Electrically controlled rapid release of actives encapsulated in double-emulsion droplets

Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 18; no. 7; pp. 1121 - 1129
Main Authors Jia, Yankai, Ren, Yukun, Hou, Likai, Liu, Weiyu, Jiang, Tianyi, Deng, Xiaokang, Tao, Ye, Jiang, Hongyuan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text
ISSN1473-0197
1473-0189
1473-0189
DOI10.1039/C7LC01387F

Cover

Abstract Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell–Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.
AbstractList Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.
Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.
Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell–Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.
Author Tao, Ye
Jiang, Tianyi
Liu, Weiyu
Deng, Xiaokang
Ren, Yukun
Jiang, Hongyuan
Jia, Yankai
Hou, Likai
Author_xml – sequence: 1
  givenname: Yankai
  orcidid: 0000-0003-0586-3473
  surname: Jia
  fullname: Jia, Yankai
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 2
  givenname: Yukun
  orcidid: 0000-0002-0167-1274
  surname: Ren
  fullname: Ren, Yukun
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 3
  givenname: Likai
  orcidid: 0000-0003-3945-9006
  surname: Hou
  fullname: Hou, Likai
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 4
  givenname: Weiyu
  surname: Liu
  fullname: Liu, Weiyu
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 5
  givenname: Tianyi
  surname: Jiang
  fullname: Jiang, Tianyi
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 6
  givenname: Xiaokang
  surname: Deng
  fullname: Deng, Xiaokang
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 7
  givenname: Ye
  surname: Tao
  fullname: Tao, Ye
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
– sequence: 8
  givenname: Hongyuan
  surname: Jiang
  fullname: Jiang, Hongyuan
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29536065$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9LwzAUB_AgE7epF_8AKXgRoZo0bZMeZcwfMPCiB08lfX2FjKypSSrsvzdj_oDh5SWBz3uE75uTSW97JOSC0VtGeXW3EKsFZVyKhyMyY7ngKWWymvzeKzElc-_XlLIiL-UJmWZVwUtaFjPyvjQIwWlQxmwTsH1w1hhsE6cGHSsaVB4T2yUKgv5En2APavCjUSEq3SetHRuDKW5G47WNb2cHg8GfkeNOGY_n3-cpeXtYvi6e0tXL4_PifpUClyykjZKiEahkC1mRKQBRYqW6ksXaNDnk0CKwnFdMNFR2klUdZh3luSig7CDjp-R6P3dw9mNEH-qN9oDGqB7t6OssRiNkzjMa6dUBXdvR9fF3OyWF5EWVR3X5rcZmg209OL1Rblv_hBYB3QNw1nuHXQ06qKB34Sltakbr3V7qv73ElpuDlp-p_-AvGSKN0A
CitedBy_id crossref_primary_10_1088_1755_1315_300_5_052006
crossref_primary_10_1039_D0LC00730G
crossref_primary_10_1016_j_cclet_2019_04_040
crossref_primary_10_1039_C8LC01130C
crossref_primary_10_1039_D4SM00488D
crossref_primary_10_2139_ssrn_4117475
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103914
crossref_primary_10_1021_acs_langmuir_4c03047
crossref_primary_10_1016_j_jcis_2020_08_033
crossref_primary_10_1109_JSEN_2024_3462800
crossref_primary_10_1002_adfm_202408095
crossref_primary_10_3390_mi11121121
crossref_primary_10_3390_bioengineering9110625
crossref_primary_10_3390_mi11040444
crossref_primary_10_1021_acsomega_4c03959
crossref_primary_10_1021_acs_iecr_9b00771
crossref_primary_10_1073_pnas_2002623117
crossref_primary_10_1088_1361_6439_abaf34
crossref_primary_10_1021_jacs_9b06852
crossref_primary_10_1007_s12274_022_4963_5
crossref_primary_10_1016_j_snb_2022_132473
crossref_primary_10_1039_D3LC00888F
crossref_primary_10_1002_admi_202101071
crossref_primary_10_1021_acs_analchem_8b05456
crossref_primary_10_1002_elps_201900105
crossref_primary_10_1016_j_snb_2023_135013
crossref_primary_10_1016_j_cej_2023_148347
crossref_primary_10_1080_01932691_2019_1614037
crossref_primary_10_1002_smtd_202100331
crossref_primary_10_1002_smll_202001180
crossref_primary_10_1063_5_0242599
crossref_primary_10_1002_smll_201903098
crossref_primary_10_1007_s00216_022_04266_2
crossref_primary_10_1016_j_sna_2019_06_022
crossref_primary_10_1016_j_colsurfa_2020_124905
crossref_primary_10_1021_acsami_8b12597
crossref_primary_10_1039_D3RA08561A
crossref_primary_10_3390_mi11100942
crossref_primary_10_1016_j_cej_2021_134200
crossref_primary_10_1063_5_0177605
crossref_primary_10_1103_PhysRevE_102_053104
crossref_primary_10_1007_s10404_019_2194_1
crossref_primary_10_1016_j_gee_2023_05_012
crossref_primary_10_1016_j_nanoen_2021_106004
Cites_doi 10.1021/ja401960f
10.1002/smll.201702188
10.1007/s10404-017-1897-4
10.1146/annurev-anchem-062011-143028
10.1002/adma.200803386
10.1002/adma.201305119
10.1002/smll.201700646
10.1073/pnas.1621226114
10.1126/science.1070850
10.1016/j.biomaterials.2013.03.002
10.1039/c0nr00448k
10.1039/b408352k
10.1109/TDEI.2003.1237326
10.1016/j.bios.2010.06.025
10.1063/1.4952572
10.1115/1.2891228
10.1016/j.jconrel.2009.05.031
10.1017/CBO9780511574498
10.1038/nature13118
10.1126/science.1095833
10.1039/C6LC01052K
10.1038/nmat3776
10.1002/anie.200704903
10.1021/am100860b
10.1002/mabi.200400026
10.1039/b807374k
10.1039/C7LC00242D
10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
10.1021/ac901188n
10.1038/nbt.2989
10.1039/C1LC20434C
10.1146/annurev.bioeng.8.061505.095739
10.1016/j.addr.2017.08.003
10.1016/j.jconrel.2012.01.032
10.1021/acsami.5b08863
10.1146/annurev.fluid.29.1.27
10.1021/acsami.7b00670
10.1063/1.2790785
10.1002/adfme.201700975
10.1016/j.bios.2013.08.016
10.1039/C6LC01435F
10.1021/ja401422r
10.1021/la0531300
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SP
7TB
7U5
8FD
FR3
L7M
7X8
DOI 10.1039/C7LC01387F
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1473-0189
EndPage 1129
ExternalDocumentID 29536065
10_1039_C7LC01387F
Genre Journal Article
GroupedDBID ---
0-7
0R~
0UZ
0VX
1TJ
29L
4.4
53G
5GY
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
AUDPV
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
N9A
NDZJH
O9-
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
NPM
7SP
7TB
7U5
8FD
FR3
L7M
7X8
ID FETCH-LOGICAL-c381t-ba87b7ea8dc252acc76e9af61e9abb4c4cdec143917b08f819fe2f03475c6fc23
ISSN 1473-0197
1473-0189
IngestDate Fri Jul 11 10:55:05 EDT 2025
Sun Jun 29 15:29:48 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Tue Jul 01 01:52:38 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-ba87b7ea8dc252acc76e9af61e9abb4c4cdec143917b08f819fe2f03475c6fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0167-1274
0000-0003-3945-9006
0000-0003-0586-3473
PMID 29536065
PQID 2018783594
PQPubID 2047488
PageCount 9
ParticipantIDs proquest_miscellaneous_2013784320
proquest_journals_2018783594
pubmed_primary_29536065
crossref_citationtrail_10_1039_C7LC01387F
crossref_primary_10_1039_C7LC01387F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Lab on a chip
PublicationTitleAlternate Lab Chip
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (C7LC01387F-(cit13)/*[position()=1]) 2010; 2
Chen (C7LC01387F-(cit24)/*[position()=1]) 2009; 139
Chang (C7LC01387F-(cit32)/*[position()=1]) 1991
Sackmann (C7LC01387F-(cit1)/*[position()=1]) 2014; 507
Bhatia (C7LC01387F-(cit2)/*[position()=1]) 2014; 32
Kim (C7LC01387F-(cit25)/*[position()=1]) 2007; 91
Salgado (C7LC01387F-(cit11)/*[position()=1]) 2004; 4
Schuster (C7LC01387F-(cit40)/*[position()=1]) 1996
Chopra (C7LC01387F-(cit23)/*[position()=1]) 2012; 160
Choi (C7LC01387F-(cit28)/*[position()=1]) 2012; 5
Jorgensen (C7LC01387F-(cit46)/*[position()=1]) 2002; 297
Saville (C7LC01387F-(cit29)/*[position()=1]) 1997; 29
Niu (C7LC01387F-(cit41)/*[position()=1]) 2009; 81
Steinhaus (C7LC01387F-(cit42)/*[position()=1]) 2006; 22
Kim (C7LC01387F-(cit35)/*[position()=1]) 2011; 11
Dendukuri (C7LC01387F-(cit6)/*[position()=1]) 2009; 21
Hou (C7LC01387F-(cit15)/*[position()=1]) 2017; 21
Wang (C7LC01387F-(cit21)/*[position()=1]) 2010; 26
Voldman (C7LC01387F-(cit45)/*[position()=1]) 2006; 8
Windbergs (C7LC01387F-(cit5)/*[position()=1]) 2013; 135
Hutmacher (C7LC01387F-(cit12)/*[position()=1]) 2001; 55
Kim (C7LC01387F-(cit22)/*[position()=1]) 2011; 3
Fidalgo (C7LC01387F-(cit27)/*[position()=1]) 2008; 47
Jia (C7LC01387F-(cit39)/*[position()=1]) 2016; 16
Lang (C7LC01387F-(cit18)/*[position()=1]) 2015; 7
Zhang (C7LC01387F-(cit14)/*[position()=1]) 2017
Xi (C7LC01387F-(cit26)/*[position()=1]) 2017; 17
Jia (C7LC01387F-(cit30)/*[position()=1]) 2017; 13
Jones (C7LC01387F-(cit44)/*[position()=1]) 1995
Allen (C7LC01387F-(cit43)/*[position()=1]) 2004; 303
Liu (C7LC01387F-(cit3)/*[position()=1]) 2017
Aghdaei (C7LC01387F-(cit34)/*[position()=1]) 2008; 8
Lee (C7LC01387F-(cit36)/*[position()=1]) 2017; 13
Guan (C7LC01387F-(cit37)/*[position()=1]) 2016; 10
Liu (C7LC01387F-(cit4)/*[position()=1]) 2017; 17
Morgan (C7LC01387F-(cit19)/*[position()=1]) 2003
Terekhov (C7LC01387F-(cit8)/*[position()=1]) 2017; 114
Abbaspourrad (C7LC01387F-(cit16)/*[position()=1]) 2013; 135
Hou (C7LC01387F-(cit38)/*[position()=1]) 2017; 9
Khine (C7LC01387F-(cit31)/*[position()=1]) 2005; 5
Lewis (C7LC01387F-(cit33)/*[position()=1]) 2003; 10
Zhang (C7LC01387F-(cit7)/*[position()=1]) 2013; 34
Datta (C7LC01387F-(cit9)/*[position()=1]) 2014; 26
Mura (C7LC01387F-(cit20)/*[position()=1]) 2013; 12
Cima (C7LC01387F-(cit10)/*[position()=1]) 1991; 113
Li (C7LC01387F-(cit17)/*[position()=1]) 2014; 51
References_xml – volume: 135
  start-page: 7744
  year: 2013
  ident: C7LC01387F-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401960f
– volume: 13
  start-page: 1702188
  year: 2017
  ident: C7LC01387F-(cit30)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702188
– volume: 21
  start-page: 60
  year: 2017
  ident: C7LC01387F-(cit15)/*[position()=1]
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-017-1897-4
– volume-title: AC electrokinetics
  year: 2003
  ident: C7LC01387F-(cit19)/*[position()=1]
– volume: 5
  start-page: 413
  year: 2012
  ident: C7LC01387F-(cit28)/*[position()=1]
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143028
– volume: 21
  start-page: 4071
  year: 2009
  ident: C7LC01387F-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803386
– volume: 26
  start-page: 2205
  year: 2014
  ident: C7LC01387F-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305119
– volume: 13
  start-page: 1700646
  year: 2017
  ident: C7LC01387F-(cit36)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700646
– volume: 114
  start-page: 2550
  year: 2017
  ident: C7LC01387F-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1621226114
– volume: 297
  start-page: 395
  year: 2002
  ident: C7LC01387F-(cit46)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1070850
– volume: 34
  start-page: 4564
  year: 2013
  ident: C7LC01387F-(cit7)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.002
– volume: 3
  start-page: 1526
  year: 2011
  ident: C7LC01387F-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00448k
– volume: 5
  start-page: 38
  year: 2005
  ident: C7LC01387F-(cit31)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b408352k
– volume: 10
  start-page: 769
  year: 2003
  ident: C7LC01387F-(cit33)/*[position()=1]
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2003.1237326
– volume: 26
  start-page: 778
  year: 2010
  ident: C7LC01387F-(cit21)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.06.025
– volume: 10
  start-page: 034111
  year: 2016
  ident: C7LC01387F-(cit37)/*[position()=1]
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4952572
– volume: 113
  start-page: 143
  year: 1991
  ident: C7LC01387F-(cit10)/*[position()=1]
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2891228
– volume: 139
  start-page: 63
  year: 2009
  ident: C7LC01387F-(cit24)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2009.05.031
– volume-title: Encyclopedia of emulsion technology
  year: 1996
  ident: C7LC01387F-(cit40)/*[position()=1]
– volume-title: Electromechanics of Particles
  year: 1995
  ident: C7LC01387F-(cit44)/*[position()=1]
  doi: 10.1017/CBO9780511574498
– volume: 507
  start-page: 181
  year: 2014
  ident: C7LC01387F-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13118
– volume: 303
  start-page: 1818
  year: 2004
  ident: C7LC01387F-(cit43)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1095833
– volume: 16
  start-page: 4313
  year: 2016
  ident: C7LC01387F-(cit39)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC01052K
– volume: 12
  start-page: 991
  year: 2013
  ident: C7LC01387F-(cit20)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 47
  start-page: 2042
  year: 2008
  ident: C7LC01387F-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200704903
– volume: 2
  start-page: 3411
  year: 2010
  ident: C7LC01387F-(cit13)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100860b
– volume: 4
  start-page: 743
  year: 2004
  ident: C7LC01387F-(cit11)/*[position()=1]
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200400026
– volume: 8
  start-page: 1617
  year: 2008
  ident: C7LC01387F-(cit34)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b807374k
– volume: 17
  start-page: 1856
  year: 2017
  ident: C7LC01387F-(cit4)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C7LC00242D
– volume: 55
  start-page: 203
  year: 2001
  ident: C7LC01387F-(cit12)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
– volume: 81
  start-page: 7321
  year: 2009
  ident: C7LC01387F-(cit41)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac901188n
– volume: 32
  start-page: 760
  year: 2014
  ident: C7LC01387F-(cit2)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2989
– volume: 11
  start-page: 3162
  year: 2011
  ident: C7LC01387F-(cit35)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C1LC20434C
– volume-title: Guide to electroporation and electrofusion
  year: 1991
  ident: C7LC01387F-(cit32)/*[position()=1]
– volume: 8
  start-page: 425
  year: 2006
  ident: C7LC01387F-(cit45)/*[position()=1]
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.8.061505.095739
– year: 2017
  ident: C7LC01387F-(cit3)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2017.08.003
– volume: 160
  start-page: 96
  year: 2012
  ident: C7LC01387F-(cit23)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2012.01.032
– volume: 7
  start-page: 26792
  year: 2015
  ident: C7LC01387F-(cit18)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08863
– volume: 29
  start-page: 27
  year: 1997
  ident: C7LC01387F-(cit29)/*[position()=1]
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.27
– volume: 9
  start-page: 12282
  year: 2017
  ident: C7LC01387F-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00670
– volume: 91
  start-page: 133106
  year: 2007
  ident: C7LC01387F-(cit25)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2790785
– start-page: 1700975
  year: 2017
  ident: C7LC01387F-(cit14)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfme.201700975
– volume: 51
  start-page: 437
  year: 2014
  ident: C7LC01387F-(cit17)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.08.016
– volume: 17
  start-page: 751
  year: 2017
  ident: C7LC01387F-(cit26)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC01435F
– volume: 135
  start-page: 7933
  year: 2013
  ident: C7LC01387F-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401422r
– volume: 22
  start-page: 5308
  year: 2006
  ident: C7LC01387F-(cit42)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0531300
SSID ssj0015468
Score 2.4509406
Snippet Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1121
SubjectTerms Controlled release
Droplets
Drug delivery systems
Electric fields
Encapsulation
Reagents
Thin walled shells
Transplantation
Yeast
Title Electrically controlled rapid release of actives encapsulated in double-emulsion droplets
URI https://www.ncbi.nlm.nih.gov/pubmed/29536065
https://www.proquest.com/docview/2018783594
https://www.proquest.com/docview/2013784320
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLagIwQcEJStMCAjuKBRZrK4cXIcVa0KCsMlFe0psh1HiiYkVac5lF_Ps50NKNLAxapcN4n8vrx-fitCH3w_gNfZZVYI6s8CBu5abBoqA7xPQm77kut2QF-u_OWKfF5P132jS51dsufn4sfRvJL_kSrMgVxVluw_SLa7KEzAZ5AvjCBhGG8l47nuYaO2uTi0QecFMMgd2-apbofCjKmeaa12cwYPz-BYXDDFM1UcbFXzQlrye10oq9lZulPx5Ka4U58lzZVHgam8720XcGNibDesvGZ557QxKmxTX9cd5JZVbY7-g3VRrue-yfxQD60OTjCwOhhFSaiKwzLtf87lkbk_tGvdxgQbVQlEzzmqw21PlUAVtBDKi0qz_p-q9c5ffU0WqyhK4vk6votOXAq0aYROLufxp6hzIU2JyYNsH6qtTeuFF_21f2UjfzliaKoRP0aPmjMCvjQCf4LuyHKM7pmuoYcxuj9rm_SN0cNBPcmnaDMEBO4BgTUgcAMIXGW4AQQeAgLnJf4NELgFxDO0Wszj2dJqemdYAjjY3uIsoJxKFqTCnbpMCOrLkGW-AyPnRBCRSuGotGvK7SADXphJN7M9QqfCz4TrPUejsirlS4R54AVp4IaCU5tIxWek43lMhoTBdWwxQR_bPUxEU1he9TcpEh3g4IXJjEYzvd-LCXrfrd2acipHV522okia1-0mUShUZsqQTNC77mvYbuXhYqWsar3GowHxXHuCXhgRdrdxVaACEO5Xt_j1a_SgB_0pGu13tXwD5HPP3zYw-wmQkYcD
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+controlled+rapid+release+of+actives+encapsulated+in+double-emulsion+droplets&rft.jtitle=Lab+on+a+chip&rft.au=Jia%2C+Yankai&rft.au=Ren%2C+Yukun&rft.au=Hou%2C+Likai&rft.au=Liu%2C+Weiyu&rft.date=2018-01-01&rft.issn=1473-0189&rft.eissn=1473-0189&rft.volume=18&rft.issue=7&rft.spage=1121&rft_id=info:doi/10.1039%2Fc7lc01387f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon