The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 17; pp. 9797 - 9813
Main Authors Karahoda, Betim, Pardeshi, Lakhansing, Ulas, Mevlut, Dong, Zhiqiang, Shirgaonkar, Niranjan, Guo, Shuhui, Wang, Fang, Tan, Kaeling, Sarikaya-Bayram, Özlem, Bauer, Ingo, Dowling, Paul, Fleming, Alastair B, Pfannenstiel, Brandon T, Luciano-Rosario, Dianiris, Berger, Harald, Graessle, Stefan, Alhussain, Mohamed M, Strauss, Joseph, Keller, Nancy P, Wong, Koon Ho, Bayram, Özgür
Format Journal Article
LanguageEnglish
Published England Oxford University Press 23.09.2022
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkac744

Cover

Abstract Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
AbstractList Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase K dmB, a cohesin acetyltransferase ( E coA), a histone deacetylase ( R pdA) and a histone reader/E3 ligase protein ( S ntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Author Luciano-Rosario, Dianiris
Bayram, Özgür
Sarikaya-Bayram, Özlem
Ulas, Mevlut
Pardeshi, Lakhansing
Keller, Nancy P
Strauss, Joseph
Guo, Shuhui
Wang, Fang
Bauer, Ingo
Wong, Koon Ho
Pfannenstiel, Brandon T
Dowling, Paul
Berger, Harald
Graessle, Stefan
Tan, Kaeling
Dong, Zhiqiang
Alhussain, Mohamed M
Fleming, Alastair B
Shirgaonkar, Niranjan
Karahoda, Betim
Author_xml – sequence: 1
  givenname: Betim
  surname: Karahoda
  fullname: Karahoda, Betim
– sequence: 2
  givenname: Lakhansing
  orcidid: 0000-0003-0702-5465
  surname: Pardeshi
  fullname: Pardeshi, Lakhansing
– sequence: 3
  givenname: Mevlut
  orcidid: 0000-0001-9284-8727
  surname: Ulas
  fullname: Ulas, Mevlut
– sequence: 4
  givenname: Zhiqiang
  orcidid: 0000-0002-3435-0522
  surname: Dong
  fullname: Dong, Zhiqiang
– sequence: 5
  givenname: Niranjan
  orcidid: 0000-0001-6078-1409
  surname: Shirgaonkar
  fullname: Shirgaonkar, Niranjan
– sequence: 6
  givenname: Shuhui
  orcidid: 0000-0002-3217-5871
  surname: Guo
  fullname: Guo, Shuhui
– sequence: 7
  givenname: Fang
  orcidid: 0000-0002-2078-9833
  surname: Wang
  fullname: Wang, Fang
– sequence: 8
  givenname: Kaeling
  orcidid: 0000-0002-3347-7628
  surname: Tan
  fullname: Tan, Kaeling
– sequence: 9
  givenname: Özlem
  orcidid: 0000-0003-0909-9556
  surname: Sarikaya-Bayram
  fullname: Sarikaya-Bayram, Özlem
– sequence: 10
  givenname: Ingo
  orcidid: 0000-0002-3316-7769
  surname: Bauer
  fullname: Bauer, Ingo
– sequence: 11
  givenname: Paul
  surname: Dowling
  fullname: Dowling, Paul
– sequence: 12
  givenname: Alastair B
  surname: Fleming
  fullname: Fleming, Alastair B
– sequence: 13
  givenname: Brandon T
  surname: Pfannenstiel
  fullname: Pfannenstiel, Brandon T
– sequence: 14
  givenname: Dianiris
  surname: Luciano-Rosario
  fullname: Luciano-Rosario, Dianiris
– sequence: 15
  givenname: Harald
  surname: Berger
  fullname: Berger, Harald
– sequence: 16
  givenname: Stefan
  orcidid: 0000-0003-0443-5709
  surname: Graessle
  fullname: Graessle, Stefan
– sequence: 17
  givenname: Mohamed M
  surname: Alhussain
  fullname: Alhussain, Mohamed M
– sequence: 18
  givenname: Joseph
  surname: Strauss
  fullname: Strauss, Joseph
– sequence: 19
  givenname: Nancy P
  surname: Keller
  fullname: Keller, Nancy P
– sequence: 20
  givenname: Koon Ho
  orcidid: 0000-0002-9264-5118
  surname: Wong
  fullname: Wong, Koon Ho
– sequence: 21
  givenname: Özgür
  orcidid: 0000-0002-0283-5322
  surname: Bayram
  fullname: Bayram, Özgür
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36095118$$D View this record in MEDLINE/PubMed
BookMark eNptkd1rFTEQxYNU7O3VJ98lj0JZm2yS_XgRbkv9wIKg9Tlkk9nd6G6yJtnaC_7xpvRWVHwahjnzO8OcE3TkvAOEnlPyipKWnTkVzoZvStecP0Ibyqqy4G1VHqENYUQUlPDmGJ3E-JUQyqngT9Axq0grKG026Of1CPiDmc-LS-13xafF7IrPLp1jPQY_q2Qd1n5eJrjFnXUm4gDDOqnkwx4P4CBi5UyW-GCsUyn3_eoGNWEDNzD5ZQaX8A-bRjzvtU_-NgPj3qURoo1P0eNeTRGeHeoWfXlzeX3xrrj6-Pb9xe6q0KyhqQAuSsJqIkQnTN9DV9eVoYwJVZYlpVUHPS_7zlDOW94TwoC1pOuahtUdbWrFtuj1PXdZuxmMzjcFNckl2FmFvfTKyr8nzo5y8DeyFaRpSJMBLw-A4L-vEJOcbdQwTcqBX6Msa8pJxUT23qIXf3r9Nnl4eRbQe4EOPsYAvdQ25Uf7O2s7SUrkXawyxyoPsead0392HrD_U_8C11WoXA
CitedBy_id crossref_primary_10_1016_j_fbio_2023_103510
crossref_primary_10_1007_s11274_023_03649_6
crossref_primary_10_1016_j_postharvbio_2024_113081
crossref_primary_10_1042_EBC20220253
crossref_primary_10_3390_jof9010021
crossref_primary_10_3390_jof9050591
crossref_primary_10_1016_j_micres_2024_127981
crossref_primary_10_1016_j_procbio_2024_06_015
crossref_primary_10_1038_s41467_023_43205_2
crossref_primary_10_7554_eLife_94743_5
crossref_primary_10_7554_eLife_94743
crossref_primary_10_1371_journal_pgen_1010502
crossref_primary_10_3390_ijms26010025
crossref_primary_10_1016_j_fgb_2025_103973
crossref_primary_10_1038_s41467_023_44329_1
crossref_primary_10_1016_j_fgb_2023_103836
crossref_primary_10_1016_j_postharvbio_2024_112887
crossref_primary_10_1016_j_fgb_2023_103837
Cites_doi 10.1371/journal.pgen.1006222
10.1093/emboj/16.16.4916
10.1093/bioinformatics/btq351
10.1038/s41576-018-0089-8
10.1146/annurev.biochem.78.070907.103946
10.1073/pnas.0702108104
10.1101/gad.179275.111
10.1007/978-1-62703-122-6_14
10.1101/cshperspect.a010207
10.1038/s41564-021-00922-y
10.1016/j.molcel.2017.12.018
10.1073/pnas.96.18.10403
10.1016/j.cub.2018.06.037
10.1093/bioinformatics/btr189
10.1128/JB.181.20.6469-6477.1999
10.1128/MCB.01643-08
10.1371/journal.pone.0036295
10.1016/j.molcel.2016.09.015
10.1016/j.molcel.2014.03.024
10.1093/bioinformatics/btw313
10.1038/nrm3941
10.1016/j.fgb.2018.08.004
10.1016/j.molcel.2008.06.006
10.1111/j.1365-2958.2009.06606.x
10.1021/acschembio.5b00025
10.1016/j.molcel.2011.03.023
10.1007/s12551-018-00497-9
10.1111/j.1365-2958.2012.08195.x
10.1128/mBio.00831-16
10.1016/0076-6879(92)16041-H
10.1186/gb-2008-9-9-r137
10.1128/mBio.01246-17
10.1111/mmi.13562
10.1073/pnas.1103523108
10.1038/nmeth.2089
10.1091/mbc.e09-08-0750
10.3791/59527
10.1105/tpc.110.082156
10.1016/j.bbagrm.2016.11.008
10.1371/journal.pgen.1002816
10.1089/omi.2011.0118
10.1093/nar/gki145
10.7554/eLife.28447
10.1073/pnas.1505323112
10.1073/pnas.93.4.1418
10.1128/AEM.02842-07
10.1038/nchembio.177
10.1186/s12864-018-4625-x
10.1093/bioinformatics/btw069
10.1371/journal.pbio.1001750
10.1371/journal.pgen.1007141
10.15252/embj.201797150
10.1038/nrm1761
10.1128/EC.00186-07
10.1038/nsmb.2810
10.1128/mBio.00820-18
10.1111/j.1574-6976.2011.00285.x
10.1038/nrm2143
10.1038/s41579-018-0121-1
10.1038/nrmicro1286
10.3389/fmicb.2020.00043
10.1126/science.1155888
10.1038/nbt.1754
10.3390/toxins8010029
10.1016/j.celrep.2020.01.091
10.1111/j.1365-2958.2012.08067.x
10.1016/S0006-3495(88)83126-6
10.1111/j.1365-2958.2010.07051.x
10.1371/journal.pgen.1001226
10.1038/s42003-020-01328-y
10.1038/nmeth.1923
10.1038/nrm2346
10.1534/genetics.105.042796
10.1371/journal.pgen.1010001
10.1016/j.cub.2017.07.070
10.1128/MCB.00025-13
10.1093/bfgp/ell020
10.1038/nsmb.2478
10.4161/15592294.2014.971580
10.1128/EC.3.2.527-535.2004
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac744
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9813
ExternalDocumentID PMC9508808
36095118
10_1093_nar_gkac744
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 24803
– fundername: Austrian Science Fund FWF
  grantid: P 32790
– fundername: NIGMS NIH HHS
  grantid: R01 GM112739
– fundername: NIGMS NIH HHS
  grantid: T32 GM007133
– fundername: ;
– fundername: ;
  grantid: C5012-15E
– fundername: ;
  grantid: 13/CDA/2142; 21/PATH-S/9444
– fundername: ;
  grantid: FWF, P24803; Chrocosm, P32790
– fundername: ;
  grantid: FDCT0106/2020/A; FDCT0033/2021/A1
– fundername: ;
  grantid: 12/RI/2346(3)
– fundername: ;
  grantid: 2R01GM112739-05A1
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c381t-e452037055b5dffeb776d1335a222116bef42fbd14494f003e390bb8837b187a3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:39:23 EDT 2025
Mon Sep 08 05:10:05 EDT 2025
Mon Jul 21 06:07:57 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Tue Jul 01 02:59:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-e452037055b5dffeb776d1335a222116bef42fbd14494f003e390bb8837b187a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, the first four authors should be regarded as Joint First Authors.
ORCID 0000-0002-2078-9833
0000-0002-0283-5322
0000-0003-0909-9556
0000-0001-9284-8727
0000-0002-3435-0522
0000-0003-0702-5465
0000-0003-0443-5709
0000-0002-9264-5118
0000-0001-6078-1409
0000-0002-3347-7628
0000-0002-3316-7769
0000-0002-3217-5871
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac744
PMID 36095118
PQID 2714063500
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9508808
proquest_miscellaneous_2714063500
pubmed_primary_36095118
crossref_citationtrail_10_1093_nar_gkac744
crossref_primary_10_1093_nar_gkac744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-23
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Minamino (2022092413233888500_B77) 2018; 28
Petrenko (2022092413233888500_B60) 2017; 6
Wong (2022092413233888500_B26) 2011; 25
Pfannenstiel (2022092413233888500_B18) 2017; 8
Wong (2022092413233888500_B55) 2014; 54
Mosammaparast (2022092413233888500_B7) 2010; 79
Meier (2022092413233888500_B42) 2014; 9
Zhuang (2022092413233888500_B64) 2016; 8
Ivanov (2022092413233888500_B78) 2018; 37
Seoane (2022092413233888500_B48) 2017; 27
Meng (2022092413233888500_B45) 1999; 96
Albright (2022092413233888500_B68) 2015; 10
Bauer (2022092413233888500_B38) 2020; 11
Lyons (2022092413233888500_B43) 2013; 20
MacAlpine (2022092413233888500_B4) 2013; 5
Tsai (2022092413233888500_B72) 1999; 181
Schneider (2022092413233888500_B40) 2012; 9
Rahman (2022092413233888500_B79) 2015; 112
Atoui (2022092413233888500_B62) 2008; 74
Seo (2022092413233888500_B66) 2005; 171
Bauer (2022092413233888500_B52) 2016; 7
Watanabe (2022092413233888500_B75) 2020; 3
Bayram (2022092413233888500_B9) 2008; 320
Bayram (2022092413233888500_B11) 2012; 36
Bayram (2022092413233888500_B39) 2012; 8
Song (2022092413233888500_B81) 2020; 30
Szot (2022092413233888500_B34) 2017; 45
Pfannenstiel (2022092413233888500_B20) 2018; 120
Gu (2022092413233888500_B35) 2018; 19
Freese (2022092413233888500_B33) 2016; 32
Soukup (2022092413233888500_B17) 2012; 86
Baker (2022092413233888500_B76) 2013; 33
Wang (2022092413233888500_B53) 2021; 6
Oakley (2022092413233888500_B65) 2017; 103
Gacek-Matthews (2022092413233888500_B19) 2016; 12
Libertini (2022092413233888500_B2) 1988; 53
Bok (2022092413233888500_B10) 2004; 3
Langmead (2022092413233888500_B28) 2012; 9
Kolog Gulko (2022092413233888500_B46) 2018; 14
Machanick (2022092413233888500_B57) 2011; 27
Reyes-Dominguez (2022092413233888500_B14) 2010; 76
Zhang (2022092413233888500_B49) 2008; 31
Ahmed (2022092413233888500_B69) 2013; 11
Reyes (2022092413233888500_B37) 2011; 23
Shwab (2022092413233888500_B13) 2007; 6
Klemm (2022092413233888500_B3) 2019; 20
Bok (2022092413233888500_B15) 2009; 5
Yang (2022092413233888500_B50) 2008; 9
Tan (2022092413233888500_B25) 2019; 11
Punt (2022092413233888500_B21) 1992; 216
Ausio (2022092413233888500_B1) 2006; 5
Gu (2022092413233888500_B30) 2016; 32
Lyons (2022092413233888500_B47) 2011; 42
Lee (2022092413233888500_B82) 2009; 29
Hortschansky (2022092413233888500_B58) 2017; 1860
Patsialou (2022092413233888500_B83) 2005; 33
Klose (2022092413233888500_B80) 2007; 8
Bauer (2022092413233888500_B51) 2019
Nutzmann (2022092413233888500_B16) 2011; 108
Keller (2022092413233888500_B70) 2019; 17
Rohlfs (2022092413233888500_B71) 2014; 5
Wong (2022092413233888500_B27) 2013; Chapter 7
Bayram (2022092413233888500_B23) 2012; 944
Busch (2022092413233888500_B61) 2007; 104
Venkatesh (2022092413233888500_B5) 2015; 16
Robinson (2022092413233888500_B32) 2011; 29
Suzuki (2022092413233888500_B24) 2012; 84
Hicks (2022092413233888500_B67) 1997; 16
Kent (2022092413233888500_B31) 2010; 26
Yu (2022092413233888500_B36) 2012; 16
Keller (2022092413233888500_B74) 2005; 3
Singh (2022092413233888500_B44) 2012; 7
Tchasovnikarova (2022092413233888500_B8) 2018; 69
Tribus (2022092413233888500_B41) 2010; 21
Brown (2022092413233888500_B12) 1996; 93
Petrenko (2022092413233888500_B59) 2016; 64
Bayram (2022092413233888500_B63) 2009; 71
Martin (2022092413233888500_B6) 2005; 6
Jeronimo (2022092413233888500_B56) 2014; 21
Colabardini (2022092413233888500_B54) 2022; 18
Spraker (2022092413233888500_B73) 2018; 9
Sarikaya Bayram (2022092413233888500_B22) 2010; 6
Zhang (2022092413233888500_B29) 2008; 9
References_xml – volume: 12
  start-page: e1006222
  year: 2016
  ident: 2022092413233888500_B19
  article-title: KdmB, a jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in aspergillus nidulans
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006222
– volume: 16
  start-page: 4916
  year: 1997
  ident: 2022092413233888500_B67
  article-title: Aspergillus sporulation and mycotoxin production both require inactivation of the FadA g alpha protein-dependent signaling pathway
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.16.4916
– volume: 26
  start-page: 2204
  year: 2010
  ident: 2022092413233888500_B31
  article-title: BigWig and bigbed: enabling browsing of large distributed datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq351
– volume: 20
  start-page: 207
  year: 2019
  ident: 2022092413233888500_B3
  article-title: Chromatin accessibility and the regulatory epigenome
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0089-8
– volume: 79
  start-page: 155
  year: 2010
  ident: 2022092413233888500_B7
  article-title: Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.070907.103946
– volume: 104
  start-page: 8089
  year: 2007
  ident: 2022092413233888500_B61
  article-title: An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0702108104
– volume: 25
  start-page: 2525
  year: 2011
  ident: 2022092413233888500_B26
  article-title: The cyc8-tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.179275.111
– volume: 944
  start-page: 191
  year: 2012
  ident: 2022092413233888500_B23
  article-title: Identification of protein complexes from filamentous fungi with tandem affinity purification
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-122-6_14
– volume: 5
  start-page: a010207
  year: 2013
  ident: 2022092413233888500_B4
  article-title: Chromatin and DNA replication
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a010207
– volume: 6
  start-page: 1066
  year: 2021
  ident: 2022092413233888500_B53
  article-title: Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00922-y
– volume: 69
  start-page: 5
  year: 2018
  ident: 2022092413233888500_B8
  article-title: Beyond the histone code: a physical map of chromatin states
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.018
– volume: 96
  start-page: 10403
  year: 1999
  ident: 2022092413233888500_B45
  article-title: Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.18.10403
– volume: 28
  start-page: 2665
  year: 2018
  ident: 2022092413233888500_B77
  article-title: Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.06.037
– volume: 27
  start-page: 1696
  year: 2011
  ident: 2022092413233888500_B57
  article-title: MEME-ChIP: motif analysis of large DNA datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr189
– volume: 181
  start-page: 6469
  year: 1999
  ident: 2022092413233888500_B72
  article-title: A developmentally regulated gene cluster involved in conidial pigment biosynthesis in aspergillus fumigatus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.20.6469-6477.1999
– volume: 29
  start-page: 1401
  year: 2009
  ident: 2022092413233888500_B82
  article-title: The H3K4 demethylase lid associates with and inhibits histone deacetylase rpd3
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01643-08
– volume: 7
  start-page: e36295
  year: 2012
  ident: 2022092413233888500_B44
  article-title: Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast saccharomyces cerevisiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0036295
– volume: 64
  start-page: 443
  year: 2016
  ident: 2022092413233888500_B59
  article-title: Mediator undergoes a compositional change during transcriptional activation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.09.015
– volume: 54
  start-page: 601
  year: 2014
  ident: 2022092413233888500_B55
  article-title: TFIIH phosphorylation of the pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.024
– volume: 32
  start-page: 2847
  year: 2016
  ident: 2022092413233888500_B30
  article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw313
– volume: 16
  start-page: 178
  year: 2015
  ident: 2022092413233888500_B5
  article-title: Histone exchange, chromatin structure and the regulation of transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3941
– volume: 120
  start-page: 9
  year: 2018
  ident: 2022092413233888500_B20
  article-title: The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in aspergillus flavus
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2018.08.004
– volume: 31
  start-page: 143
  year: 2008
  ident: 2022092413233888500_B49
  article-title: Acetylation of smc3 by eco1 is required for s phase sister chromatid cohesion in both human and yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.06.006
– volume: 71
  start-page: 1278
  year: 2009
  ident: 2022092413233888500_B63
  article-title: The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production in aspergillus nidulans
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2009.06606.x
– volume: 10
  start-page: 1535
  year: 2015
  ident: 2022092413233888500_B68
  article-title: Large-scale metabolomics reveals a complex response of aspergillus nidulans to epigenetic perturbation
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00025
– volume: 42
  start-page: 378
  year: 2011
  ident: 2022092413233888500_B47
  article-title: Cdk1-dependent destruction of eco1 prevents cohesion establishment after s phase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.023
– volume: 11
  start-page: 79
  year: 2019
  ident: 2022092413233888500_B25
  article-title: RNA polymerase II chip-seq-a powerful and highly affordable method for studying fungal genomics and physiology
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-018-00497-9
– volume: 86
  start-page: 314
  year: 2012
  ident: 2022092413233888500_B17
  article-title: Overexpression of the aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08195.x
– volume: 7
  start-page: e00831-16
  year: 2016
  ident: 2022092413233888500_B52
  article-title: A class 1 histone deacetylase with potential as an antifungal target
  publication-title: MBio
  doi: 10.1128/mBio.00831-16
– volume: 216
  start-page: 447
  year: 1992
  ident: 2022092413233888500_B21
  article-title: Transformation of filamentous fungi based on hygromycin b and phleomycin resistance markers
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(92)16041-H
– volume: 9
  start-page: R137
  year: 2008
  ident: 2022092413233888500_B29
  article-title: Model-based analysis of chip-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 8
  year: 2017
  ident: 2022092413233888500_B18
  article-title: Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus
  publication-title: MBio
  doi: 10.1128/mBio.01246-17
– volume: 103
  start-page: 347
  year: 2017
  ident: 2022092413233888500_B65
  article-title: Discovery of McrA, a master regulator of aspergillus secondary metabolism
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13562
– volume: 108
  start-page: 14282
  year: 2011
  ident: 2022092413233888500_B16
  article-title: Bacteria-induced natural product formation in the fungus aspergillus nidulans requires Saga/Ada-mediated histone acetylation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1103523108
– volume: 9
  start-page: 671
  year: 2012
  ident: 2022092413233888500_B40
  article-title: NIH image to imagej: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 21
  start-page: 345
  year: 2010
  ident: 2022092413233888500_B41
  article-title: A novel motif in fungal class 1 histone deacetylases is essential for growth and development of aspergillus
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-08-0750
– year: 2019
  ident: 2022092413233888500_B51
  article-title: Single-Step enrichment of a TAP-tagged histone deacetylase of the filamentous fungus aspergillus nidulans for enzymatic activity assay
  publication-title: J. Vis. Exp.
  doi: 10.3791/59527
– volume: 23
  start-page: 769
  year: 2011
  ident: 2022092413233888500_B37
  article-title: Delivery of prolamins to the protein storage vacuole in maize aleurone cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.082156
– volume: 1860
  start-page: 560
  year: 2017
  ident: 2022092413233888500_B58
  article-title: The CCAAT-binding complex (CBC) in aspergillus species
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2016.11.008
– volume: 45
  start-page: e67
  year: 2017
  ident: 2022092413233888500_B34
  article-title: PBrowse: a web-based platform for real-time collaborative exploration of genomic data
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: e1002816
  year: 2012
  ident: 2022092413233888500_B39
  article-title: The Aspergillusnidulans MAPK module anste11-Ste50-Ste7-Fus3 controls development and secondary metabolism
  publication-title: PLos Genet.
  doi: 10.1371/journal.pgen.1002816
– volume: 16
  start-page: 284
  year: 2012
  ident: 2022092413233888500_B36
  article-title: clusterProfiler: an r package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 33
  start-page: 66
  year: 2005
  ident: 2022092413233888500_B83
  article-title: DNA-binding properties of ARID family proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki145
– volume: 6
  start-page: e28447
  year: 2017
  ident: 2022092413233888500_B60
  article-title: Evidence that mediator is essential for pol II transcription, but is not a required component of the preinitiation complex in vivo
  publication-title: Elife
  doi: 10.7554/eLife.28447
– volume: 112
  start-page: 11270
  year: 2015
  ident: 2022092413233888500_B79
  article-title: Cohesin recruits the esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1505323112
– volume: 93
  start-page: 1418
  year: 1996
  ident: 2022092413233888500_B12
  article-title: Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in aspergillusnidulans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.4.1418
– volume: 74
  start-page: 3596
  year: 2008
  ident: 2022092413233888500_B62
  article-title: Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02842-07
– volume: 5
  start-page: 462
  year: 2009
  ident: 2022092413233888500_B15
  article-title: Chromatin-level regulation of biosynthetic gene clusters
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.177
– volume: 19
  start-page: 234
  year: 2018
  ident: 2022092413233888500_B35
  article-title: EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4625-x
– volume: 32
  start-page: 2089
  year: 2016
  ident: 2022092413233888500_B33
  article-title: Integrated genome browser: visual analytics platform for genomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw069
– volume: 11
  start-page: e1001750
  year: 2013
  ident: 2022092413233888500_B69
  article-title: The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001750
– volume: 14
  start-page: e1007141
  year: 2018
  ident: 2022092413233888500_B46
  article-title: Sem1 links proteasome stability and specificity to multicellular development
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007141
– volume: 37
  start-page: e97150
  year: 2018
  ident: 2022092413233888500_B78
  article-title: The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion
  publication-title: EMBO J.
  doi: 10.15252/embj.201797150
– volume: 6
  start-page: 838
  year: 2005
  ident: 2022092413233888500_B6
  article-title: The diverse functions of histone lysine methylation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1761
– volume: 6
  start-page: 1656
  year: 2007
  ident: 2022092413233888500_B13
  article-title: Histone deacetylase activity regulates chemical diversity in aspergillus
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00186-07
– volume: 21
  start-page: 449
  year: 2014
  ident: 2022092413233888500_B56
  article-title: Kin28 regulates the transient association of mediator with core promoters
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2810
– volume: 9
  start-page: e00820-18
  year: 2018
  ident: 2022092413233888500_B73
  article-title: Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi
  publication-title: MBio
  doi: 10.1128/mBio.00820-18
– volume: 36
  start-page: 1
  year: 2012
  ident: 2022092413233888500_B11
  article-title: Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2011.00285.x
– volume: 8
  start-page: 307
  year: 2007
  ident: 2022092413233888500_B80
  article-title: Regulation of histone methylation by demethylimination and demethylation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2143
– volume: 17
  start-page: 167
  year: 2019
  ident: 2022092413233888500_B70
  article-title: Fungal secondary metabolism: regulation, function and drug discovery
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0121-1
– volume: 3
  start-page: 937
  year: 2005
  ident: 2022092413233888500_B74
  article-title: Fungal secondary metabolism - from biochemistry to genomics
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1286
– volume: 11
  start-page: 43
  year: 2020
  ident: 2022092413233888500_B38
  article-title: RcLS2F - A Novel fungal class 1 KDAC Co-repressor complex in aspergillus nidulans
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00043
– volume: 320
  start-page: 1504
  year: 2008
  ident: 2022092413233888500_B9
  article-title: VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism
  publication-title: Science
  doi: 10.1126/science.1155888
– volume: 29
  start-page: 24
  year: 2011
  ident: 2022092413233888500_B32
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– volume: 8
  start-page: 29
  year: 2016
  ident: 2022092413233888500_B64
  article-title: The master transcription factor mtfA governs aflatoxin production, morphological development and pathogenicity in the fungus aspergillus flavus
  publication-title: Toxins (Basel)
  doi: 10.3390/toxins8010029
– volume: 30
  start-page: 2699
  year: 2020
  ident: 2022092413233888500_B81
  article-title: Mechanism of crosstalk between the LSD1 demethylase and HDAC1 deacetylase in the CoREST complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.01.091
– volume: 84
  start-page: 942
  year: 2012
  ident: 2022092413233888500_B24
  article-title: Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in aspergillus nidulans
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08067.x
– volume: 53
  start-page: 477
  year: 1988
  ident: 2022092413233888500_B2
  article-title: Histone hyperacetylation. Its effects on nucleosome core particle transitions
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(88)83126-6
– volume: 76
  start-page: 1376
  year: 2010
  ident: 2022092413233888500_B14
  article-title: Heterochromatic marks are associated with the repression of secondary metabolism clusters in aspergillus nidulans
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07051.x
– volume: 6
  start-page: e1001226
  year: 2010
  ident: 2022092413233888500_B22
  article-title: LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001226
– volume: 3
  start-page: 592
  year: 2020
  ident: 2022092413233888500_B75
  article-title: A substrate-trapping strategy to find E3 ubiquitin ligase substrates identifies parkin and TRIM28 targets
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-01328-y
– volume: 9
  start-page: 357
  year: 2012
  ident: 2022092413233888500_B28
  article-title: Fast gapped-read alignment with bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 9
  start-page: 206
  year: 2008
  ident: 2022092413233888500_B50
  article-title: The rpd3/hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2346
– volume: 171
  start-page: 81
  year: 2005
  ident: 2022092413233888500_B66
  article-title: Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of aspergillus nidulans
  publication-title: Genetics
  doi: 10.1534/genetics.105.042796
– volume: Chapter 7
  start-page: Unit 7 11
  year: 2013
  ident: 2022092413233888500_B27
  article-title: Multiplex illumina sequencing using DNA barcoding
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 18
  start-page: e1010001
  year: 2022
  ident: 2022092413233888500_B54
  article-title: Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen aspergillus fumigatus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1010001
– volume: 27
  start-page: 2849
  year: 2017
  ident: 2022092413233888500_B48
  article-title: Firing of replication origins frees dbf4-cdc7 to target eco1 for destruction
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.07.070
– volume: 33
  start-page: 3735
  year: 2013
  ident: 2022092413233888500_B76
  article-title: The yeast snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00025-13
– volume: 5
  start-page: 228
  year: 2006
  ident: 2022092413233888500_B1
  article-title: Histone variants–the structure behind the function
  publication-title: Brief. Funct. Genomic Proteomic
  doi: 10.1093/bfgp/ell020
– volume: 20
  start-page: 194
  year: 2013
  ident: 2022092413233888500_B43
  article-title: Sequential primed kinases create a damage-responsive phosphodegron on eco1
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2478
– volume: 5
  start-page: 788
  year: 2014
  ident: 2022092413233888500_B71
  article-title: Fungal secondary metabolite dynamics in fungus-grazer interactions: novel insights and unanswered questions
  publication-title: Front. Microbiol
– volume: 9
  start-page: 1485
  year: 2014
  ident: 2022092413233888500_B42
  article-title: Chromatin regulation: how complex does it get?
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.971580
– volume: 3
  start-page: 527
  year: 2004
  ident: 2022092413233888500_B10
  article-title: LaeA, a regulator of secondary metabolism in aspergillus spp
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.3.2.527-535.2004
SSID ssj0014154
Score 2.5119634
Snippet Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9797
SubjectTerms Acetyltransferases - metabolism
Aspergillus nidulans - genetics
Aspergillus nidulans - metabolism
Chromatin - genetics
Chromatin - metabolism
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Expression Regulation, Fungal
Gene regulation, Chromatin and Epigenetics
Genes, Fungal
Genes, Regulator
Histone Deacetylases - metabolism
Histone Demethylases - metabolism
Histones - genetics
Histones - metabolism
Sterigmatocystin - metabolism
Ubiquitin-Protein Ligases - metabolism
Title The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis
URI https://www.ncbi.nlm.nih.gov/pubmed/36095118
https://www.proquest.com/docview/2714063500
https://pubmed.ncbi.nlm.nih.gov/PMC9508808
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FRYJeELQ8wqNapIoDkVvb6-cxjVJVoFQIGqniEnntdWI1sUPioAbxB_lXzOyuHYfmAL1Yke14Fc-X2W93Zr4h5JhFTMRBmhiWw03D8ezECG3hGcL3IiuKPIAQFjgPLr2LofPx2r1utX43spZWJT-Jf-6sK7mPVeEc2BWrZP_DsvVD4QR8BvvCESwMx3-28adkdmb046JrfJknXeNrXp514smiQCaqUsyn4rYD698EAwSy8TyG1cfo43RRG6w_sxw5ZwdmuTFGbTaZRGqjdraOi7K4hQcu1zlQxmW2bLLaSxRFRuHXOJOjNHbI0JfjpnORqB7Posxmm7DVIhHLia7PvpnArFlNpHB1OFW1ZgPxA95hTbh1CvG3SfYdkD1u7lrAghcDOWyzxt1dDdlwfkwqpCoVzhOhnLOs8Aq3vbeSra1Q6jd8ceirzF89r4eBKnq9M2coPa0c89nPxzdR7CtBygZ-5jMJIIbifJaeLrZFuj8PerKdLpadP7B9oHHgWn2zXwe0gCcpJTP9s3SpKIx9CiOf6nH3ycNqkG2edGfx83cOb4MUXT0hj_VqhnYVNJ-SlsgPyGEXwFTM1vQ9lfnFMnBzQB71qt6Ch-QXIJfuQC6tkUs1cqlELt0gl0rkUkAubSCXKuTSBnIpIpfWyKU1cp-R4Xn_qndh6D4gRgx8sjSE49omQ9kn7iZpKrjve4nFmBsBubUsj4vUsVOeWI4TOilMU4KFJudBwHxuBX7EnpO9vMjFS0K5ZXvYcyANXc-JrQQ8mOVEnPsxcuXAbZMP1VsfxVokH3u1TEcqWYONwFojba02Oa5vnittmN23vavMN4LXjAG5KBfFajmyUS0TGL9ptskLZc76QRUO2sTfMnR9A-rCb1_Js4nUh9dIfHXvb74m-5v_7BuyVy5W4i1w75IfSVQfyZ2rP7fR5gM
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+KdmB-EcoA-RpdA-SntB+chromatin+complex+binds+regulatory+genes+and+coordinates+fungal+development+with+mycotoxin+synthesis&rft.jtitle=Nucleic+acids+research&rft.au=Karahoda%2C+Betim&rft.au=Pardeshi%2C+Lakhansing&rft.au=Ulas%2C+Mevlut&rft.au=Dong%2C+Zhiqiang&rft.date=2022-09-23&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=50&rft.issue=17&rft.spage=9797&rft.epage=9813&rft_id=info:doi/10.1093%2Fnar%2Fgkac744&rft_id=info%3Apmid%2F36095118&rft.externalDocID=PMC9508808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon