Molecular insights into impacts of EDTMPA on membrane fouling caused by transparent exopolymer particles (TEP)
While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA...
Saved in:
Published in | The Science of the total environment Vol. 853; p. 158650 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2022.158650 |
Cover
Abstract | While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0–3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L−1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.
[Display omitted]
•EDTMPA reduced specific filtration resistance (SFR) of transparent exopolymer particles (TEP).•A unimodal SFR pattern of TEP formed from alginate at Ca2+ in range of 0–3 mM was observed.•Ca2+ preferentially coordinated with alginate terminal carboxyl groups, leading to high SFR.•EDTMP successfully disintegrated the TEP structure by capturing calcium ions, decreasing SFR.•This work provided thermodynamic molecular insights into effects of EDTMPA on TEP fouling. |
---|---|
AbstractList | While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca²⁺ concentration in range of 0–3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca²⁺, continuous addition of EDTMPA (from 0 to 100 mg·L⁻¹) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca²⁺ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca²⁺ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca²⁺ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling. While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling. While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0–3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L−1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling. [Display omitted] •EDTMPA reduced specific filtration resistance (SFR) of transparent exopolymer particles (TEP).•A unimodal SFR pattern of TEP formed from alginate at Ca2+ in range of 0–3 mM was observed.•Ca2+ preferentially coordinated with alginate terminal carboxyl groups, leading to high SFR.•EDTMP successfully disintegrated the TEP structure by capturing calcium ions, decreasing SFR.•This work provided thermodynamic molecular insights into effects of EDTMPA on TEP fouling. |
ArticleNumber | 158650 |
Author | Zhang, Hanmin Lin, Hongjun Hu, Lijiang Pan, Zhenxiang Zeng, Bizhen Teng, Jiaheng Yang, Lining Yu, Genying |
Author_xml | – sequence: 1 givenname: Zhenxiang surname: Pan fullname: Pan, Zhenxiang email: 838265202@zjnu.edu.cn organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 2 givenname: Bizhen surname: Zeng fullname: Zeng, Bizhen organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 3 givenname: Genying surname: Yu fullname: Yu, Genying email: yugenying@zjnu.cn organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 4 givenname: Hongjun surname: Lin fullname: Lin, Hongjun email: linhonjun@163.com organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 5 givenname: Lijiang surname: Hu fullname: Hu, Lijiang organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 6 givenname: Jiaheng surname: Teng fullname: Teng, Jiaheng organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China – sequence: 7 givenname: Hanmin surname: Zhang fullname: Zhang, Hanmin organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China – sequence: 8 givenname: Lining surname: Yang fullname: Yang, Lining email: yln@zjnu.cn organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China |
BookMark | eNqNUctu2zAQJIoUqOPmG8pjepDLhyVShx6M1H0ACZKDcyYoapXQoEiVpIL470PDRQ-5JHvZB2YGg51zdOaDB4S-ULKihDbf9qtkbA4Z_NOKEcZWtJZNTT6gBZWirShhzRlaELKWVdu04hM6T2lPSglJF8jfBAdmdjpi65N9eMypDDlgO07alCUMePtjd3O3wcHjEcYuag94CLOz_gEbPSfocXfAudzTpCP4jOE5TMEdRoi4XLI1DhK-3G3vvn5GHwftElz860t0_3O7u_pdXd_--nO1ua4MlzRXUJtBGEF422rBOBdrqqU0pOt7yWirOykH1qyHtWhYbbq607WuO26g000zcM2X6PKkO8Xwd4aU1WiTAeeK-TAnxYoqJZJw8Q4o5ZxIXtwskThBTQwpRRjUFO2o40FRoo5hqL36H4Y6hqFOYRTm91fMAtPZBl_-Zt07-JsTH8rTnizEIw68gd5GMFn1wb6p8QKrwq8J |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_176446 crossref_primary_10_1016_j_jece_2024_114055 crossref_primary_10_1016_j_jwpe_2023_104038 crossref_primary_10_1016_j_envres_2023_116280 crossref_primary_10_1016_j_seppur_2025_131412 crossref_primary_10_1016_j_memsci_2024_123633 crossref_primary_10_1016_j_jece_2022_108093 crossref_primary_10_1016_j_jece_2024_113987 crossref_primary_10_1016_j_jenvman_2024_121638 crossref_primary_10_1016_j_ces_2024_120812 crossref_primary_10_1016_j_memsci_2024_123101 crossref_primary_10_1016_j_memsci_2023_122280 crossref_primary_10_1016_j_jenvman_2024_123770 crossref_primary_10_1016_j_desal_2022_116301 |
Cites_doi | 10.1016/j.memsci.2019.02.047 10.1016/j.watres.2018.11.043 10.1016/j.memsci.2021.119821 10.1016/j.chemosphere.2021.132490 10.1016/j.memsci.2020.118984 10.1007/BF00660297 10.1016/j.watres.2021.117631 10.1016/j.scitotenv.2022.153252 10.1063/1.2358811 10.1016/j.watres.2017.02.006 10.1016/j.scitotenv.2022.155579 10.1016/j.jcrysgro.2020.125659 10.1016/j.watres.2020.115932 10.1016/j.watres.2020.116665 10.1016/j.chemosphere.2022.135849 10.1016/j.cclet.2020.04.011 10.1016/j.desal.2021.115437 10.1016/j.jcis.2022.03.106 10.1016/j.jclepro.2022.132983 10.1016/S0011-9164(97)00118-5 10.4319/lo.1995.40.7.1326 10.1016/j.jclepro.2022.131858 10.1063/1.1723621 10.1016/j.envint.2021.106439 10.1016/S0927-7757(96)03898-8 10.1007/s11783-021-1497-0 10.1016/j.watres.2022.118147 10.1016/j.seppur.2007.05.028 10.1038/srep19747 10.1021/acs.est.0c07891 10.1016/j.biortech.2018.02.067 10.1016/j.memsci.2016.12.006 10.1007/s11783-020-1361-7 10.1016/j.chemosphere.2019.125801 10.1016/j.watres.2018.06.027 10.1016/j.watres.2017.11.034 10.1016/j.jfoodeng.2020.110216 10.1016/j.watres.2016.06.028 10.1016/j.watres.2014.12.012 10.1021/j150415a018 10.1016/j.scitotenv.2022.156912 10.1016/j.memsci.2021.119532 10.1016/j.memsci.2021.119554 10.1016/j.watres.2021.116835 10.1016/S1383-5866(02)00075-8 10.1016/j.ese.2020.100035 10.1021/es5041738 10.1016/j.memsci.2014.02.034 10.1016/j.watres.2015.06.008 10.1016/j.memsci.2011.04.020 10.1016/j.seppur.2019.116294 10.1016/j.memsci.2019.117429 10.1016/j.watres.2020.115930 10.1016/j.memsci.2020.118815 10.1016/j.cej.2021.133020 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2022.158650 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2022_158650 S0048969722057497 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c381t-e5cf7c70399a7233741a88c0bdd8219ab88f264f47625cb5ba5a5b3ceba66f3a3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Sat Sep 27 19:17:20 EDT 2025 Sat Sep 27 20:52:40 EDT 2025 Tue Jul 01 02:54:27 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Density functional theory Transparent exopolymer particles Thermodynamic mechanism Membrane fouling Ethylenediamine tetramethylenephosphonic acid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-e5cf7c70399a7233741a88c0bdd8219ab88f264f47625cb5ba5a5b3ceba66f3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2713308370 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2723108037 proquest_miscellaneous_2713308370 crossref_primary_10_1016_j_scitotenv_2022_158650 crossref_citationtrail_10_1016_j_scitotenv_2022_158650 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_158650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-20 |
PublicationDateYYYYMMDD | 2022-12-20 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cheng, Liu, Li, Huang, Liang, Zheng, Shan (bb0045) 2020; 3 Lin, Zhang, Wang, Meng, Liao, Hong, Chen, Gao (bb0085) 2014; 460 Meng, Meng, Fan, Liang, Wang, Zhang, Liu (bb0140) 2020; 181 Zhang, Du, Ke, Zhang, Xu (bb0290) 2021; 640 Flory (bb0055) 1942; 10 Meng, Zhang, Oh, Zhou, Shin, Chae (bb0125) 2017; 114 Passow, Alldredge (bb0160) 1995; 40 Zhu, Liu, Chen, Gan, Wang, Zeng, Liao, Chen, Tu, Niu (bb0295) 2020; 31 Lin, Zheng, Ma, Fu, Zhang (bb0090) 2022; 366 Ang, Tiraferri, Chen, Elimelech (bb0010) 2011; 376 Rao, You, Chen, Shen, Xu, Zhang, Hong, Li, Lin (bb0165) 2022; 288 Wenten, Khoiruddin, Reynard, Lugito, Julian (bb0215) 2021; 290 Huggins (bb0070) 1942; 46 Li, Wang, Xie, Wang, Li, Ren (bb0080) 2019; 578 Wisniewski, Grasmick (bb0220) 1998; 138 Yang, Li, Yu, Meng, Zheng, Zhao, Meng (bb0245) 2021; 192 Alayande, Yun, Pires da Costa e Silva, Hong (bb0005) 2022; 522 Zeng, Pan, Xu, Long, Lin, Zhang, Shen, Li, Hong, Zhang (bb0270) 2022; 307 Ho, Fettweis, Spencer, Lee (bb0065) 2022; 213 Bai, Leow (bb0015) 2002; 29 Teng, Zhang, Tang, Lin (bb0195) 2021; 620 You, Zhang, Shen, Li, Xu, Zhang, Hong, Yang, Ma, Lin (bb0260) 2021; 635 You, Teng, Chen, Long, Yu, Shen, Lin (bb0255) 2020; 246 Teng, Zhang, Leung, Chen, Hong, Lin, Liao (bb0185) 2019; 149 Wu, Li, Wang, Zhu, Huang (bb0230) 2020; 540 Borchard, Steinbrecht (bb0030) 1991; 269 Zhang, Lin, Shen, Liao, Wu, Li (bb0275) 2017; 525 Teng, Shen, Yu, Wang, Li, Zhou, He, Lin (bb0175) 2018; 257 Sun, Tian, Li, Wang (bb0170) 2021; 151 Meng, Fan, Li, Liu, Liang, Liu (bb0130) 2018; 143 Wu, Chen, Lin, Zhao, Shen, Li, Xu, Hong, He (bb0235) 2020; 181 Liu, Shen, Lin, Huang, Hong, Chen (bb0095) 2022; 618 Wu, Chen, Lin, Zhao, Shen, Li, Xu, Hong, He (bb0225) 2020; 181 Yao, Gan, Zhou, Huang, Meng (bb0250) 2022; 430 Mönch, Dehnert, Jaufmann, Zappe (bb0145) 2006; 89 Chen, Hu, Wang, Li, Shen, Xu, Zhang, Hong, Lin (bb0040) 2022; 355 Tong, Zhao, Wu, Bai, Ikuno, Ishii, Hu (bb0205) 2021; 625 Maskooki, Kobayashi, Mortazavi, Maskooki (bb0110) 2008; 59 Zeng, Pan, Shen, Zhao, Teng, Hong, Lin (bb0265) 2022; 836 Ding, Zhang, Xiong, Shen, Yi, Liu, Wang (bb0050) 2020; 593 Meng, Winters, Liu (bb0120) 2015; 83 Xu, Fan, Lin, Yuan, Meng (bb0240) 2021; 55 Zhang, Hong, Lin, Shen, Yu, Ma, Chen, Liao (bb0280) 2018; 129 Teng, Chen, Ma, Hong, Sun, Liao, Lin (bb0190) 2020; 236 Chen, Zhang, Li, Qian, Lin, Yang, Wu, Zhou, He, Liao (bb0035) 2016; 102 Long, Yu, Dong, Xu, Lin, Deng, You, Yang, Liao (bb0105) 2021; 189 Villacorte, Ekowati, Calix-Ponce, Schippers, Amy, Kennedy (bb0210) 2015; 70 Pan, Zeng, Yu, Teng, Zhang, Shen, Yang, Lin (bb0155) 2022; 842 Tian, Yu, Yang, Zhang, Zhao, Yang, Sun, Wei, Zhang, Wang, Ma (bb0200) 2021; 16 Meng, Wang, Zhang, Meng, Xue, Liu, Liang, Zhao, Liu (bb0135) 2020; 15 Bar-Zeev, Belkin, Speter, Reich, Geisler, Rahav (bb0025) 2021; 204 Pan, Zeng, Lin, Teng, Zhang, Hong, Zhang (bb0150) 2022; 820 Zhang, Huang, Xu, Li, Tian, Yu (bb0285) 2021; 636 Bar-Zeev, Passow, Castrillon, Elimelech (bb0020) 2015; 49 Meng, Liu (bb0115) 2016; 6 Hermia (bb0060) 1982; 60 Huisman, Dutré, Persson, Trägårdh (bb0075) 1997; 113 Villacorte (10.1016/j.scitotenv.2022.158650_bb0210) 2015; 70 Mönch (10.1016/j.scitotenv.2022.158650_bb0145) 2006; 89 Zhang (10.1016/j.scitotenv.2022.158650_bb0285) 2021; 636 Chen (10.1016/j.scitotenv.2022.158650_bb0035) 2016; 102 Wenten (10.1016/j.scitotenv.2022.158650_bb0215) 2021; 290 Bai (10.1016/j.scitotenv.2022.158650_bb0015) 2002; 29 Wisniewski (10.1016/j.scitotenv.2022.158650_bb0220) 1998; 138 Wu (10.1016/j.scitotenv.2022.158650_bb0230) 2020; 540 Tian (10.1016/j.scitotenv.2022.158650_bb0200) 2021; 16 Bar-Zeev (10.1016/j.scitotenv.2022.158650_bb0020) 2015; 49 Teng (10.1016/j.scitotenv.2022.158650_bb0185) 2019; 149 Yang (10.1016/j.scitotenv.2022.158650_bb0245) 2021; 192 Teng (10.1016/j.scitotenv.2022.158650_bb0195) 2021; 620 Yao (10.1016/j.scitotenv.2022.158650_bb0250) 2022; 430 You (10.1016/j.scitotenv.2022.158650_bb0255) 2020; 246 Ho (10.1016/j.scitotenv.2022.158650_bb0065) 2022; 213 Long (10.1016/j.scitotenv.2022.158650_bb0105) 2021; 189 Teng (10.1016/j.scitotenv.2022.158650_bb0175) 2018; 257 Liu (10.1016/j.scitotenv.2022.158650_bb0095) 2022; 618 Li (10.1016/j.scitotenv.2022.158650_bb0080) 2019; 578 Zeng (10.1016/j.scitotenv.2022.158650_bb0265) 2022; 836 Zhu (10.1016/j.scitotenv.2022.158650_bb0295) 2020; 31 Cheng (10.1016/j.scitotenv.2022.158650_bb0045) 2020; 3 Lin (10.1016/j.scitotenv.2022.158650_bb0085) 2014; 460 Pan (10.1016/j.scitotenv.2022.158650_bb0155) 2022; 842 Wu (10.1016/j.scitotenv.2022.158650_bb0225) 2020; 181 Ding (10.1016/j.scitotenv.2022.158650_bb0050) 2020; 593 Zeng (10.1016/j.scitotenv.2022.158650_bb0270) 2022; 307 Zhang (10.1016/j.scitotenv.2022.158650_bb0290) 2021; 640 Teng (10.1016/j.scitotenv.2022.158650_bb0190) 2020; 236 You (10.1016/j.scitotenv.2022.158650_bb0260) 2021; 635 Lin (10.1016/j.scitotenv.2022.158650_bb0090) 2022; 366 Meng (10.1016/j.scitotenv.2022.158650_bb0125) 2017; 114 Wu (10.1016/j.scitotenv.2022.158650_bb0235) 2020; 181 Rao (10.1016/j.scitotenv.2022.158650_bb0165) 2022; 288 Sun (10.1016/j.scitotenv.2022.158650_bb0170) 2021; 151 Ang (10.1016/j.scitotenv.2022.158650_bb0010) 2011; 376 Zhang (10.1016/j.scitotenv.2022.158650_bb0280) 2018; 129 Huggins (10.1016/j.scitotenv.2022.158650_bb0070) 1942; 46 Flory (10.1016/j.scitotenv.2022.158650_bb0055) 1942; 10 Huisman (10.1016/j.scitotenv.2022.158650_bb0075) 1997; 113 Zhang (10.1016/j.scitotenv.2022.158650_bb0275) 2017; 525 Passow (10.1016/j.scitotenv.2022.158650_bb0160) 1995; 40 Bar-Zeev (10.1016/j.scitotenv.2022.158650_bb0025) 2021; 204 Tong (10.1016/j.scitotenv.2022.158650_bb0205) 2021; 625 Pan (10.1016/j.scitotenv.2022.158650_bb0150) 2022; 820 Meng (10.1016/j.scitotenv.2022.158650_bb0130) 2018; 143 Meng (10.1016/j.scitotenv.2022.158650_bb0140) 2020; 181 Meng (10.1016/j.scitotenv.2022.158650_bb0115) 2016; 6 Meng (10.1016/j.scitotenv.2022.158650_bb0135) 2020; 15 Alayande (10.1016/j.scitotenv.2022.158650_bb0005) 2022; 522 Chen (10.1016/j.scitotenv.2022.158650_bb0040) 2022; 355 Meng (10.1016/j.scitotenv.2022.158650_bb0120) 2015; 83 Maskooki (10.1016/j.scitotenv.2022.158650_bb0110) 2008; 59 Xu (10.1016/j.scitotenv.2022.158650_bb0240) 2021; 55 Hermia (10.1016/j.scitotenv.2022.158650_bb0060) 1982; 60 Borchard (10.1016/j.scitotenv.2022.158650_bb0030) 1991; 269 |
References_xml | – volume: 625 year: 2021 ident: bb0205 article-title: The molecular structures of polysaccharides affect their reverse osmosis membrane fouling behaviors publication-title: J. Membr. Sci. – volume: 522 year: 2022 ident: bb0005 article-title: Mechanistic insights into the potential applicability of a sulfate-based advanced oxidation process for the control of transparent exopolymer particles in membrane-based desalination publication-title: Desalination – volume: 129 start-page: 337 year: 2018 end-page: 346 ident: bb0280 article-title: Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations publication-title: Water Res. – volume: 143 start-page: 38 year: 2018 end-page: 46 ident: bb0130 article-title: Intermolecular interactions of polysaccharides in membrane fouling during microfiltration publication-title: Water Res. – volume: 83 start-page: 248 year: 2015 end-page: 257 ident: bb0120 article-title: Ultrafiltration behaviors of alginate blocks at various calcium concentrations publication-title: Water Res. – volume: 269 start-page: 95 year: 1991 end-page: 104 ident: bb0030 article-title: Theory of swelling of a crosslinked substance in equilibrium with a solvent in various phases publication-title: Colloid Polym. Sci. – volume: 89 year: 2006 ident: bb0145 article-title: Flory-Huggins swelling of polymer Bragg mirrors publication-title: Appl. Phys. Lett. – volume: 31 start-page: 2683 year: 2020 end-page: 2688 ident: bb0295 article-title: Ultrahigh flux of graphene oxide membrane modified with orientated growth of MOFs for rejection of dyes and oil-water separation publication-title: Chin. Chem. Lett. – volume: 60 start-page: 183 year: 1982 end-page: 187 ident: bb0060 article-title: Constant pressure blocking filtration laws-application topowar-law NON-Newtonian fluids publication-title: Trans. Inst. Chem. Eng. – volume: 181 year: 2020 ident: bb0225 article-title: Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights publication-title: Water Res. – volume: 307 year: 2022 ident: bb0270 article-title: Molecular insights into membrane fouling caused by polysaccharides with different structures in polyaluminum chloride coagulation-ultrafiltration process publication-title: Chemosphere – volume: 636 year: 2021 ident: bb0285 article-title: Unexpected alleviation of transparent exopolymer particles-associated membrane fouling through interaction with typical organic foulants publication-title: J. Membr. Sci. – volume: 149 start-page: 477 year: 2019 end-page: 487 ident: bb0185 article-title: A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor publication-title: Water Res. – volume: 55 start-page: 6270 year: 2021 end-page: 6280 ident: bb0240 article-title: Overlooked ecological roles of influent wastewater microflora in improving biological phosphorus removal in an anoxic/aerobic MBR process publication-title: Environ. Sci. Technol. – volume: 640 year: 2021 ident: bb0290 article-title: Loose nanofiltration membranes with assembled antifouling surfaces of organophosphonic acid/Fe(III) for managing textile dyeing effluents publication-title: J. Membr. Sci. – volume: 842 year: 2022 ident: bb0155 article-title: Mechanistic insights into ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA) publication-title: Sci. Total Environ. – volume: 192 year: 2021 ident: bb0245 article-title: Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli publication-title: Water Res. – volume: 820 year: 2022 ident: bb0150 article-title: Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment publication-title: Sci. Total Environ. – volume: 236 year: 2020 ident: bb0190 article-title: Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: molecular insights publication-title: Sep. Purif. Technol. – volume: 288 year: 2022 ident: bb0165 article-title: A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance publication-title: Chemosphere – volume: 16 start-page: 89 year: 2021 ident: bb0200 article-title: Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination publication-title: Front. Environ. Sci. Eng. – volume: 525 start-page: 320 year: 2017 end-page: 329 ident: bb0275 article-title: Effect of calcium ions on fouling properties of alginate solution and its mechanisms publication-title: J. Membr. Sci. – volume: 635 year: 2021 ident: bb0260 article-title: Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration publication-title: J. Membr. Sci. – volume: 189 year: 2021 ident: bb0105 article-title: Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process publication-title: Water Res. – volume: 15 start-page: 64 year: 2020 ident: bb0135 article-title: Transparent exopolymer particles (TEPs)-associated protobiofilm: a neglected contributor to biofouling during membrane filtration publication-title: Front. Environ. Sci. Eng. – volume: 246 year: 2020 ident: bb0255 article-title: New insights into membrane fouling by alginate: impacts of ionic strength in presence of calcium ions publication-title: Chemosphere – volume: 70 start-page: 300 year: 2015 end-page: 312 ident: bb0210 article-title: Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water publication-title: Water Res. – volume: 138 start-page: 403 year: 1998 end-page: 411 ident: bb0220 article-title: Floc size distribution in a membrane bioreactor and consequences for membrane fouling publication-title: Colloid. Surf.A – volume: 430 year: 2022 ident: bb0250 article-title: Carbon sources driven supernatant micro-particles differentiate in submerged anaerobic membrane bioreactors (AnMBRs) publication-title: Chem. Eng. J. – volume: 151 year: 2021 ident: bb0170 article-title: Fouling potentials and properties of foulants in an innovative algal-sludge membrane bioreactor publication-title: Environ. Int. – volume: 3 year: 2020 ident: bb0045 article-title: Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution publication-title: Environ. Sci. Ecotechnol. – volume: 460 start-page: 110 year: 2014 end-page: 125 ident: bb0085 article-title: A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies publication-title: J. Membr. Sci. – volume: 257 start-page: 39 year: 2018 end-page: 46 ident: bb0175 article-title: Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor publication-title: Bioresour. Technol. – volume: 620 year: 2021 ident: bb0195 article-title: Novel molecular level insights into forward osmosis membrane fouling affected by reverse diffusion of draw solutions based on thermodynamic mechanisms publication-title: J. Membr. Sci. – volume: 181 year: 2020 ident: bb0140 article-title: The role of transparent exopolymer particles (TEP) in membrane fouling: a critical review publication-title: Water Res. – volume: 593 year: 2020 ident: bb0050 article-title: Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis publication-title: J. Membr. Sci. – volume: 618 start-page: 483 year: 2022 end-page: 495 ident: bb0095 article-title: Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability publication-title: J. Colloid Interface Sci. – volume: 204 year: 2021 ident: bb0025 article-title: Impacts of sewage outbursts on seawater reverse osmosis desalination publication-title: Water Res. – volume: 102 start-page: 82 year: 2016 end-page: 89 ident: bb0035 article-title: Membrane fouling in a membrane bioreactor: high filtration resistance of gel layer and its underlying mechanism publication-title: Water Res. – volume: 366 year: 2022 ident: bb0090 article-title: Transparent exopolymer particles-associated membrane fouling analyses of systems containing sodium alginate, calcium, iron, alum and their combination during dead-end ultrafiltration publication-title: J. Clean. Prod. – volume: 10 start-page: 51 year: 1942 end-page: 61 ident: bb0055 article-title: Thermodynamics of high polymer solutions publication-title: J. Chem. Phys. – volume: 40 start-page: 1326 year: 1995 end-page: 1335 ident: bb0160 article-title: A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) publication-title: Limnol. Oceanogr. – volume: 376 start-page: 196 year: 2011 end-page: 206 ident: bb0010 article-title: Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent publication-title: J. Membr. Sci. – volume: 355 year: 2022 ident: bb0040 article-title: Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: performance and mechanism publication-title: J. Clean. Prod. – volume: 6 start-page: 19747 year: 2016 ident: bb0115 article-title: New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios publication-title: Sci. Rep. – volume: 290 year: 2021 ident: bb0215 article-title: Advancement of forward osmosis (FO) membrane for fruit juice concentration publication-title: J. Food Eng. – volume: 213 year: 2022 ident: bb0065 article-title: Flocculation with heterogeneous composition in water environments: a review publication-title: Water Res. – volume: 836 year: 2022 ident: bb0265 article-title: Effects of polysaccharides' molecular structure on membrane fouling and the related mechanisms publication-title: Sci. Total Environ. – volume: 114 start-page: 151 year: 2017 end-page: 180 ident: bb0125 article-title: Fouling in membrane bioreactors: an updated review publication-title: Water Res. – volume: 181 year: 2020 ident: bb0235 article-title: Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights publication-title: Water Res. – volume: 49 start-page: 691 year: 2015 end-page: 707 ident: bb0020 article-title: Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling publication-title: Environ. Sci. Technol. – volume: 113 start-page: 95 year: 1997 end-page: 103 ident: bb0075 article-title: Water permeability in ultrafiltration and microfiltration: viscous and electroviscous effects publication-title: Desalination – volume: 578 start-page: 95 year: 2019 end-page: 102 ident: bb0080 article-title: EDTA-based adsorption layer for mitigating FO membrane fouling via in situ removing calcium binding with organic foulants publication-title: J. Membr. Sci. – volume: 29 start-page: 189 year: 2002 end-page: 198 ident: bb0015 article-title: Microfiltration of activated sludge wastewater—the effect of system operation parameters publication-title: Sep. Purif. Technol. – volume: 46 start-page: 151 year: 1942 end-page: 158 ident: bb0070 article-title: Some properties of solutions of long-chain compounds publication-title: J. Phys. Chem. – volume: 540 year: 2020 ident: bb0230 article-title: Effect of EDTMPA on the quality of KDP crystal publication-title: J. Cryst. Growth – volume: 59 start-page: 67 year: 2008 end-page: 73 ident: bb0110 article-title: Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes publication-title: Sep. Purif. Technol. – volume: 578 start-page: 95 year: 2019 ident: 10.1016/j.scitotenv.2022.158650_bb0080 article-title: EDTA-based adsorption layer for mitigating FO membrane fouling via in situ removing calcium binding with organic foulants publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.02.047 – volume: 149 start-page: 477 year: 2019 ident: 10.1016/j.scitotenv.2022.158650_bb0185 article-title: A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor publication-title: Water Res. doi: 10.1016/j.watres.2018.11.043 – volume: 640 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0290 article-title: Loose nanofiltration membranes with assembled antifouling surfaces of organophosphonic acid/Fe(III) for managing textile dyeing effluents publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119821 – volume: 288 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0165 article-title: A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132490 – volume: 625 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0205 article-title: The molecular structures of polysaccharides affect their reverse osmosis membrane fouling behaviors publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118984 – volume: 269 start-page: 95 issue: 2 year: 1991 ident: 10.1016/j.scitotenv.2022.158650_bb0030 article-title: Theory of swelling of a crosslinked substance in equilibrium with a solvent in various phases publication-title: Colloid Polym. Sci. doi: 10.1007/BF00660297 – volume: 204 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0025 article-title: Impacts of sewage outbursts on seawater reverse osmosis desalination publication-title: Water Res. doi: 10.1016/j.watres.2021.117631 – volume: 820 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0150 article-title: Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153252 – volume: 89 issue: 16 year: 2006 ident: 10.1016/j.scitotenv.2022.158650_bb0145 article-title: Flory-Huggins swelling of polymer Bragg mirrors publication-title: Appl. Phys. Lett. doi: 10.1063/1.2358811 – volume: 114 start-page: 151 year: 2017 ident: 10.1016/j.scitotenv.2022.158650_bb0125 article-title: Fouling in membrane bioreactors: an updated review publication-title: Water Res. doi: 10.1016/j.watres.2017.02.006 – volume: 836 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0265 article-title: Effects of polysaccharides' molecular structure on membrane fouling and the related mechanisms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155579 – volume: 540 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0230 article-title: Effect of EDTMPA on the quality of KDP crystal publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2020.125659 – volume: 181 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0235 article-title: Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights publication-title: Water Res. doi: 10.1016/j.watres.2020.115932 – volume: 189 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0105 article-title: Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process publication-title: Water Res. doi: 10.1016/j.watres.2020.116665 – volume: 307 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0270 article-title: Molecular insights into membrane fouling caused by polysaccharides with different structures in polyaluminum chloride coagulation-ultrafiltration process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135849 – volume: 31 start-page: 2683 issue: 10 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0295 article-title: Ultrahigh flux of graphene oxide membrane modified with orientated growth of MOFs for rejection of dyes and oil-water separation publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.04.011 – volume: 522 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0005 article-title: Mechanistic insights into the potential applicability of a sulfate-based advanced oxidation process for the control of transparent exopolymer particles in membrane-based desalination publication-title: Desalination doi: 10.1016/j.desal.2021.115437 – volume: 618 start-page: 483 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0095 article-title: Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.03.106 – volume: 366 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0090 article-title: Transparent exopolymer particles-associated membrane fouling analyses of systems containing sodium alginate, calcium, iron, alum and their combination during dead-end ultrafiltration publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.132983 – volume: 113 start-page: 95 issue: 1 year: 1997 ident: 10.1016/j.scitotenv.2022.158650_bb0075 article-title: Water permeability in ultrafiltration and microfiltration: viscous and electroviscous effects publication-title: Desalination doi: 10.1016/S0011-9164(97)00118-5 – volume: 40 start-page: 1326 issue: 7 year: 1995 ident: 10.1016/j.scitotenv.2022.158650_bb0160 article-title: A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1995.40.7.1326 – volume: 355 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0040 article-title: Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: performance and mechanism publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131858 – volume: 10 start-page: 51 issue: 1 year: 1942 ident: 10.1016/j.scitotenv.2022.158650_bb0055 article-title: Thermodynamics of high polymer solutions publication-title: J. Chem. Phys. doi: 10.1063/1.1723621 – volume: 60 start-page: 183 issue: 3 year: 1982 ident: 10.1016/j.scitotenv.2022.158650_bb0060 article-title: Constant pressure blocking filtration laws-application topowar-law NON-Newtonian fluids publication-title: Trans. Inst. Chem. Eng. – volume: 151 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0170 article-title: Fouling potentials and properties of foulants in an innovative algal-sludge membrane bioreactor publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106439 – volume: 138 start-page: 403 issue: 2 year: 1998 ident: 10.1016/j.scitotenv.2022.158650_bb0220 article-title: Floc size distribution in a membrane bioreactor and consequences for membrane fouling publication-title: Colloid. Surf.A doi: 10.1016/S0927-7757(96)03898-8 – volume: 16 start-page: 89 issue: 7 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0200 article-title: Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-021-1497-0 – volume: 213 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0065 article-title: Flocculation with heterogeneous composition in water environments: a review publication-title: Water Res. doi: 10.1016/j.watres.2022.118147 – volume: 59 start-page: 67 issue: 1 year: 2008 ident: 10.1016/j.scitotenv.2022.158650_bb0110 article-title: Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2007.05.028 – volume: 6 start-page: 19747 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2022.158650_bb0115 article-title: New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios publication-title: Sci. Rep. doi: 10.1038/srep19747 – volume: 181 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0225 article-title: Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights publication-title: Water Res. doi: 10.1016/j.watres.2020.115932 – volume: 55 start-page: 6270 issue: 9 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0240 article-title: Overlooked ecological roles of influent wastewater microflora in improving biological phosphorus removal in an anoxic/aerobic MBR process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07891 – volume: 257 start-page: 39 year: 2018 ident: 10.1016/j.scitotenv.2022.158650_bb0175 article-title: Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.067 – volume: 525 start-page: 320 year: 2017 ident: 10.1016/j.scitotenv.2022.158650_bb0275 article-title: Effect of calcium ions on fouling properties of alginate solution and its mechanisms publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.12.006 – volume: 15 start-page: 64 issue: 4 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0135 article-title: Transparent exopolymer particles (TEPs)-associated protobiofilm: a neglected contributor to biofouling during membrane filtration publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1361-7 – volume: 246 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0255 article-title: New insights into membrane fouling by alginate: impacts of ionic strength in presence of calcium ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125801 – volume: 143 start-page: 38 year: 2018 ident: 10.1016/j.scitotenv.2022.158650_bb0130 article-title: Intermolecular interactions of polysaccharides in membrane fouling during microfiltration publication-title: Water Res. doi: 10.1016/j.watres.2018.06.027 – volume: 129 start-page: 337 year: 2018 ident: 10.1016/j.scitotenv.2022.158650_bb0280 article-title: Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations publication-title: Water Res. doi: 10.1016/j.watres.2017.11.034 – volume: 290 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0215 article-title: Advancement of forward osmosis (FO) membrane for fruit juice concentration publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2020.110216 – volume: 102 start-page: 82 year: 2016 ident: 10.1016/j.scitotenv.2022.158650_bb0035 article-title: Membrane fouling in a membrane bioreactor: high filtration resistance of gel layer and its underlying mechanism publication-title: Water Res. doi: 10.1016/j.watres.2016.06.028 – volume: 70 start-page: 300 year: 2015 ident: 10.1016/j.scitotenv.2022.158650_bb0210 article-title: Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water publication-title: Water Res. doi: 10.1016/j.watres.2014.12.012 – volume: 46 start-page: 151 issue: 1 year: 1942 ident: 10.1016/j.scitotenv.2022.158650_bb0070 article-title: Some properties of solutions of long-chain compounds publication-title: J. Phys. Chem. doi: 10.1021/j150415a018 – volume: 842 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0155 article-title: Mechanistic insights into ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.156912 – volume: 635 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0260 article-title: Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119532 – volume: 636 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0285 article-title: Unexpected alleviation of transparent exopolymer particles-associated membrane fouling through interaction with typical organic foulants publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119554 – volume: 192 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0245 article-title: Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli publication-title: Water Res. doi: 10.1016/j.watres.2021.116835 – volume: 29 start-page: 189 issue: 2 year: 2002 ident: 10.1016/j.scitotenv.2022.158650_bb0015 article-title: Microfiltration of activated sludge wastewater—the effect of system operation parameters publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(02)00075-8 – volume: 3 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0045 article-title: Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution publication-title: Environ. Sci. Ecotechnol. doi: 10.1016/j.ese.2020.100035 – volume: 49 start-page: 691 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2022.158650_bb0020 article-title: Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling publication-title: Environ. Sci. Technol. doi: 10.1021/es5041738 – volume: 460 start-page: 110 year: 2014 ident: 10.1016/j.scitotenv.2022.158650_bb0085 article-title: A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.02.034 – volume: 83 start-page: 248 year: 2015 ident: 10.1016/j.scitotenv.2022.158650_bb0120 article-title: Ultrafiltration behaviors of alginate blocks at various calcium concentrations publication-title: Water Res. doi: 10.1016/j.watres.2015.06.008 – volume: 376 start-page: 196 issue: 1 year: 2011 ident: 10.1016/j.scitotenv.2022.158650_bb0010 article-title: Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.020 – volume: 236 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0190 article-title: Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: molecular insights publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116294 – volume: 593 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0050 article-title: Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117429 – volume: 181 year: 2020 ident: 10.1016/j.scitotenv.2022.158650_bb0140 article-title: The role of transparent exopolymer particles (TEP) in membrane fouling: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2020.115930 – volume: 620 year: 2021 ident: 10.1016/j.scitotenv.2022.158650_bb0195 article-title: Novel molecular level insights into forward osmosis membrane fouling affected by reverse diffusion of draw solutions based on thermodynamic mechanisms publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118815 – volume: 430 year: 2022 ident: 10.1016/j.scitotenv.2022.158650_bb0250 article-title: Carbon sources driven supernatant micro-particles differentiate in submerged anaerobic membrane bioreactors (AnMBRs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133020 |
SSID | ssj0000781 |
Score | 2.4783778 |
Snippet | While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 158650 |
SubjectTerms | alginates calcium Density functional theory EDTA (chelating agent) energy-dispersive X-ray analysis environment Ethylenediamine tetramethylenephosphonic acid ethylenediamines filtration flocculation gels Membrane fouling polymers Thermodynamic mechanism thermodynamics Transparent exopolymer particles water treatment |
Title | Molecular insights into impacts of EDTMPA on membrane fouling caused by transparent exopolymer particles (TEP) |
URI | https://dx.doi.org/10.1016/j.scitotenv.2022.158650 https://www.proquest.com/docview/2713308370 https://www.proquest.com/docview/2723108037 |
Volume | 853 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelYzAYY8tW1n0UDfawPbi1LcmW9xa6lGwhpYyU9U1IslQyFjvUzlhe-rf3LrJbWkb7MDD4A8kYnXT3O-t-d4R81MzkCRe4NZiIiBfeRFJ6G5WGSWd1GtsYucPT42x8yr-fibMtcthzYTCsstP9QadvtHX35KAbzYPlfI4cXy6LrMiRKprzAhnlmP0L5vT-5U2YByazCbvMsLCh9a0YL3hvWwM2_QOOYpruJ0JmSMD_t4W6o6s3BujoOXnWIUc6DB_3gmy5akAeh1qS6wHZGd1Q1qBZt2abAXka_szRQDh6SappXxGXzqsGffMGLtqaBsJkQ2tPR19n05MhrSu6cAvwpytHPZZOr86p1avGldSsabvJi45kspa6v1hsYb1wF3TZx9rRT7PRyedX5PRoNDscR13VhciC9W4jJ6zPLSiCotB5yhhADi2ljU1ZSlBv2oAsAUV5DmpUWCOMFloYZp3RWeaZZjtku6or95pQVvhE6AycTG55wnMN2NKXtsxSOLhMd0nWj7SyXUpyrIzxW_WxZ7_UtYgUikgFEe2S-LrjMmTleLjLl16U6tYEU2A7Hu78oRe-guWHeyow8vWqUSk6-TFmELqvDYJoGbP8zf98xFvyBO8wliaN35Ht9mLl3gMias3eZsrvkUfDb5PxMZ4nP35OrgCUSQ7y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKAwMX4aiQd4CEtiO3Z4q0anjq3VHjppb5btOFMRTaolRfS_51wnm4YQe0DKQ5TkIsuX-3wX33cH8EFTIxLG_dZgwiOWlyaSsrRRYah0VqexjT13eDrLJufs2wW_2IHDngvj0yo77A-YvkXr7spBN5sHq8XCc3yZzLNceKqoYLm4B7uMIyYPYHd0fDKZ3QCykKFxHkPbRoFbaV746rZG9_Qnxopp-jnhMvMc_L8vUn_A9XYNOnoCjzvnkYzC-J7CjquGcD-0k9wMYW98w1rDxzqzbYbwKPycI4Fz9Ayqad8UlyyqxofnDZ60NQmcyYbUJRl_nU_PRqSuyNItMaSuHCl99_Tqkli9blxBzIa029Lonk_WEvfL91vYLN0VWfXpduTjfHz26TmcH43nh5Ooa7wQWVzA28hxWwqLWJDnWqSUotehpbSxKQqJCKcNqhMdqZIhknJruNFcc0OtMzrLSqrpHgyqunIvgNC8TLjOMM5kliVMaHQvy8IWWYoHk-k-ZP1MK9tVJffNMX6oPv3su7pWkfIqUkFF-xBfC65CYY67Rb70qlS3vjGFy8fdwu975Su0QL-tgjNfrxuV-jg_9kWE_vWM96NlTMXL_xnEO3gwmU9P1enx7OQVPPR3fGpNGr-GQXu1dm_QQWrN284AfgM8MA_6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+insights+into+impacts+of+EDTMPA+on+membrane+fouling+caused+by+transparent+exopolymer+particles+%28TEP%29&rft.jtitle=The+Science+of+the+total+environment&rft.au=Pan%2C+Zhenxiang&rft.au=Zeng%2C+Bizhen&rft.au=Yu%2C+Genying&rft.au=Lin%2C+Hongjun&rft.date=2022-12-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=853&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.158650&rft.externalDocID=S0048969722057497 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |