Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network para...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 32; p. 1
Main Authors Huang, Yunshi, Chouzenoux, Emilie, Pesquet, Jean-Christophe
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2022.3224322

Cover

Abstract In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
AbstractList In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to stateof-the-art techniques based on optimization, Bayesian estimation, or deep learning.
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
Author Chouzenoux, Emilie
Pesquet, Jean-Christophe
Huang, Yunshi
Author_xml – sequence: 1
  givenname: Yunshi
  orcidid: 0000-0003-1636-7248
  surname: Huang
  fullname: Huang, Yunshi
– sequence: 2
  givenname: Emilie
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
– sequence: 3
  givenname: Jean-Christophe
  orcidid: 0000-0002-5943-8061
  surname: Pesquet
  fullname: Pesquet, Jean-Christophe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015435$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03881393$$DView record in HAL
BookMark eNp9kU1r3DAQhkVJaT7aeyAQDLm0B281-rCs426SNgsL7SHpVciynCjIViLZgfz7yN3tHnLoQYwYnncG5jlGB0MYLEKngBcAWH6_Xf9eEEzIghLC8vuAjkAyKDFm5CD_MRelACYP0XFKjxgD41B9QodUYOCM8iN0fTfE4L1tiz86Oj26MGhfrPSrTU4PxdLfh-jGh77oQizWvb63xcq7oS2urAnDS_DTHPmMPnbaJ_tlV0_Q3Y_r28ubcvPr5_pyuSkNrWEsNQHCJSeEE9wZwTUmFW460wAnFhqmmWgM6eq6AW1Ywy2tZUUb09VaQCtbeoK-bec-aK-eout1fFVBO3Wz3Ki5h2ldA5X0BTL7dcs-xfA82TSq3iVjvdeDDVNSRMgKKix4ldGLd-hjmGI-xEzxWgAXgmTqfEdNTW_b_f5_x8wA3gImhpSi7fYIYDX7UtmXmn2pna8cqd5FjBv_Whijdv5_wbNt0Flr93uklEwITt8AMkKe8Q
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCI_2024_3377132
crossref_primary_10_1088_1361_6420_ad3c67
crossref_primary_10_1016_j_sigpro_2023_109369
crossref_primary_10_1137_23M1584496
crossref_primary_10_3390_electronics12163525
crossref_primary_10_1109_TSP_2022_3155877
Cites_doi 10.1109/ICIP.2010.5652173
10.1109/TIP.2021.3072856
10.1109/CVPR42600.2020.00368
10.1137/18M1173629
10.1109/TSP.2020.2983150
10.5201/ipol.2012.l-bm3d
10.1109/TPAMI.2015.2439281
10.1145/1360612.1360672
10.1214/ss/1177009938
10.1137/S0036139999362592
10.1007/978-0-387-45524-2_24
10.1109/TPAMI.2019.2941472
10.1016/j.image.2018.08.007
10.1109/CVPR.2018.00194
10.1016/j.sigpro.2010.08.009
10.1007/978-3-642-37431-9_28
10.1109/CVPR.2011.5995521
10.1109/MSP.2020.3016905
10.1007/s11228-019-00526-z
10.1109/CVPR.2008.4587834
10.1109/MLSP.2018.8516983
10.1137/20M1387961
10.1109/MLSP49062.2020.9231876
10.1109/CVPR.2009.5206815
10.1109/ICASSP39728.2021.9414443
10.7551/mitpress/7503.003.0110
10.1007/978-1-4757-4145-2
10.1109/TIP.2003.819861
10.1109/TPAMI.2021.3088914
10.1109/JOE.2003.816683
10.1109/CVPR42600.2020.00328
10.1017/9781009042529.006
10.1109/TIP.2007.910179
10.1109/TCI.2020.2964202
10.1109/JSTSP.2015.2496908
10.1109/TCI.2017.2700203
10.1109/83.661187
10.1109/ICCV.2017.244
10.1088/1361-6420/ab460a
10.1109/TCI.2021.3094714
10.1080/01621459.2017.1285773
10.1109/TCI.2021.3094062
10.1109/TCI.2021.3081059
10.1109/TIP.2021.3092814
10.1109/ICIP.2008.4711843
10.1186/s13634-020-00675-6
10.1109/CVPR42600.2020.00340
10.1007/978-3-642-40246-3_8
10.1109/CVPR.2018.00854
10.1007/s10851-019-00884-1
10.1109/TSP.2012.2190066
10.1109/ICASSP.2019.8682542
10.1561/2000000111
10.1109/TIP.2014.2383321
10.1109/TIP.2008.2007354
10.1364/AO.55.002346
10.1007/s10462-011-9236-8
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TIP.2022.3224322
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID oai:HAL:hal-03881393v1
37015435
10_1109_TIP_2022_3224322
9994775
Genre orig-research
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: ERC-2019- STG-850925
  funderid: 10.13039/100010663
– fundername: Agence Nationale de la Recherche
  grantid: ANR-17-CE40-0004-01
  funderid: 10.13039/501100001665
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c381t-a21259522520fc75a0260bfcb152e1b4a47bc2f88b1ac4b5e38963bcf8a71d9d3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Tue Oct 28 06:33:15 EDT 2025
Sun Sep 28 02:41:14 EDT 2025
Mon Jun 30 10:23:37 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Wed Oct 01 02:45:10 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Aug 27 02:29:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords unrolling
deep learning
image restoration
Variational Bayesian approach
Majorization-Minimization
Kullback-Leibler divergence
neural network
blind deconvolution
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-a21259522520fc75a0260bfcb152e1b4a47bc2f88b1ac4b5e38963bcf8a71d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5943-8061
0000-0003-3631-6093
0000-0003-1636-7248
OpenAccessLink https://hal.science/hal-03881393
PMID 37015435
PQID 2758715772
PQPubID 85429
PageCount 1
ParticipantIDs ieee_primary_9994775
crossref_citationtrail_10_1109_TIP_2022_3224322
pubmed_primary_37015435
crossref_primary_10_1109_TIP_2022_3224322
proquest_miscellaneous_2796160756
hal_primary_oai_HAL_hal_03881393v1
proquest_journals_2758715772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Jospin (ref53) 2020
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Murtagh (ref1) 2007
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
Charlier (ref60) 2021; 22
ref43
Bietti (ref40) 2018
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Chouzenoux (ref48) 2021
ref24
ref23
ref26
ref25
ref20
ref64
Kingma (ref52)
ref63
ref22
ref21
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref17
  doi: 10.1109/ICIP.2010.5652173
– volume: 22
  start-page: 1
  issue: 74
  year: 2021
  ident: ref60
  article-title: Kernel operations on the GPU, with autodiff, without memory overflows
  publication-title: J. Mach. Learn. Res.
– ident: ref39
  doi: 10.1109/TIP.2021.3072856
– ident: ref57
  doi: 10.1109/CVPR42600.2020.00368
– ident: ref64
  doi: 10.1137/18M1173629
– ident: ref32
  doi: 10.1109/TSP.2020.2983150
– ident: ref62
  doi: 10.5201/ipol.2012.l-bm3d
– ident: ref34
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref14
  doi: 10.1145/1360612.1360672
– ident: ref21
  doi: 10.1214/ss/1177009938
– ident: ref4
  doi: 10.1137/S0036139999362592
– ident: ref2
  doi: 10.1007/978-0-387-45524-2_24
– ident: ref18
  doi: 10.1109/TPAMI.2019.2941472
– ident: ref16
  doi: 10.1016/j.image.2018.08.007
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref52
  article-title: Auto-encoding variational Bayes
– ident: ref63
  doi: 10.1109/CVPR.2018.00194
– ident: ref23
  doi: 10.1016/j.sigpro.2010.08.009
– ident: ref9
  doi: 10.1007/978-3-642-37431-9_28
– ident: ref11
  doi: 10.1109/CVPR.2011.5995521
– ident: ref41
  doi: 10.1109/MSP.2020.3016905
– ident: ref47
  doi: 10.1007/s11228-019-00526-z
– ident: ref15
  doi: 10.1109/CVPR.2008.4587834
– ident: ref35
  doi: 10.1109/MLSP.2018.8516983
– ident: ref44
  doi: 10.1137/20M1387961
– ident: ref45
  doi: 10.1109/MLSP49062.2020.9231876
– ident: ref5
  doi: 10.1109/CVPR.2009.5206815
– ident: ref56
  doi: 10.1109/ICASSP39728.2021.9414443
– ident: ref13
  doi: 10.7551/mitpress/7503.003.0110
– ident: ref19
  doi: 10.1007/978-1-4757-4145-2
– ident: ref59
  doi: 10.1109/TIP.2003.819861
– ident: ref50
  doi: 10.1109/TPAMI.2021.3088914
– ident: ref22
  doi: 10.1109/JOE.2003.816683
– ident: ref46
  doi: 10.1109/CVPR42600.2020.00328
– ident: ref55
  doi: 10.1017/9781009042529.006
– ident: ref3
  doi: 10.1109/TIP.2007.910179
– ident: ref42
  doi: 10.1109/TCI.2020.2964202
– ident: ref31
  doi: 10.1109/JSTSP.2015.2496908
– ident: ref28
  doi: 10.1109/TCI.2017.2700203
– ident: ref12
  doi: 10.1109/83.661187
– ident: ref38
  doi: 10.1109/ICCV.2017.244
– ident: ref43
  doi: 10.1088/1361-6420/ab460a
– ident: ref54
  doi: 10.1109/TCI.2021.3094714
– ident: ref27
  doi: 10.1080/01621459.2017.1285773
– ident: ref49
  doi: 10.1109/TCI.2021.3094062
– volume-title: arXiv:2105.15044
  year: 2021
  ident: ref48
  article-title: Inversion of integral models: A neural network approach
– volume-title: arXiv:2007.06823
  year: 2020
  ident: ref53
  article-title: Hands-on Bayesian neural networks—A tutorial for deep learning users
– ident: ref7
  doi: 10.1109/TCI.2021.3081059
– ident: ref37
  doi: 10.1109/TIP.2021.3092814
– ident: ref25
  doi: 10.1109/ICIP.2008.4711843
– ident: ref20
  doi: 10.1186/s13634-020-00675-6
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00340
– ident: ref10
  doi: 10.1007/978-3-642-40246-3_8
– ident: ref33
  doi: 10.1109/CVPR.2018.00854
– ident: ref8
  doi: 10.1007/s10851-019-00884-1
– ident: ref24
  doi: 10.1109/TSP.2012.2190066
– ident: ref58
  doi: 10.1109/ICASSP.2019.8682542
– start-page: 277
  volume-title: Deconvolution and Blind Deconvolution in Astronomy
  year: 2007
  ident: ref1
– ident: ref51
  doi: 10.1561/2000000111
– ident: ref29
  doi: 10.1109/TIP.2014.2383321
– volume-title: arXiv:1810.00363
  year: 2018
  ident: ref40
  article-title: A kernel perspective for regularizing deep neural networks
– ident: ref30
  doi: 10.1109/TIP.2008.2007354
– ident: ref6
  doi: 10.1364/AO.55.002346
– ident: ref26
  doi: 10.1007/s10462-011-9236-8
– ident: ref61
  doi: 10.1007/978-3-319-24574-4_28
SSID ssj0014516
Score 2.505473
Snippet In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
blind deconvolution
Color imagery
Deconvolution
Deep learning
Engineering Sciences
Image quality
Image restoration
Kernel
Kernels
Kullback-Leibler divergence
Machine learning
Majorization-Minimization
neural network
Neural networks
Optimization
Signal and Image processing
Smoothness
Training
Tuning
unrolling
Variational Bayesian approach
Title Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
URI https://ieeexplore.ieee.org/document/9994775
https://www.ncbi.nlm.nih.gov/pubmed/37015435
https://www.proquest.com/docview/2758715772
https://www.proquest.com/docview/2796160756
https://hal.science/hal-03881393
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e4IDhRZooCCDuCCR3cTxIzluX9oiijh0UW-R7ThtRZtF22wl-PXMJN4IECBuUTJ5acaeb2bsbwDeqLzwqUt8rGuRYICifWzyTMQ48zmf8FopQ6mB049qNhfvz-X5Brwb9sJ477vFZ35Mh10tv1q4FaXKJghmhNZyBCOdq36v1lAxoIazXWVT6lgj7F-XJJNicnbyCQNBzsdovCLj_BcXNLqkBZBdZ5W_g8zO2Rxvwen6M_s1Jl_Gq9aO3fffGBz_9z8ewoOAOtm0N5NHsOGbbdgKCJSF8X27Dfd_oifcgaN5s6S8QsU-Y0QdsoZs33zztPOSTa8vFsur9vKGIfBlJzc4M7F9RK0VO6Qo-y4Y9WOYHx-dHczi0HYhdui-29igN5MF4jLJk9ppaYh2zNbOoqv3qRVGaOt4nec2NU5Y6RHzqMy6Ojc6rYoqewKbzaLxu8BSnQlhamMLz4W1qhCyctJU2gmXc59EMFlronSBk5xaY1yXXWySFCXqriTdlUF3Ebwd7vja83H8Q_Y1KncQIyLt2fRDSeeIAwexb3aXRrBDChqkgm4i2FvbQhlG9W3JMbjSqcSAJIJXw2Ucj1RkMY1frEimUETaJ1UET3sbGp6daUKsmXz253c-h3vUzL5P8OzBZrtc-RcIeVr7srP1HzY1-gw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t4wF4YLAxCAwwiBck0iaOHSePHWxqoZ14aNHeIttxGGJLUZdOgr-eu8SNAAHiLUouv3Rn33d39ncAL9Msd7GNXKgqEWGAolyos0SEOPNZF_EqTTWlBman6Xgh3p3Jsy143e-Fcc61i8_cgA7bWn65tGtKlQ0RzAil5DbckEII2e3W6msG1HK2rW1KFSoE_puiZJQP55MPGApyPkDzFQnnvzih7XNaAtn2Vvk7zGzdzckuzDYf2q0y-TJYN2Zgv__G4fi_f3IX7njcyUadodyDLVfvwa7HoMyP8Ks9uP0TQeE-HC_qFWUWSvYRY2qfN2RH-pujvZdsdPFpufrcnF8yhL5scolzEztC3FqytxRnX3uzvg-Lk-P5m3HoGy-EFh14E2r0ZzJHZCZ5VFklNRGPmcoadPYuNkILZSyvsszE2gojHaKeNDG2yrSKy7xMDmCnXtbuIbBYJULoSpvccWFMmgtZWqlLZYXNuIsCGG40UVjPSk7NMS6KNjqJ8gJ1V5DuCq-7AF71d3ztGDn-IfsClduLEZX2eDQt6Byx4CD6Ta7jAPZJQb2U100AhxtbKPy4vio4hlcqlhiSBPC8v4wjksosunbLNcnkKdH2yTSAB50N9c9OFGHWRD768zufwc3xfDYtppPT94_hFrW279I9h7DTrNbuCQKgxjxt7f4HciH9WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unrolled+Variational+Bayesian+Algorithm+for+Image+Blind+Deconvolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Huang%2C+Yunshi&rft.au=Chouzenoux%2C+Emilie&rft.au=Jean-Christophe+Pesquet&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=32&rft.spage=430&rft_id=info:doi/10.1109%2FTIP.2022.3224322&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon