname: Zhan fullname: Zhan, Xianquan email: yjzhan2011@gmail.com organization: Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33047383$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtuFSEUhompsQdNfAJD4o03swsDw-Gy2fFQsxsv2nvCZhhly0ALTJt95yMYH9EnkelubWLaGC7WSvj-tX74D8FeiMEC8BqjBUaoPd6MeUFZJ5-BA4wka6QQYm_uOWs6zOk-OMx5gxCSkrIXYJ8QRDkR5AD8Oj9dnSzh1aRDcUUXd23hZYrFxtGZDHXQfptdhnGA9SqN1hQXfv_4mazXxfYP7NwNzrvwtYp6OEZvzeR1gsGWm5i-Q-2LTXVBDBm6AL9Now4wXuvkajU6GJugsd7nl-D5oH22r-7qEbj48P5i-alZffl4ujxZNYaIVjaW9D3hhLRc4jXt66mPohyzYa2xXTMmGJGUy57i1hguqdBGakO4RppU4RF4txtbjV9NNhc1ujwb0MHGKau2wxgLTGT3f5R2iFHZsbaib_9BN3FK9RdnigtEMceiUm_uqGk92l5dJjfqtFX3uVRgsQNMijknOyhzm04MJWnnFUZqDl7V4NUc_IPFv4L7mY-gzQ69cd5un-TU57PzW_4PnrW-ow |
CitedBy_id | crossref_primary_10_1038_s41598_023_36159_4 crossref_primary_10_1016_j_csbj_2022_04_012 crossref_primary_10_1007_s13167_024_00385_1 crossref_primary_10_1016_j_omto_2021_04_006 crossref_primary_10_3389_fonc_2021_805592 |
Cites_doi | 10.1016/j.chemosphere.2016.03.113 10.1093/brain/awv167 10.15252/emmm.201404084 10.1016/B978-0-12-385118-5.00008-6 10.1074/mcp.M400021-MCP200 10.3390/cancers11101527 10.18632/oncotarget.22587 10.1111/tmi.12974 10.1038/ja.2017.11 10.1016/j.pestbp.2019.06.009 10.1021/acs.jproteome.6b00166 10.1021/ac026117i 10.1111/pim.12721 10.1007/s13167-020-00209-y 10.1007/978-3-319-06068-2_5 10.1158/1541-7786.MCR-17-0320 10.1016/j.bmcl.2019.04.045 10.1007/s13167-019-00170-5 10.1016/j.ygyno.2018.06.013 10.1128/AAC.15.3.361 10.1016/j.fct.2019.02.005 10.2165/00003495-199142040-00007 10.3802/jgo.2019.30.e10 10.1016/j.ijantimicag.2019.05.003 10.1371/journal.pntd.0008106 10.1093/bioinformatics/btz807 10.1016/j.amjms.2019.11.001 10.1016/j.intimp.2008.12.016 10.1016/j.pt.2017.02.004 10.1172/JCI130819 10.21037/atm.2020.02.41 10.1074/mcp.M200025-MCP200 10.1530/ERC-18-0243 10.1002/mas.21618 10.1002/jcb.27420 10.2147/DDDT.S237393 10.3322/caac.21349 10.1016/j.ecoenv.2014.12.002 10.1016/j.ejphar.2019.01.043 10.1158/0008-5472.CAN-15-2887 10.1007/978-3-030-15950-4_31 10.1186/s12964-019-0450-3 10.1186/s12917-019-2026-2 10.1007/s10522-018-9745-9 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1002/jms.4659 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed AGRICOLA Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-9888 |
EndPage | n/a |
ExternalDocumentID | 33047383 10_1002_jms_4659 JMS4659 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The Hunan Provincial Hundred Talent Plan funderid: To X.Z. – fundername: The Shandong First Medical University Talent Introduction Funds funderid: to X.Z. – fundername: The Shandong First Medical University Talent Introduction Funds grantid: to X.Z. – fundername: The Hunan Provincial Hundred Talent Plan grantid: To X.Z. |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UQL V2E VH1 W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM PKN 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7U7 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 K9. KR7 L.G L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3829-e3dd37332791b4d4d43044716fba1eb668639479d412cc7948ac9ac37a0a3373 |
IEDL.DBID | DR2 |
ISSN | 1076-5174 1096-9888 |
IngestDate | Fri Jul 11 18:30:26 EDT 2025 Thu Jul 10 18:57:34 EDT 2025 Fri Jul 25 10:29:01 EDT 2025 Wed Feb 19 02:29:41 EST 2025 Tue Jul 01 03:05:22 EDT 2025 Thu Apr 24 23:05:17 EDT 2025 Wed Jan 22 16:30:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | stable isotope labeling with amino acids in cell culture molecular network biomarker ovarian cancer ivermectin quantitative proteomics |
Language | English |
License | 2020 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3829-e3dd37332791b4d4d43044716fba1eb668639479d412cc7948ac9ac37a0a3373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4984-3549 |
PMID | 33047383 |
PQID | 2478041718 |
PQPubID | 1006399 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2511181395 proquest_miscellaneous_2450649562 proquest_journals_2478041718 pubmed_primary_33047383 crossref_citationtrail_10_1002_jms_4659 crossref_primary_10_1002_jms_4659 wiley_primary_10_1002_jms_4659_JMS4659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Journal of mass spectrometry. |
PublicationTitleAlternate | J Mass Spectrom |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 1 1979; 15 2020; 42 2019; 30 2019; 11 2019; 10 2019; 54 2019; 848 2017; 22 2019; 15 2020; 39 2016; 76 2002; 1 2019; 17 2004; 3 2020; 14 2019; 125 2020; 11 2019; 1140 2016; 15 2003; 75 2018; 25 2019; 120 2020; 8 2011; 500 2018; 19 2018; 8 2017; 70 2018; 150 2017; 15 2020; 130 2015; 138 2014; 806 2015; 113 2017; 33 1991; 42 2019; 159 2019 2009; 9 2020; 359 2019; 29 2016; 154 2009; 3 2014; 6 2016; 66 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Wang Z (e_1_2_10_23_1) 2019; 54 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Zhan X (e_1_2_10_29_1) 2017; 1 Juarez M (e_1_2_10_7_1) 2018; 8 Hashimoto H (e_1_2_10_12_1) 2009; 3 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 2019 article-title: GenCLiP 3: mining human genes' functions and regulatory networks from PubMed based on co‐occurrences and natural language processing publication-title: Bioinformatics – volume: 54 start-page: 134 issue: 2 year: 2019 end-page: 142 article-title: Ivermectin: from theory to clinical application publication-title: Int J Antimicrob Agents – volume: 17 start-page: 154 issue: 1 year: 2019 article-title: Distinct functions of AKT isoforms in breast cancer: a comprehensive review publication-title: Cell Commun Signal – volume: 8 start-page: 107666 issue: 64 year: 2017 end-page: 107677 article-title: Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes‐associated protein 1 expression in gastric cancer publication-title: Oncotarget – volume: 22 start-page: 1451 issue: 11 year: 2017 end-page: 1456 article-title: Twelve‐month longitudinal parasitological assessment of lymphatic filariasis‐positive individuals: impact of a biannual treatment with ivermectin and albendazole publication-title: Trop Med Int Health – volume: 14 start-page: 285 year: 2020 end-page: 296 article-title: Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin publication-title: Drug Des Devel Ther – volume: 15 start-page: 276 issue: 1 year: 2019 article-title: Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling publication-title: BMC Vet Res – volume: 70 start-page: 495 issue: 5 year: 2017 end-page: 505 article-title: Ivermectin: enigmatic multifaceted 'wonder' drug continues to surprise and exceed expectations publication-title: J Antibiot (Tokyo) – volume: 3 start-page: 729 issue: 7 year: 2004 end-page: 735 article-title: Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research publication-title: Mol Cell Proteomics – volume: 1 start-page: 376 issue: 5 year: 2002 end-page: 386 article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics publication-title: Mol Cell Proteomics – volume: 848 start-page: 39 year: 2019 end-page: 48 article-title: Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine‐choline deficiency‐induced fatty liver disease publication-title: Eur J Pharmacol – volume: 25 start-page: 909 issue: 10 year: 2018 end-page: 931 article-title: Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas publication-title: Endocr Relat Cancer – volume: 113 start-page: 159 year: 2015 end-page: 168 article-title: Autophagy is upregulated in brain tissues of pigeons exposed to avermectin publication-title: Ecotoxicol Environ Saf – volume: 125 start-page: 595 year: 2019 end-page: 604 article-title: Permethrin and ivermectin modulate lipid metabolism in steatosis‐induced HepG2 hepatocyte publication-title: Food Chem Toxicol – volume: 1140 start-page: 531 year: 2019 end-page: 539 article-title: Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics publication-title: Adv Exp Med Biol – volume: 75 start-page: 663 issue: 3 year: 2003 end-page: 670 article-title: Stop and go extraction tips for matrix‐assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics publication-title: Anal Chem – volume: 66 start-page: 271 issue: 4 year: 2016 end-page: 289 article-title: Cancer treatment and survivorship statistics, 2016 publication-title: CA Cancer J Clin – volume: 359 start-page: 123 issue: 2 year: 2020 end-page: 129 article-title: Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling publication-title: Am J Med Sci – volume: 1 year: 2017 article-title: Consideration of statistical vs. biological significances for omics data‐based pathway network analysis publication-title: Med One – volume: 14 issue: 3 year: 2020 article-title: The safety of combined triple drug therapy with ivermectin, diethylcarbamazine and albendazole in the neglected tropical diseases co‐endemic setting of Fiji: a cluster randomised trial publication-title: PLoS Negl Trop Dis – volume: 15 start-page: 1637 issue: 12 year: 2017 end-page: 1643 article-title: The MiTF/TFE family of transcription tactors: master regulators of organelle signaling, metabolism, and stress adaptation publication-title: Mol Cancer Res – volume: 159 start-page: 144 year: 2019 end-page: 153 article-title: Ivermectin induces apoptosis of porcine trophectoderm and uterine luminal epithelial cells through loss of mitochondrial membrane potential, mitochondrial calcium ion overload, and reactive oxygen species generation publication-title: Pestic Biochem Physiol – volume: 42 issue: 9 year: 2020 article-title: Preconception helminth infection alters offspring microbiota and immune subsets in a mouse model publication-title: Parasite Immunol – volume: 76 start-page: 4457 issue: 15 year: 2016 end-page: 4469 article-title: Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer publication-title: Cancer Res – volume: 15 start-page: 2187 issue: 7 year: 2016 end-page: 2197 article-title: In‐depth proteomics identifies a role for autophagy in controlling reactive oxygen species mediated endothelial permeability publication-title: J Proteome Res – volume: 8 start-page: 317 issue: 2 year: 2018 end-page: 331 article-title: The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug publication-title: Am J Cancer Res – volume: 500 start-page: 133 year: 2011 end-page: 150 article-title: Mass spectrometric‐based quantitative proteomics using SILAC publication-title: Methods Enzymol – volume: 6 start-page: 1263 issue: 10 year: 2014 end-page: 1278 article-title: The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT‐TCF pathway responses in human cancer publication-title: EMBO Mol Med – volume: 39 start-page: 471 issue: 5‐6 year: 2020 end-page: 498 article-title: Mass spectrometry‐based mitochondrial proteomics in human ovarian cancer publication-title: Mass Spectrom Rev – volume: 15 start-page: 361 issue: 3 year: 1979 end-page: 367 article-title: Avermectins, new family of potent anthelmintic agents: producing organism and fermentation publication-title: Antimicrob Agents Chemother – volume: 29 start-page: 1549 issue: 13 year: 2019 end-page: 1554 article-title: Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs publication-title: Bioorg Med Chem Lett – volume: 19 start-page: 145 issue: 2 year: 2018 end-page: 157 article-title: Repurposed FDA‐approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers publication-title: Biogerontology – volume: 150 start-page: 343 issue: 2 year: 2018 end-page: 354 article-title: The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes publication-title: Gynecol Oncol – volume: 138 start-page: 2553 issue: Pt 9 year: 2015 end-page: 2570 article-title: DEAD‐box RNA helicase DDX23 modulates glioma malignancy via elevating miR‐21 biogenesis publication-title: Brain – volume: 11 start-page: 289 issue: 2 year: 2020 end-page: 309 article-title: Anti‐parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA‐EIF4A3‐mRNA axes publication-title: EPMA J – volume: 30 issue: 1 year: 2019 article-title: Current state and outlook for drug repositioning anticipated in the field of ovarian cancer publication-title: J Gynecol Oncol – volume: 154 start-page: 204 year: 2016 end-page: 214 article-title: Eco‐toxicological effects of the avermectin family with a focus on abamectin and ivermectin publication-title: Chemosphere – volume: 33 start-page: 463 issue: 6 year: 2017 end-page: 472 article-title: Ivermectin—old drug, new tricks? publication-title: Trends Parasitol – volume: 42 start-page: 640 issue: 4 year: 1991 end-page: 658 article-title: Ivermectin. A review of its antifilarial activity, pharmacokinetic properties and clinical efficacy in onchocerciasis publication-title: Drugs – volume: 11 start-page: 1527 issue: 10 year: 2019 article-title: The PAK1‐STAT3 signaling pathway activates IL‐6 gene transcription and human breast cancer stem cell formation publication-title: Cancers (Basel) – volume: 8 start-page: 397 issue: 6 year: 2020 article-title: Gynecological cancer among adolescents and young adults (AYA) publication-title: Ann Transl Med – volume: 130 start-page: 699 issue: 2 year: 2020 end-page: 714 article-title: Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models publication-title: J Clin Invest – volume: 3 start-page: 243 issue: 6 year: 2009 end-page: 246 article-title: Ivermectin inactivates the kinase PAK1 and blocks the PAK1‐dependent growth of human ovarian cancer and NF2 tumor cell lines publication-title: Drug Discov Ther – volume: 806 start-page: 93 year: 2014 end-page: 106 article-title: Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics publication-title: Adv Exp Med Biol – volume: 54 start-page: 1071 issue: 3 year: 2019 end-page: 1085 article-title: Profiling of apoptosis‐ and autophagy‐associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture publication-title: Int J Oncol – volume: 9 start-page: 354 issue: 3 year: 2009 end-page: 359 article-title: Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS‐stimulated RAW 264.7 macrophages publication-title: Int Immunopharmacol – volume: 10 start-page: 153 issue: 2 year: 2019 end-page: 172 article-title: Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics publication-title: EPMA J – volume: 120 start-page: 622 issue: 1 year: 2019 end-page: 633 article-title: Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo publication-title: J Cell Biochem – ident: e_1_2_10_33_1 doi: 10.1016/j.chemosphere.2016.03.113 – ident: e_1_2_10_46_1 doi: 10.1093/brain/awv167 – ident: e_1_2_10_18_1 doi: 10.15252/emmm.201404084 – ident: e_1_2_10_25_1 doi: 10.1016/B978-0-12-385118-5.00008-6 – ident: e_1_2_10_20_1 doi: 10.1074/mcp.M400021-MCP200 – ident: e_1_2_10_44_1 doi: 10.3390/cancers11101527 – ident: e_1_2_10_17_1 doi: 10.18632/oncotarget.22587 – ident: e_1_2_10_35_1 doi: 10.1111/tmi.12974 – ident: e_1_2_10_3_1 doi: 10.1038/ja.2017.11 – ident: e_1_2_10_41_1 doi: 10.1016/j.pestbp.2019.06.009 – ident: e_1_2_10_28_1 doi: 10.1021/acs.jproteome.6b00166 – ident: e_1_2_10_26_1 doi: 10.1021/ac026117i – ident: e_1_2_10_43_1 doi: 10.1111/pim.12721 – ident: e_1_2_10_5_1 doi: 10.1007/s13167-020-00209-y – volume: 3 start-page: 243 issue: 6 year: 2009 ident: e_1_2_10_12_1 article-title: Ivermectin inactivates the kinase PAK1 and blocks the PAK1‐dependent growth of human ovarian cancer and NF2 tumor cell lines publication-title: Drug Discov Ther – ident: e_1_2_10_27_1 doi: 10.1007/978-3-319-06068-2_5 – volume: 1 start-page: e170002 year: 2017 ident: e_1_2_10_29_1 article-title: Consideration of statistical vs. biological significances for omics data‐based pathway network analysis publication-title: Med One – ident: e_1_2_10_19_1 doi: 10.1158/1541-7786.MCR-17-0320 – ident: e_1_2_10_31_1 doi: 10.1016/j.bmcl.2019.04.045 – ident: e_1_2_10_13_1 doi: 10.1007/s13167-019-00170-5 – ident: e_1_2_10_24_1 doi: 10.1016/j.ygyno.2018.06.013 – ident: e_1_2_10_2_1 doi: 10.1128/AAC.15.3.361 – ident: e_1_2_10_42_1 doi: 10.1016/j.fct.2019.02.005 – ident: e_1_2_10_34_1 doi: 10.2165/00003495-199142040-00007 – volume: 54 start-page: 1071 issue: 3 year: 2019 ident: e_1_2_10_23_1 article-title: Profiling of apoptosis‐ and autophagy‐associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture publication-title: Int J Oncol – ident: e_1_2_10_8_1 doi: 10.3802/jgo.2019.30.e10 – ident: e_1_2_10_30_1 doi: 10.1016/j.ijantimicag.2019.05.003 – ident: e_1_2_10_49_1 doi: 10.1371/journal.pntd.0008106 – ident: e_1_2_10_48_1 doi: 10.1093/bioinformatics/btz807 – ident: e_1_2_10_11_1 doi: 10.1016/j.amjms.2019.11.001 – ident: e_1_2_10_39_1 doi: 10.1016/j.intimp.2008.12.016 – ident: e_1_2_10_4_1 doi: 10.1016/j.pt.2017.02.004 – ident: e_1_2_10_45_1 doi: 10.1172/JCI130819 – ident: e_1_2_10_10_1 doi: 10.21037/atm.2020.02.41 – ident: e_1_2_10_21_1 doi: 10.1074/mcp.M200025-MCP200 – ident: e_1_2_10_14_1 doi: 10.1530/ERC-18-0243 – volume: 8 start-page: 317 issue: 2 year: 2018 ident: e_1_2_10_7_1 article-title: The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug publication-title: Am J Cancer Res – ident: e_1_2_10_9_1 doi: 10.1002/mas.21618 – ident: e_1_2_10_16_1 doi: 10.1002/jcb.27420 – ident: e_1_2_10_6_1 doi: 10.2147/DDDT.S237393 – ident: e_1_2_10_37_1 doi: 10.3322/caac.21349 – ident: e_1_2_10_36_1 doi: 10.1016/j.ecoenv.2014.12.002 – ident: e_1_2_10_47_1 doi: 10.1016/j.ejphar.2019.01.043 – ident: e_1_2_10_15_1 doi: 10.1158/0008-5472.CAN-15-2887 – ident: e_1_2_10_22_1 doi: 10.1007/978-3-030-15950-4_31 – ident: e_1_2_10_38_1 doi: 10.1186/s12964-019-0450-3 – ident: e_1_2_10_40_1 doi: 10.1186/s12917-019-2026-2 – ident: e_1_2_10_32_1 doi: 10.1007/s10522-018-9745-9 |
SSID | ssj0009946 |
Score | 2.3425388 |
Snippet | The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin‐treated... The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin-treated... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e4659 |
SubjectTerms | Amino acids Antiparasitic agents Biological activity biomarker Cancer Cell culture cell cycle Cells Cluster analysis Clustering culture media detection Encyclopaedias Encyclopedias gene ontology Genes Genomes growing media Growth media humans Identification isotope labeling Ivermectin Mass spectrometry Mass spectroscopy Metabolism Modules Molecular modelling molecular network neoplasm cells Nucleic acids Ovarian cancer ovarian neoplasms Ovaries Pathogenesis Peptides Profiling proteasome endopeptidase complex Proteasomes protein-protein interactions Proteins Proteomics quantitative proteomics Ribonucleic acid Ribosomal proteins RNA RNA-binding proteins rRNA Signal transduction Signaling stable isotope labeling with amino acids in cell culture Stable isotopes Statistical analysis Trypsin Tryptic peptides |
Title | SILAC quantitative proteomics analysis of ivermectin‐related proteomic profiling and molecular network alterations in human ovarian cancer cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjms.4659 https://www.ncbi.nlm.nih.gov/pubmed/33047383 https://www.proquest.com/docview/2478041718 https://www.proquest.com/docview/2450649562 https://www.proquest.com/docview/2511181395 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQL-VSWqBloVRGQnDKNrGdv-Nq6WqpgANtpUocIv9FgnYT2uxy6KmPUPUReRJm7CSrpVAhlEMOGUeOPeP57Mx8Q8jrMmMyjlIVlAb2qsLGYaCEBXNPdMiNkVgUEqMtPiXTE3F4Gp-2UZWYC-P5IfoDN7QMt16jgUvV7C9JQ7_NmqFIYszdi3iCtPnvPi-Zo_LcJxbBNj1AMuaOdzZk-13DVU90B16uolXnbiaPyJeuoz7K5Gy4mKuhvvqNw_H_vmSTbLQolI682myRB7Z6TNbHXfG3J-T26P2H0ZheLGTlstBgTaSO0gGTmBsqWyoTWpcUAztmuGxWP69vXGqMNUtZ6ouCg4OERobOumq8tPLx59T9rvfHhvRrRV3NQFr_gC083DXq5CXFvwvNU3I8OTgeT4O2fEOgecbywMJc85RzluaREgYuHgrwhUmpZGRVkmSAjkSaGxExrWFdyKTOpeapDCWHhttkraor-4xQy6VJS4A6zBghBaCYWAKsy2yYqihh-YC87Way0C21OVbYOC88KTMrYIgLHOIBedVLfvd0Hn-Q2e2UoWgNuimYcExN4MnhFf1jmBQcAVnZeoEyyP4HG052jwwAXABVPI8HZMcrWt8RPFpKecYH5I1Tl7_2sDj8eIT35_8q-II8ZBiL446Odsna_HJhXwKYmqs9Zza_AFT1HwE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigX3tBAASMhOG26a3sfVk9VRJWWtAcapB6QVl7bKwHNBpqEAyd-AupP7C_pjL2bqLyEUA57yHjltWc8n8fjbwBe1AXXaZJXUW1xrypdGkeVdGjumYmFtZqKQlK2xVE2fCcPTtKTNdjp7sIEfohlwI0sw6_XZOAUkN5esYZ-nMz6MkvVNbjuj-cIEb1dcUcpFa4W4UY9Ijrmjnk25ttdy6u-6BeAeRWveoezdwved10NeSaf-ot51TfffmJx_M9vuQ03WyDKdoPm3IE119yFjUFX_-0enB_vj3YH7MtCN_4iGi6LzLM60D3mGdMtmwmb1oxyOya0cjYX33_42zHOrmRZqAuOPhIbWTbpCvKyJqSgM39iHyKH7EPDfNlANv2Ku3h8GlLLM0YHDLP7MN57PR4Mo7aCQ2REwVXkcLpFLgTPVVJJiz8RS3SHWV3pxFVZViBAkrmyMuHG4NJQaKO0EbmOtcCGD2C9mTZuE5gT2uY1oh1urdQSgUyqEdkVLs6rJOOqB6-6qSxNy25ORTZOy8DLzEsc4pKGuAfPl5KfA6PHb2S2Om0oW5uelVx6siZ05viK5d84KTQCunHTBckQASDuOflfZBDjIq4SKu3Bw6Bpy45QdCkXhejBS68vf-xheXB4TM9H_yr4DDaG48NROdo_evMYbnBKzfGRpC1Yn58t3BPEVvPqqbehSydqIx8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkaCX8i4LBYyE4JRtYjsPH6uFVVtKhWiRKnGIHNuRaNls293lwImfUPUn9pd0xk52VV5CKIccMo4ce8bz2Zn5BuBlXXCdJnkV1Rb3qtKlcVRJh-aemVhYq6koJEVb7Gabn-T2QXrQRlVSLkzgh5gfuJFl-PWaDPzY1usL0tDD0aQvs1RdhxsyQy9JgOjjgjpKqZBZhPv0iNiYO-LZmK93La-6ol_w5VW46v3N8DZ87noawkyO-rNp1TfffyJx_L9PuQMrLQxlG0Fv7sI119yDW4Ou-tt9ON_b2tkYsJOZbnwaGi6KzHM6UBbzhOmWy4SNa0aRHSNaN5uLH2c-N8bZhSwLVcHRQ2Ijy0ZdOV7WhAB05v_Xh3ND9qVhvmggG3_DPTzeDSnlKaPfC5MHsD98uz_YjNr6DZERBVeRw8kWuRA8V0klLV4ilugMs7rSiauyrEB4JHNlZcKNwYWh0EZpI3Ida4ENH8JSM27cI2BOaJvXiHW4tVJLhDGpRlxXuDivkoyrHrzuZrI0Lbc5ldj4WgZWZl7iEJc0xD14MZc8Dnwev5FZ65ShbC16UnLpqZrQleMr5o9xUmgEdOPGM5Ih-j_ccfK_yCDCRVQlVNqD1aBo847Q2VIuCtGDV15d_tjDcvv9Ht0f_6vgc7j54c2w3NnaffcEljnF5fhjpDVYmp7O3FMEVtPqmbegS7F8Ic4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SILAC+quantitative+proteomics+analysis+of+ivermectin%E2%80%90related+proteomic+profiling+and+molecular+network+alterations+in+human+ovarian+cancer+cells&rft.jtitle=Journal+of+mass+spectrometry.&rft.au=Li%2C+Na&rft.au=Li%2C+Jiajia&rft.au=Desiderio%2C+Dominic+M.&rft.au=Zhan%2C+Xianquan&rft.date=2021-01-01&rft.issn=1076-5174&rft.eissn=1096-9888&rft.volume=56&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjms.4659&rft.externalDBID=10.1002%252Fjms.4659&rft.externalDocID=JMS4659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-5174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-5174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-5174&client=summon |