Electrically controlled rapid release of actives encapsulated in double-emulsion droplets
Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of...
Saved in:
Published in | Lab on a chip Vol. 18; no. 7; pp. 1121 - 1129 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1473-0197 1473-0189 1473-0189 |
DOI | 10.1039/C7LC01387F |
Cover
Abstract | Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives
via
an alternating current electric field. An electric field-induced compression due to Maxwell–Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells. |
---|---|
AbstractList | Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells. Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells. Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell–Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells. |
Author | Tao, Ye Jiang, Tianyi Liu, Weiyu Deng, Xiaokang Ren, Yukun Jiang, Hongyuan Jia, Yankai Hou, Likai |
Author_xml | – sequence: 1 givenname: Yankai orcidid: 0000-0003-0586-3473 surname: Jia fullname: Jia, Yankai organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 2 givenname: Yukun orcidid: 0000-0002-0167-1274 surname: Ren fullname: Ren, Yukun organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 3 givenname: Likai orcidid: 0000-0003-3945-9006 surname: Hou fullname: Hou, Likai organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 4 givenname: Weiyu surname: Liu fullname: Liu, Weiyu organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 5 givenname: Tianyi surname: Jiang fullname: Jiang, Tianyi organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 6 givenname: Xiaokang surname: Deng fullname: Deng, Xiaokang organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 7 givenname: Ye surname: Tao fullname: Tao, Ye organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China – sequence: 8 givenname: Hongyuan surname: Jiang fullname: Jiang, Hongyuan organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29536065$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c9LwzAUB_AgE7epF_8AKXgRoZo0bZMeZcwfMPCiB08lfX2FjKypSSrsvzdj_oDh5SWBz3uE75uTSW97JOSC0VtGeXW3EKsFZVyKhyMyY7ngKWWymvzeKzElc-_XlLIiL-UJmWZVwUtaFjPyvjQIwWlQxmwTsH1w1hhsE6cGHSsaVB4T2yUKgv5En2APavCjUSEq3SetHRuDKW5G47WNb2cHg8GfkeNOGY_n3-cpeXtYvi6e0tXL4_PifpUClyykjZKiEahkC1mRKQBRYqW6ksXaNDnk0CKwnFdMNFR2klUdZh3luSig7CDjp-R6P3dw9mNEH-qN9oDGqB7t6OssRiNkzjMa6dUBXdvR9fF3OyWF5EWVR3X5rcZmg209OL1Rblv_hBYB3QNw1nuHXQ06qKB34Sltakbr3V7qv73ElpuDlp-p_-AvGSKN0A |
CitedBy_id | crossref_primary_10_1088_1755_1315_300_5_052006 crossref_primary_10_1039_D0LC00730G crossref_primary_10_1016_j_cclet_2019_04_040 crossref_primary_10_1039_C8LC01130C crossref_primary_10_1039_D4SM00488D crossref_primary_10_2139_ssrn_4117475 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103914 crossref_primary_10_1021_acs_langmuir_4c03047 crossref_primary_10_1016_j_jcis_2020_08_033 crossref_primary_10_1109_JSEN_2024_3462800 crossref_primary_10_1002_adfm_202408095 crossref_primary_10_3390_mi11121121 crossref_primary_10_3390_bioengineering9110625 crossref_primary_10_3390_mi11040444 crossref_primary_10_1021_acsomega_4c03959 crossref_primary_10_1021_acs_iecr_9b00771 crossref_primary_10_1073_pnas_2002623117 crossref_primary_10_1088_1361_6439_abaf34 crossref_primary_10_1021_jacs_9b06852 crossref_primary_10_1007_s12274_022_4963_5 crossref_primary_10_1016_j_snb_2022_132473 crossref_primary_10_1039_D3LC00888F crossref_primary_10_1002_admi_202101071 crossref_primary_10_1021_acs_analchem_8b05456 crossref_primary_10_1002_elps_201900105 crossref_primary_10_1016_j_snb_2023_135013 crossref_primary_10_1016_j_cej_2023_148347 crossref_primary_10_1080_01932691_2019_1614037 crossref_primary_10_1002_smtd_202100331 crossref_primary_10_1002_smll_202001180 crossref_primary_10_1063_5_0242599 crossref_primary_10_1002_smll_201903098 crossref_primary_10_1007_s00216_022_04266_2 crossref_primary_10_1016_j_sna_2019_06_022 crossref_primary_10_1016_j_colsurfa_2020_124905 crossref_primary_10_1021_acsami_8b12597 crossref_primary_10_1039_D3RA08561A crossref_primary_10_3390_mi11100942 crossref_primary_10_1016_j_cej_2021_134200 crossref_primary_10_1063_5_0177605 crossref_primary_10_1103_PhysRevE_102_053104 crossref_primary_10_1007_s10404_019_2194_1 crossref_primary_10_1016_j_gee_2023_05_012 crossref_primary_10_1016_j_nanoen_2021_106004 |
Cites_doi | 10.1021/ja401960f 10.1002/smll.201702188 10.1007/s10404-017-1897-4 10.1146/annurev-anchem-062011-143028 10.1002/adma.200803386 10.1002/adma.201305119 10.1002/smll.201700646 10.1073/pnas.1621226114 10.1126/science.1070850 10.1016/j.biomaterials.2013.03.002 10.1039/c0nr00448k 10.1039/b408352k 10.1109/TDEI.2003.1237326 10.1016/j.bios.2010.06.025 10.1063/1.4952572 10.1115/1.2891228 10.1016/j.jconrel.2009.05.031 10.1017/CBO9780511574498 10.1038/nature13118 10.1126/science.1095833 10.1039/C6LC01052K 10.1038/nmat3776 10.1002/anie.200704903 10.1021/am100860b 10.1002/mabi.200400026 10.1039/b807374k 10.1039/C7LC00242D 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 10.1021/ac901188n 10.1038/nbt.2989 10.1039/C1LC20434C 10.1146/annurev.bioeng.8.061505.095739 10.1016/j.addr.2017.08.003 10.1016/j.jconrel.2012.01.032 10.1021/acsami.5b08863 10.1146/annurev.fluid.29.1.27 10.1021/acsami.7b00670 10.1063/1.2790785 10.1002/adfme.201700975 10.1016/j.bios.2013.08.016 10.1039/C6LC01435F 10.1021/ja401422r 10.1021/la0531300 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SP 7TB 7U5 8FD FR3 L7M 7X8 |
DOI | 10.1039/C7LC01387F |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1473-0189 |
EndPage | 1129 |
ExternalDocumentID | 29536065 10_1039_C7LC01387F |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 0UZ 0VX 1TJ 29L 4.4 53G 5GY 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT AUDPV BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~N IDY IDZ J3G J3H J3I L-8 M4U N9A NDZJH O9- R56 R7B RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SLH VH6 NPM 7SP 7TB 7U5 8FD FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c381t-ba87b7ea8dc252acc76e9af61e9abb4c4cdec143917b08f819fe2f03475c6fc23 |
ISSN | 1473-0197 1473-0189 |
IngestDate | Fri Jul 11 10:55:05 EDT 2025 Sun Jun 29 15:29:48 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Tue Jul 01 01:52:38 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-ba87b7ea8dc252acc76e9af61e9abb4c4cdec143917b08f819fe2f03475c6fc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0167-1274 0000-0003-3945-9006 0000-0003-0586-3473 |
PMID | 29536065 |
PQID | 2018783594 |
PQPubID | 2047488 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2013784320 proquest_journals_2018783594 pubmed_primary_29536065 crossref_citationtrail_10_1039_C7LC01387F crossref_primary_10_1039_C7LC01387F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Lab on a chip |
PublicationTitleAlternate | Lab Chip |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sun (C7LC01387F-(cit13)/*[position()=1]) 2010; 2 Chen (C7LC01387F-(cit24)/*[position()=1]) 2009; 139 Chang (C7LC01387F-(cit32)/*[position()=1]) 1991 Sackmann (C7LC01387F-(cit1)/*[position()=1]) 2014; 507 Bhatia (C7LC01387F-(cit2)/*[position()=1]) 2014; 32 Kim (C7LC01387F-(cit25)/*[position()=1]) 2007; 91 Salgado (C7LC01387F-(cit11)/*[position()=1]) 2004; 4 Schuster (C7LC01387F-(cit40)/*[position()=1]) 1996 Chopra (C7LC01387F-(cit23)/*[position()=1]) 2012; 160 Choi (C7LC01387F-(cit28)/*[position()=1]) 2012; 5 Jorgensen (C7LC01387F-(cit46)/*[position()=1]) 2002; 297 Saville (C7LC01387F-(cit29)/*[position()=1]) 1997; 29 Niu (C7LC01387F-(cit41)/*[position()=1]) 2009; 81 Steinhaus (C7LC01387F-(cit42)/*[position()=1]) 2006; 22 Kim (C7LC01387F-(cit35)/*[position()=1]) 2011; 11 Dendukuri (C7LC01387F-(cit6)/*[position()=1]) 2009; 21 Hou (C7LC01387F-(cit15)/*[position()=1]) 2017; 21 Wang (C7LC01387F-(cit21)/*[position()=1]) 2010; 26 Voldman (C7LC01387F-(cit45)/*[position()=1]) 2006; 8 Windbergs (C7LC01387F-(cit5)/*[position()=1]) 2013; 135 Hutmacher (C7LC01387F-(cit12)/*[position()=1]) 2001; 55 Kim (C7LC01387F-(cit22)/*[position()=1]) 2011; 3 Fidalgo (C7LC01387F-(cit27)/*[position()=1]) 2008; 47 Jia (C7LC01387F-(cit39)/*[position()=1]) 2016; 16 Lang (C7LC01387F-(cit18)/*[position()=1]) 2015; 7 Zhang (C7LC01387F-(cit14)/*[position()=1]) 2017 Xi (C7LC01387F-(cit26)/*[position()=1]) 2017; 17 Jia (C7LC01387F-(cit30)/*[position()=1]) 2017; 13 Jones (C7LC01387F-(cit44)/*[position()=1]) 1995 Allen (C7LC01387F-(cit43)/*[position()=1]) 2004; 303 Liu (C7LC01387F-(cit3)/*[position()=1]) 2017 Aghdaei (C7LC01387F-(cit34)/*[position()=1]) 2008; 8 Lee (C7LC01387F-(cit36)/*[position()=1]) 2017; 13 Guan (C7LC01387F-(cit37)/*[position()=1]) 2016; 10 Liu (C7LC01387F-(cit4)/*[position()=1]) 2017; 17 Morgan (C7LC01387F-(cit19)/*[position()=1]) 2003 Terekhov (C7LC01387F-(cit8)/*[position()=1]) 2017; 114 Abbaspourrad (C7LC01387F-(cit16)/*[position()=1]) 2013; 135 Hou (C7LC01387F-(cit38)/*[position()=1]) 2017; 9 Khine (C7LC01387F-(cit31)/*[position()=1]) 2005; 5 Lewis (C7LC01387F-(cit33)/*[position()=1]) 2003; 10 Zhang (C7LC01387F-(cit7)/*[position()=1]) 2013; 34 Datta (C7LC01387F-(cit9)/*[position()=1]) 2014; 26 Mura (C7LC01387F-(cit20)/*[position()=1]) 2013; 12 Cima (C7LC01387F-(cit10)/*[position()=1]) 1991; 113 Li (C7LC01387F-(cit17)/*[position()=1]) 2014; 51 |
References_xml | – volume: 135 start-page: 7744 year: 2013 ident: C7LC01387F-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401960f – volume: 13 start-page: 1702188 year: 2017 ident: C7LC01387F-(cit30)/*[position()=1] publication-title: Small doi: 10.1002/smll.201702188 – volume: 21 start-page: 60 year: 2017 ident: C7LC01387F-(cit15)/*[position()=1] publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-017-1897-4 – volume-title: AC electrokinetics year: 2003 ident: C7LC01387F-(cit19)/*[position()=1] – volume: 5 start-page: 413 year: 2012 ident: C7LC01387F-(cit28)/*[position()=1] publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-062011-143028 – volume: 21 start-page: 4071 year: 2009 ident: C7LC01387F-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200803386 – volume: 26 start-page: 2205 year: 2014 ident: C7LC01387F-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305119 – volume: 13 start-page: 1700646 year: 2017 ident: C7LC01387F-(cit36)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700646 – volume: 114 start-page: 2550 year: 2017 ident: C7LC01387F-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1621226114 – volume: 297 start-page: 395 year: 2002 ident: C7LC01387F-(cit46)/*[position()=1] publication-title: Science doi: 10.1126/science.1070850 – volume: 34 start-page: 4564 year: 2013 ident: C7LC01387F-(cit7)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.002 – volume: 3 start-page: 1526 year: 2011 ident: C7LC01387F-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00448k – volume: 5 start-page: 38 year: 2005 ident: C7LC01387F-(cit31)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b408352k – volume: 10 start-page: 769 year: 2003 ident: C7LC01387F-(cit33)/*[position()=1] publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2003.1237326 – volume: 26 start-page: 778 year: 2010 ident: C7LC01387F-(cit21)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.06.025 – volume: 10 start-page: 034111 year: 2016 ident: C7LC01387F-(cit37)/*[position()=1] publication-title: Biomicrofluidics doi: 10.1063/1.4952572 – volume: 113 start-page: 143 year: 1991 ident: C7LC01387F-(cit10)/*[position()=1] publication-title: J. Biomech. Eng. doi: 10.1115/1.2891228 – volume: 139 start-page: 63 year: 2009 ident: C7LC01387F-(cit24)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2009.05.031 – volume-title: Encyclopedia of emulsion technology year: 1996 ident: C7LC01387F-(cit40)/*[position()=1] – volume-title: Electromechanics of Particles year: 1995 ident: C7LC01387F-(cit44)/*[position()=1] doi: 10.1017/CBO9780511574498 – volume: 507 start-page: 181 year: 2014 ident: C7LC01387F-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature13118 – volume: 303 start-page: 1818 year: 2004 ident: C7LC01387F-(cit43)/*[position()=1] publication-title: Science doi: 10.1126/science.1095833 – volume: 16 start-page: 4313 year: 2016 ident: C7LC01387F-(cit39)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC01052K – volume: 12 start-page: 991 year: 2013 ident: C7LC01387F-(cit20)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 47 start-page: 2042 year: 2008 ident: C7LC01387F-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704903 – volume: 2 start-page: 3411 year: 2010 ident: C7LC01387F-(cit13)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100860b – volume: 4 start-page: 743 year: 2004 ident: C7LC01387F-(cit11)/*[position()=1] publication-title: Macromol. Biosci. doi: 10.1002/mabi.200400026 – volume: 8 start-page: 1617 year: 2008 ident: C7LC01387F-(cit34)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b807374k – volume: 17 start-page: 1856 year: 2017 ident: C7LC01387F-(cit4)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C7LC00242D – volume: 55 start-page: 203 year: 2001 ident: C7LC01387F-(cit12)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7 – volume: 81 start-page: 7321 year: 2009 ident: C7LC01387F-(cit41)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac901188n – volume: 32 start-page: 760 year: 2014 ident: C7LC01387F-(cit2)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2989 – volume: 11 start-page: 3162 year: 2011 ident: C7LC01387F-(cit35)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C1LC20434C – volume-title: Guide to electroporation and electrofusion year: 1991 ident: C7LC01387F-(cit32)/*[position()=1] – volume: 8 start-page: 425 year: 2006 ident: C7LC01387F-(cit45)/*[position()=1] publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.8.061505.095739 – year: 2017 ident: C7LC01387F-(cit3)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2017.08.003 – volume: 160 start-page: 96 year: 2012 ident: C7LC01387F-(cit23)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2012.01.032 – volume: 7 start-page: 26792 year: 2015 ident: C7LC01387F-(cit18)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08863 – volume: 29 start-page: 27 year: 1997 ident: C7LC01387F-(cit29)/*[position()=1] publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.27 – volume: 9 start-page: 12282 year: 2017 ident: C7LC01387F-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00670 – volume: 91 start-page: 133106 year: 2007 ident: C7LC01387F-(cit25)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2790785 – start-page: 1700975 year: 2017 ident: C7LC01387F-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfme.201700975 – volume: 51 start-page: 437 year: 2014 ident: C7LC01387F-(cit17)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.08.016 – volume: 17 start-page: 751 year: 2017 ident: C7LC01387F-(cit26)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC01435F – volume: 135 start-page: 7933 year: 2013 ident: C7LC01387F-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401422r – volume: 22 start-page: 5308 year: 2006 ident: C7LC01387F-(cit42)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0531300 |
SSID | ssj0015468 |
Score | 2.4509406 |
Snippet | Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1121 |
SubjectTerms | Controlled release Droplets Drug delivery systems Electric fields Encapsulation Reagents Thin walled shells Transplantation Yeast |
Title | Electrically controlled rapid release of actives encapsulated in double-emulsion droplets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29536065 https://www.proquest.com/docview/2018783594 https://www.proquest.com/docview/2013784320 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLagIwQcEJStMCAjuKBRZrK4cXIcVa0KCsMlFe0psh1HiiYkVac5lF_Ps50NKNLAxapcN4n8vrx-fitCH3w_gNfZZVYI6s8CBu5abBoqA7xPQm77kut2QF-u_OWKfF5P132jS51dsufn4sfRvJL_kSrMgVxVluw_SLa7KEzAZ5AvjCBhGG8l47nuYaO2uTi0QecFMMgd2-apbofCjKmeaa12cwYPz-BYXDDFM1UcbFXzQlrye10oq9lZulPx5Ka4U58lzZVHgam8720XcGNibDesvGZ557QxKmxTX9cd5JZVbY7-g3VRrue-yfxQD60OTjCwOhhFSaiKwzLtf87lkbk_tGvdxgQbVQlEzzmqw21PlUAVtBDKi0qz_p-q9c5ffU0WqyhK4vk6votOXAq0aYROLufxp6hzIU2JyYNsH6qtTeuFF_21f2UjfzliaKoRP0aPmjMCvjQCf4LuyHKM7pmuoYcxuj9rm_SN0cNBPcmnaDMEBO4BgTUgcAMIXGW4AQQeAgLnJf4NELgFxDO0Wszj2dJqemdYAjjY3uIsoJxKFqTCnbpMCOrLkGW-AyPnRBCRSuGotGvK7SADXphJN7M9QqfCz4TrPUejsirlS4R54AVp4IaCU5tIxWek43lMhoTBdWwxQR_bPUxEU1he9TcpEh3g4IXJjEYzvd-LCXrfrd2acipHV522okia1-0mUShUZsqQTNC77mvYbuXhYqWsar3GowHxXHuCXhgRdrdxVaACEO5Xt_j1a_SgB_0pGu13tXwD5HPP3zYw-wmQkYcD |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+controlled+rapid+release+of+actives+encapsulated+in+double-emulsion+droplets&rft.jtitle=Lab+on+a+chip&rft.au=Jia%2C+Yankai&rft.au=Ren%2C+Yukun&rft.au=Hou%2C+Likai&rft.au=Liu%2C+Weiyu&rft.date=2018-01-01&rft.issn=1473-0189&rft.eissn=1473-0189&rft.volume=18&rft.issue=7&rft.spage=1121&rft_id=info:doi/10.1039%2Fc7lc01387f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon |