Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network para...
Saved in:
| Published in | IEEE transactions on image processing Vol. 32; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1057-7149 1941-0042 1941-0042 |
| DOI | 10.1109/TIP.2022.3224322 |
Cover
| Summary: | In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2022.3224322 |