CrossOver: an algorithm for the construction of efficient cross-over designs

A cross‐over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the c...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 23; no. 17; pp. 2645 - 2658
Main Authors John, J. A., Russell, K. G., Whitaker, D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.09.2004
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.1860

Cover

Abstract A cross‐over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry‐over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry‐over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross‐over designs for a range of models that involve the direct effects of the treatments and various functions of their carry‐over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature. Copyright © 2004 John Wiley & Sons, Ltd.
AbstractList A cross-over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry-over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry-over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross-over designs for a range of models that involve the direct effects of the treatments and various functions of their carry-over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature.
A cross-over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry-over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry-over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross-over designs for a range of models that involve the direct effects of the treatments and various functions of their carry-over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature.A cross-over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry-over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry-over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross-over designs for a range of models that involve the direct effects of the treatments and various functions of their carry-over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature.
A cross-over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry-over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry-over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross-over designs for a range of models that involve the direct effects of the treatments and various functions of their carry-over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature. [PUBLICATION ABSTRACT]
A cross‐over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the observation made on each subject at the end of a time period may depend on the direct effect of the treatment applied in the current period, and the carry‐over effects of the treatments applied in one or more previous periods. Various models have been proposed to explain the nature of the carry‐over effects. An experimental design that is optimal under one model may not be optimal if a different model is the appropriate one. In this paper an algorithm is described to construct efficient cross‐over designs for a range of models that involve the direct effects of the treatments and various functions of their carry‐over effects. The effectiveness and flexibility of the algorithm are demonstrated by assessing its performance against numerous designs and models given in the literature. Copyright © 2004 John Wiley & Sons, Ltd.
Author John, J. A.
Whitaker, D.
Russell, K. G.
Author_xml – sequence: 1
  givenname: J. A.
  surname: John
  fullname: John, J. A.
  email: nye@stats.waikato.ac.nz
  organization: Department of Statistics, University of Waikato, Hamilton, New Zealand
– sequence: 2
  givenname: K. G.
  surname: Russell
  fullname: Russell, K. G.
  organization: School of Mathematics and Applied Statistics, University of Wollongong, NSW 2522, Australia
– sequence: 3
  givenname: D.
  surname: Whitaker
  fullname: Whitaker, D.
  organization: Department of Statistics, University of Waikato, Hamilton, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15316948$$D View this record in MEDLINE/PubMed
BookMark eNp10cFu1DAQBmALFdFtQeIJkMUB9ZJlHCexzQ1WpRQt9ACovVled9y6JHaxHaBvT8KWShRx8uX7f41n9shOiAEJecpgyQDql9kPSyY7eEAWDJSooG7lDllALUTVCdbukr2crwAYa2vxiOyylrNONXJB1qsUcz75jukVNYGa_iImXy4H6mKi5RKpjSGXNNriY6DRUXTOW4-hUDsnqzhF6TlmfxHyY_LQmT7jk9t3n3x5e_h59a5anxwdr16vK8tlDZVTrZOMO2DYSFRGcTQNl8CNFBINgDLthlsrDTRswxrOarVRVkojrGo7zvfJi23vdYrfRsxFDz5b7HsTMI5Zd51QAlQzwef34FUcU5hm03XNp2aQc9uzWzRuBjzX18kPJt3oP0uawHILfv84odPWFzMvpCTje81Az1fQ0xX0fIUpcHAvcNf5L6229Ifv8ea_Tn86_vC397ngzztv0lfdCS5affrxSJ-driR7_-ZMA_8FP2OjVA
CODEN SMEDDA
CitedBy_id crossref_primary_10_1080_03610926_2024_2353370
crossref_primary_10_1002_sim_2336
crossref_primary_10_1007_s12561_021_09319_1
crossref_primary_10_1111_head_12464
crossref_primary_10_1186_s13063_022_06608_y
crossref_primary_10_1111_biom_13913
crossref_primary_10_1002_sim_2155
crossref_primary_10_1515_ijb_2018_0001
crossref_primary_10_1093_ije_dym001
crossref_primary_10_1177_009286150704100406
crossref_primary_10_1002_sim_2706
crossref_primary_10_1111_j_1467_842X_2006_00463_x
Cites_doi 10.1016/0378-3758(94)90191-0
10.1214/aos/1176345200
10.1111/1467-9876.00068
10.1007/978-1-4899-7220-0
10.2307/2528124
10.1093/biomet/63.3.559
10.1016/S0378-3758(01)00304-4
10.1093/biomet/88.2.391
10.1016/0378-3758(87)90102-9
10.1093/biomet/88.4.1175
10.1016/S0378-3758(02)00227-6
10.1201/9781420036091
10.1016/0197-2456(89)90065-2
10.1002/(SICI)1097-0258(19960715)15:13<1435::AID-SIM278>3.0.CO;2-Y
10.1111/j.1467-842X.1994.tb00890.x
10.1080/00949659508811708
10.1016/0012-365X(89)90371-3
10.1023/A:1008810109585
10.1214/aos/1176346075
10.2307/1403636
10.1214/aos/1176346717
ContentType Journal Article
Copyright Copyright © 2004 John Wiley & Sons, Ltd.
Copyright 2004 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Sep 15, 2004
Copyright_xml – notice: Copyright © 2004 John Wiley & Sons, Ltd.
– notice: Copyright 2004 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Sep 15, 2004
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.1860
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2658
ExternalDocumentID 797074491
15316948
10_1002_sim_1860
SIM1860
ark_67375_WNG_XWC81JBX_0
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3820-f95f813f01e48e9a93ea43803a878ea009a5b3cc8a041b143129b9c88a7c95633
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 11:43:20 EDT 2025
Tue Oct 07 05:30:16 EDT 2025
Wed Feb 19 01:55:06 EST 2025
Wed Oct 01 05:08:31 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Wed Jan 22 17:05:08 EST 2025
Sun Sep 21 06:17:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2004 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3820-f95f813f01e48e9a93ea43803a878ea009a5b3cc8a041b143129b9c88a7c95633
Notes ArticleID:SIM1860
istex:F8ACE91E94BCA05ACA0CA468038F228CD81BBC94
ark:/67375/WNG-XWC81JBX-0
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 15316948
PQID 223143083
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_66797094
proquest_journals_223143083
pubmed_primary_15316948
crossref_citationtrail_10_1002_sim_1860
crossref_primary_10_1002_sim_1860
wiley_primary_10_1002_sim_1860_SIM1860
istex_primary_ark_67375_WNG_XWC81JBX_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2004
PublicationDateYYYYMMDD 2004-09-15
PublicationDate_xml – month: 09
  year: 2004
  text: 15 September 2004
  day: 15
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Jones B, Donev AN. Modelling and design of cross-over trials. Statistics in Medicine 1996; 15:1435-1446.
Williams EJ. Experimental designs balanced for pairs of residual effects. Australian Journal of Science Research 1950; 3:351-363.
Eccleston JA, Street DJ. An algorithm for the construction of optimal or near-optimal change-over designs. Australian Journal of Statistics 1994; 36:371-378.
Kunert J. Optimality of balanced uniform repeated measurements designs. Annals of Statistics 1984; 12:1006-1017.
Whitaker D. A nested simulated annealing algorithm. Journal of Statistical Computation and Simulation 1995; 53:233-241.
Donev AN. An algorithm for the construction of crossover trials. Applied Statistics 1997; 46:288-289.
Kempton RA, Ferris SJ, David O. Optimal change-over designs when carry-over effects are proportional to direct effects of treatments. Biometrika 2001; 88:391-399.
John JA, Williams ER. Cyclic and Computer Generated Designs. Chapman & Hall: London, 1995.
Williams EJ. Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Science Research 1949; 2:149-168.
Street DJ. Combinatorial problems in repeated measurement designs. Discrete Mathematics 1989; 77:323-343.
Fleiss JL. A critique of recent research on the two-treatment crossover design. Controlled Clinical Trials 1989; 10:237-243.
John JA. Updating formula in an analysis of variance model. Biometrika 2001; 88:1175-1178.
Cheng CS, Wu CF. Balanced repeated measurement designs. Annals of Statistics 1980; 8:1272-1283.
Matthews JNS. Recent development in crossover designs. International Statistics Review 1988; 56:117-127.
John JA, Russell KG. Optimising changeover designs using the average efficiency factors. Journal of Statistical Planning and Inference 2003; 113:259-268.
Afsarinejad K, Hedayat AS. Repeated measurements designs for a model with self and simple mixed carryover effects. Journal of Statistical Planning and Inference 2002; 106:449-459.
Eccleston JA, Whitaker D. On the design of optimal change-over experiments through multi-objective simulated annealing. Statistics and Computing 1999; 9:37-42.
Sen M, Mukerjee R. Optimal repeated measurement designs under interaction. Journal of Statistical Planning and Inference 1987; 17:81-91.
Jones B, Kenward MG. Design and Analysis of Cross-Over Trials (2nd edn). Chapman & Hall: London, 2003.
Berenblut II. Change-over designs with complete balance for first residual effects. Biometrics 1964; 20:707-712.
Kunert J. Optimal design and refinement of the linear model with applications to repeated measurements designs. Annals of Statistics 1983; 11:247-257.
Matthews JNS. Modelling and optimality in the design of crossover studies for medical applications. Journal of Statistical Planning and Inference 1994; 42:89-108.
Kok KL, Patterson HD. Algebraic results in the theory of serial factorial design. Biometrika 1976; 63:559-565.
1995; 53
1976; 63
1989; 77
1989; 10
1949; 2
1984; 12
1997; 46
2002; 106
1980; 8
1988; 56
1994; 36
1996
1995
1964; 20
2003
2001; 88
1996; 13
2003; 113
1996; 15
1950; 3
1987; 17
1983; 11
1999; 9
1994; 42
Stufken J (e_1_2_1_17_2) 1996
Williams EJ (e_1_2_1_3_2) 1949; 2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_24_2
e_1_2_1_25_2
Williams EJ (e_1_2_1_4_2) 1950; 3
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
Donev AN (e_1_2_1_11_2) 1996
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
16261645 - Stat Med. 2005 Dec 15;24(23):3675-8
References_xml – reference: Kok KL, Patterson HD. Algebraic results in the theory of serial factorial design. Biometrika 1976; 63:559-565.
– reference: Jones B, Donev AN. Modelling and design of cross-over trials. Statistics in Medicine 1996; 15:1435-1446.
– reference: Street DJ. Combinatorial problems in repeated measurement designs. Discrete Mathematics 1989; 77:323-343.
– reference: Kempton RA, Ferris SJ, David O. Optimal change-over designs when carry-over effects are proportional to direct effects of treatments. Biometrika 2001; 88:391-399.
– reference: Sen M, Mukerjee R. Optimal repeated measurement designs under interaction. Journal of Statistical Planning and Inference 1987; 17:81-91.
– reference: John JA, Russell KG. Optimising changeover designs using the average efficiency factors. Journal of Statistical Planning and Inference 2003; 113:259-268.
– reference: John JA, Williams ER. Cyclic and Computer Generated Designs. Chapman & Hall: London, 1995.
– reference: Eccleston JA, Street DJ. An algorithm for the construction of optimal or near-optimal change-over designs. Australian Journal of Statistics 1994; 36:371-378.
– reference: Fleiss JL. A critique of recent research on the two-treatment crossover design. Controlled Clinical Trials 1989; 10:237-243.
– reference: Matthews JNS. Modelling and optimality in the design of crossover studies for medical applications. Journal of Statistical Planning and Inference 1994; 42:89-108.
– reference: Kunert J. Optimal design and refinement of the linear model with applications to repeated measurements designs. Annals of Statistics 1983; 11:247-257.
– reference: Berenblut II. Change-over designs with complete balance for first residual effects. Biometrics 1964; 20:707-712.
– reference: Jones B, Kenward MG. Design and Analysis of Cross-Over Trials (2nd edn). Chapman & Hall: London, 2003.
– reference: Cheng CS, Wu CF. Balanced repeated measurement designs. Annals of Statistics 1980; 8:1272-1283.
– reference: Whitaker D. A nested simulated annealing algorithm. Journal of Statistical Computation and Simulation 1995; 53:233-241.
– reference: Afsarinejad K, Hedayat AS. Repeated measurements designs for a model with self and simple mixed carryover effects. Journal of Statistical Planning and Inference 2002; 106:449-459.
– reference: John JA. Updating formula in an analysis of variance model. Biometrika 2001; 88:1175-1178.
– reference: Williams EJ. Experimental designs balanced for pairs of residual effects. Australian Journal of Science Research 1950; 3:351-363.
– reference: Eccleston JA, Whitaker D. On the design of optimal change-over experiments through multi-objective simulated annealing. Statistics and Computing 1999; 9:37-42.
– reference: Matthews JNS. Recent development in crossover designs. International Statistics Review 1988; 56:117-127.
– reference: Williams EJ. Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Science Research 1949; 2:149-168.
– reference: Kunert J. Optimality of balanced uniform repeated measurements designs. Annals of Statistics 1984; 12:1006-1017.
– reference: Donev AN. An algorithm for the construction of crossover trials. Applied Statistics 1997; 46:288-289.
– volume: 10
  start-page: 237
  year: 1989
  end-page: 243
  article-title: A critique of recent research on the two‐treatment crossover design
  publication-title: Controlled Clinical Trials
– volume: 77
  start-page: 323
  year: 1989
  end-page: 343
  article-title: Combinatorial problems in repeated measurement designs
  publication-title: Discrete Mathematics
– volume: 53
  start-page: 233
  year: 1995
  end-page: 241
  article-title: A nested simulated annealing algorithm
  publication-title: Journal of Statistical Computation and Simulation
– volume: 106
  start-page: 449
  year: 2002
  end-page: 459
  article-title: Repeated measurements designs for a model with self and simple mixed carryover effects
  publication-title: Journal of Statistical Planning and Inference
– volume: 12
  start-page: 1006
  year: 1984
  end-page: 1017
  article-title: Optimality of balanced uniform repeated measurements designs
  publication-title: Annals of Statistics
– year: 2003
– volume: 42
  start-page: 89
  year: 1994
  end-page: 108
  article-title: Modelling and optimality in the design of crossover studies for medical applications
  publication-title: Journal of Statistical Planning and Inference
– start-page: 165
  year: 1996
  end-page: 171
– volume: 88
  start-page: 1175
  year: 2001
  end-page: 1178
  article-title: Updating formula in an analysis of variance model
  publication-title: Biometrika
– volume: 13
  year: 1996
– volume: 20
  start-page: 707
  year: 1964
  end-page: 712
  article-title: Change‐over designs with complete balance for first residual effects
  publication-title: Biometrics
– volume: 2
  start-page: 149
  year: 1949
  end-page: 168
  article-title: Experimental designs balanced for the estimation of residual effects of treatments
  publication-title: Australian Journal of Science Research
– volume: 3
  start-page: 351
  year: 1950
  end-page: 363
  article-title: Experimental designs balanced for pairs of residual effects
  publication-title: Australian Journal of Science Research
– volume: 15
  start-page: 1435
  year: 1996
  end-page: 1446
  article-title: Modelling and design of cross‐over trials
  publication-title: Statistics in Medicine
– volume: 113
  start-page: 259
  year: 2003
  end-page: 268
  article-title: Optimising changeover designs using the average efficiency factors
  publication-title: Journal of Statistical Planning and Inference
– volume: 11
  start-page: 247
  year: 1983
  end-page: 257
  article-title: Optimal design and refinement of the linear model with applications to repeated measurements designs
  publication-title: Annals of Statistics
– volume: 36
  start-page: 371
  year: 1994
  end-page: 378
  article-title: An algorithm for the construction of optimal or near‐optimal change‐over designs
  publication-title: Australian Journal of Statistics
– volume: 17
  start-page: 81
  year: 1987
  end-page: 91
  article-title: Optimal repeated measurement designs under interaction
  publication-title: Journal of Statistical Planning and Inference
– volume: 8
  start-page: 1272
  year: 1980
  end-page: 1283
  article-title: Balanced repeated measurement designs
  publication-title: Annals of Statistics
– year: 1995
– volume: 63
  start-page: 559
  year: 1976
  end-page: 565
  article-title: Algebraic results in the theory of serial factorial design
  publication-title: Biometrika
– volume: 9
  start-page: 37
  year: 1999
  end-page: 42
  article-title: On the design of optimal change‐over experiments through multi‐objective simulated annealing
  publication-title: Statistics and Computing
– volume: 46
  start-page: 288
  year: 1997
  end-page: 289
  article-title: An algorithm for the construction of crossover trials
  publication-title: Applied Statistics
– volume: 56
  start-page: 117
  year: 1988
  end-page: 127
  article-title: Recent development in crossover designs
  publication-title: International Statistics Review
– volume: 88
  start-page: 391
  year: 2001
  end-page: 399
  article-title: Optimal change‐over designs when carry‐over effects are proportional to direct effects of treatments
  publication-title: Biometrika
– ident: e_1_2_1_16_2
  doi: 10.1016/0378-3758(94)90191-0
– ident: e_1_2_1_5_2
  doi: 10.1214/aos/1176345200
– start-page: 165
  volume-title: MODA‐4—Advances in Model Oriented Data Analysis
  year: 1996
  ident: e_1_2_1_11_2
– ident: e_1_2_1_12_2
  doi: 10.1111/1467-9876.00068
– ident: e_1_2_1_20_2
  doi: 10.1007/978-1-4899-7220-0
– ident: e_1_2_1_25_2
  doi: 10.2307/2528124
– volume-title: Handbook of Statistics
  year: 1996
  ident: e_1_2_1_17_2
– volume: 3
  start-page: 351
  year: 1950
  ident: e_1_2_1_4_2
  article-title: Experimental designs balanced for pairs of residual effects
  publication-title: Australian Journal of Science Research
– ident: e_1_2_1_21_2
  doi: 10.1093/biomet/63.3.559
– ident: e_1_2_1_14_2
  doi: 10.1016/S0378-3758(01)00304-4
– ident: e_1_2_1_19_2
  doi: 10.1093/biomet/88.2.391
– ident: e_1_2_1_22_2
  doi: 10.1016/0378-3758(87)90102-9
– ident: e_1_2_1_23_2
  doi: 10.1093/biomet/88.4.1175
– volume: 2
  start-page: 149
  year: 1949
  ident: e_1_2_1_3_2
  article-title: Experimental designs balanced for the estimation of residual effects of treatments
  publication-title: Australian Journal of Science Research
– ident: e_1_2_1_26_2
  doi: 10.1016/S0378-3758(02)00227-6
– ident: e_1_2_1_2_2
  doi: 10.1201/9781420036091
– ident: e_1_2_1_15_2
  doi: 10.1016/0197-2456(89)90065-2
– ident: e_1_2_1_18_2
  doi: 10.1002/(SICI)1097-0258(19960715)15:13<1435::AID-SIM278>3.0.CO;2-Y
– ident: e_1_2_1_10_2
  doi: 10.1111/j.1467-842X.1994.tb00890.x
– ident: e_1_2_1_24_2
  doi: 10.1080/00949659508811708
– ident: e_1_2_1_9_2
  doi: 10.1016/0012-365X(89)90371-3
– ident: e_1_2_1_13_2
  doi: 10.1023/A:1008810109585
– ident: e_1_2_1_6_2
  doi: 10.1214/aos/1176346075
– ident: e_1_2_1_8_2
  doi: 10.2307/1403636
– ident: e_1_2_1_7_2
  doi: 10.1214/aos/1176346717
– reference: 16261645 - Stat Med. 2005 Dec 15;24(23):3675-8
SSID ssj0011527
Score 1.8421534
Snippet A cross‐over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the...
A cross-over experiment involves the application of sequences of treatments to several subjects over a number of time periods. It is thought that the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2645
SubjectTerms Algorithms
Clinical Trials as Topic - methods
cross-over models
Cross-Over Studies
Efficiency
efficiency factors
Humans
interchange algorithms
Medical treatment
Models, Statistical
Research Design
row-column designs
updating procedures
Title CrossOver: an algorithm for the construction of efficient cross-over designs
URI https://api.istex.fr/ark:/67375/WNG-XWC81JBX-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.1860
https://www.ncbi.nlm.nih.gov/pubmed/15316948
https://www.proquest.com/docview/223143083
https://www.proquest.com/docview/66797094
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0277-6715
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-kBSmIH-fXWT8iiD7t9bKfiW96WGvhTlBLD3wISS6rpe2udK9QfPJP6N_Yv8SZZHePSgXxaR92FiaTmc1vkslvAF44U6TOORlpRy3M3HgRacHLiK4xygViWO439KezfGcv3Z1n87aqku7CBH6IfsONIsP_rynAtWm2VqShzcHxiIuc0nWe5D6b-tQzR_GuWyudUOYFzzre2XG81X14aSVaJ6OeXQUzL6NWv-xs34KvncKh2uRwdLo0I_vzDy7H_xvRbbjZolH2JrjPHbjmqgFcn7bn7QO4EXb1WLisNIANwqaB2vkuzCY0ro8YC6-Zrpg--lafHCy_HzPEwQxxJbP1ip6W1SVznq4CVznmLXLx65zqR9nCF5E092Bv-92XyU7UtmeIbIK4ISplVgqelGPuUuGklonTxF-faFEIpxG86cwk1go9TrlBXIbQwkgrhC4sZmVJch_WqrpyD4Hl2vLSSGdMKdKsiIWmNCh2sUA8gYBkCK-6qVK25S6nFhpHKrAuxwptp8h2Q3jeS_4IfB1XyLz0s90L6JNDqm8rMrU_e6_m-xPBd9_OFQpudu6g2tBuFOIpHAsi1yE8699iTNJBi65cfdqoPC9kgXnzEB4EH1qpgr-8XKYCVfCe8Fcd1ecPU3o--lfBTdgIRUUy4tljWMPpdU8QLy3NUx8ZvwEUghBv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1baxQxFMcPpQUtiJf1tlZtBNGn2W7mmtQnXazb2l1BW7oPQkhmM1razkh3C9KnfoR-Rj-J5yQzs1QqiE_zMGcgtzP5neTkH4CX1mSxtVYG2tIVZrY_DbTgRUDHGOUUGZa7Bf3ROB3uxzuTZLIEb5qzMF4fol1wI89w_2tycFqQ3liohs4OT3pcpBivr8QphilERJ9b7Sje3NdKe5RpxpNGebYfbjRfXpmLVqhZf14Hmle51U08W3fga1Nkn29y1Dubm15-_oea43_W6S7croGUvfUj6B4s2bIDN0b1lnsHbvmFPebPK3VglfDUqzvfh_GAKvYJ3WGT6ZLp42_V6eH8-wlDFGaIliyvFgq1rCqYdYoVONEx1yS_Li4phZRNXR7J7AHsb73fGwyD-oaGII8QHYJCJoXgUdHnNhZWahlZTRL2kRaZsBr5TScmynOh-zE3iGZIF0bmQugsx8Asih7CclmV9jGwVOe8MNIaU4g4yUKhKRIKbSgQKZBJuvC66SuV1_LldIvGsfLCy6HCtlPUdl140Vr-8JId19i8ct3dGujTI0pxyxJ1MP6gJgcDwXfeTRQarjXjQdXePVOIVFgXhNcurLdv0S1pr0WXtjqbqTTNZIahcxce-UG0KAr-9VIZCyyCGwp_LaP6sj2i55N_NVyHm8O90a7a3R5_XINVn2MkA548hWXsavsM8Wlunjs3-Q0cXBSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KC6Ugas9_Z9VGEH3a62X_Jvqk155t9U5RS-9BCNncrJa2u6V3BfHJj-Bn9JM4SXb3qFQQn_ZhZ2Eymdn8Jpn8BuAJ5lmMiDLQaFuYYX8aaMGLwF5jlFPCsNxt6I_G6e5BvD9JJkvworkL4_kh2g03Gxnuf20DHM-mxdaCNXR2dNrjIqV8fSVOpLD1fNsfWu4o3vRrtWeUacaThnm2H241X15ai1asWb9dBTQv41a38AxvwOdGZV9vcty7mOc98_0PNsf_HNNNuF4DUvbSe9A6LGHZgdVRfeTegWt-Y4_5-0odWLPw1LM734LxwA7sHYXDc6ZLpk--VOdH86-njKAwI2jJTLVgqGVVwdAxVtBCx5xJfv34aUtI2dTVkcxuw8Fw59NgN6g7NAQmIugQFDIpBI-KPsdYoNQyQm0p7CMtMoGa8JtO8sgYofsxzwmaEbrIpRFCZ4YSsyi6A8tlVeI9YKk2vMgl5nkh4iQLhbaZUIihIEhBmKQLz5q5UqamL7ddNE6UJ14OFdlOWdt14XEreeYpO66QeeqmuxXQ58e2xC1L1OH4tZocDgTffzVRJLjR-IOqo3umCFLRWAi8dmGzfUthac9adInVxUylaSYzSp27cNc70UIV-uulMhakgnOFv-qoPu6N7PP-vwpuwur77aF6uzd-swFrvsRIBjx5AMs00_iQ0NM8f-Si5Deo0BQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CrossOver%3A+an+algorithm+for+the+construction+of+efficient+cross-over+designs&rft.jtitle=Statistics+in+medicine&rft.au=John%2C+J+A&rft.au=Russell%2C+K+G&rft.au=Whitaker%2C+D&rft.date=2004-09-15&rft.issn=0277-6715&rft.volume=23&rft.issue=17&rft.spage=2645&rft_id=info:doi/10.1002%2Fsim.1860&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon