Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network para...
Saved in:
| Published in | IEEE transactions on image processing Vol. 32; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1057-7149 1941-0042 1941-0042 |
| DOI | 10.1109/TIP.2022.3224322 |
Cover
| Abstract | In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning. |
|---|---|
| AbstractList | In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning. In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to stateof-the-art techniques based on optimization, Bayesian estimation, or deep learning. In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel, integrating the VBA within a neural network paradigm following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and leads to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning. |
| Author | Chouzenoux, Emilie Pesquet, Jean-Christophe Huang, Yunshi |
| Author_xml | – sequence: 1 givenname: Yunshi orcidid: 0000-0003-1636-7248 surname: Huang fullname: Huang, Yunshi – sequence: 2 givenname: Emilie orcidid: 0000-0003-3631-6093 surname: Chouzenoux fullname: Chouzenoux, Emilie – sequence: 3 givenname: Jean-Christophe orcidid: 0000-0002-5943-8061 surname: Pesquet fullname: Pesquet, Jean-Christophe |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015435$$D View this record in MEDLINE/PubMed https://hal.science/hal-03881393$$DView record in HAL |
| BookMark | eNp9kU1r3DAQhkVJaT7aeyAQDLm0B281-rCs426SNgsL7SHpVciynCjIViLZgfz7yN3tHnLoQYwYnncG5jlGB0MYLEKngBcAWH6_Xf9eEEzIghLC8vuAjkAyKDFm5CD_MRelACYP0XFKjxgD41B9QodUYOCM8iN0fTfE4L1tiz86Oj26MGhfrPSrTU4PxdLfh-jGh77oQizWvb63xcq7oS2urAnDS_DTHPmMPnbaJ_tlV0_Q3Y_r28ubcvPr5_pyuSkNrWEsNQHCJSeEE9wZwTUmFW460wAnFhqmmWgM6eq6AW1Ywy2tZUUb09VaQCtbeoK-bec-aK-eout1fFVBO3Wz3Ki5h2ldA5X0BTL7dcs-xfA82TSq3iVjvdeDDVNSRMgKKix4ldGLd-hjmGI-xEzxWgAXgmTqfEdNTW_b_f5_x8wA3gImhpSi7fYIYDX7UtmXmn2pna8cqd5FjBv_Whijdv5_wbNt0Flr93uklEwITt8AMkKe8Q |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1109_TCI_2024_3377132 crossref_primary_10_1088_1361_6420_ad3c67 crossref_primary_10_1016_j_sigpro_2023_109369 crossref_primary_10_1137_23M1584496 crossref_primary_10_3390_electronics12163525 crossref_primary_10_1109_TSP_2022_3155877 |
| Cites_doi | 10.1109/ICIP.2010.5652173 10.1109/TIP.2021.3072856 10.1109/CVPR42600.2020.00368 10.1137/18M1173629 10.1109/TSP.2020.2983150 10.5201/ipol.2012.l-bm3d 10.1109/TPAMI.2015.2439281 10.1145/1360612.1360672 10.1214/ss/1177009938 10.1137/S0036139999362592 10.1007/978-0-387-45524-2_24 10.1109/TPAMI.2019.2941472 10.1016/j.image.2018.08.007 10.1109/CVPR.2018.00194 10.1016/j.sigpro.2010.08.009 10.1007/978-3-642-37431-9_28 10.1109/CVPR.2011.5995521 10.1109/MSP.2020.3016905 10.1007/s11228-019-00526-z 10.1109/CVPR.2008.4587834 10.1109/MLSP.2018.8516983 10.1137/20M1387961 10.1109/MLSP49062.2020.9231876 10.1109/CVPR.2009.5206815 10.1109/ICASSP39728.2021.9414443 10.7551/mitpress/7503.003.0110 10.1007/978-1-4757-4145-2 10.1109/TIP.2003.819861 10.1109/TPAMI.2021.3088914 10.1109/JOE.2003.816683 10.1109/CVPR42600.2020.00328 10.1017/9781009042529.006 10.1109/TIP.2007.910179 10.1109/TCI.2020.2964202 10.1109/JSTSP.2015.2496908 10.1109/TCI.2017.2700203 10.1109/83.661187 10.1109/ICCV.2017.244 10.1088/1361-6420/ab460a 10.1109/TCI.2021.3094714 10.1080/01621459.2017.1285773 10.1109/TCI.2021.3094062 10.1109/TCI.2021.3081059 10.1109/TIP.2021.3092814 10.1109/ICIP.2008.4711843 10.1186/s13634-020-00675-6 10.1109/CVPR42600.2020.00340 10.1007/978-3-642-40246-3_8 10.1109/CVPR.2018.00854 10.1007/s10851-019-00884-1 10.1109/TSP.2012.2190066 10.1109/ICASSP.2019.8682542 10.1561/2000000111 10.1109/TIP.2014.2383321 10.1109/TIP.2008.2007354 10.1364/AO.55.002346 10.1007/s10462-011-9236-8 10.1007/978-3-319-24574-4_28 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| DOI | 10.1109/TIP.2022.3224322 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 1 |
| ExternalDocumentID | oai:HAL:hal-03881393v1 37015435 10_1109_TIP_2022_3224322 9994775 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: ERC-2019- STG-850925 funderid: 10.13039/100010663 – fundername: Agence Nationale de la Recherche grantid: ANR-17-CE40-0004-01 funderid: 10.13039/501100001665 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 53G 5VS AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 AAYOK NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c381t-a21259522520fc75a0260bfcb152e1b4a47bc2f88b1ac4b5e38963bcf8a71d9d3 |
| IEDL.DBID | RIE |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Tue Oct 28 06:33:15 EDT 2025 Sun Sep 28 02:41:14 EDT 2025 Mon Jun 30 10:23:37 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Wed Oct 01 02:45:10 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Wed Aug 27 02:29:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | unrolling deep learning image restoration Variational Bayesian approach Majorization-Minimization Kullback-Leibler divergence neural network blind deconvolution |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-a21259522520fc75a0260bfcb152e1b4a47bc2f88b1ac4b5e38963bcf8a71d9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5943-8061 0000-0003-3631-6093 0000-0003-1636-7248 |
| OpenAccessLink | https://hal.science/hal-03881393 |
| PMID | 37015435 |
| PQID | 2758715772 |
| PQPubID | 85429 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9994775 crossref_citationtrail_10_1109_TIP_2022_3224322 pubmed_primary_37015435 crossref_primary_10_1109_TIP_2022_3224322 proquest_miscellaneous_2796160756 hal_primary_oai_HAL_hal_03881393v1 proquest_journals_2758715772 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 Jospin (ref53) 2020 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Murtagh (ref1) 2007 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 Charlier (ref60) 2021; 22 ref43 Bietti (ref40) 2018 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 Chouzenoux (ref48) 2021 ref24 ref23 ref26 ref25 ref20 ref64 Kingma (ref52) ref63 ref22 ref21 ref28 ref27 ref29 ref62 ref61 |
| References_xml | – ident: ref17 doi: 10.1109/ICIP.2010.5652173 – volume: 22 start-page: 1 issue: 74 year: 2021 ident: ref60 article-title: Kernel operations on the GPU, with autodiff, without memory overflows publication-title: J. Mach. Learn. Res. – ident: ref39 doi: 10.1109/TIP.2021.3072856 – ident: ref57 doi: 10.1109/CVPR42600.2020.00368 – ident: ref64 doi: 10.1137/18M1173629 – ident: ref32 doi: 10.1109/TSP.2020.2983150 – ident: ref62 doi: 10.5201/ipol.2012.l-bm3d – ident: ref34 doi: 10.1109/TPAMI.2015.2439281 – ident: ref14 doi: 10.1145/1360612.1360672 – ident: ref21 doi: 10.1214/ss/1177009938 – ident: ref4 doi: 10.1137/S0036139999362592 – ident: ref2 doi: 10.1007/978-0-387-45524-2_24 – ident: ref18 doi: 10.1109/TPAMI.2019.2941472 – ident: ref16 doi: 10.1016/j.image.2018.08.007 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref52 article-title: Auto-encoding variational Bayes – ident: ref63 doi: 10.1109/CVPR.2018.00194 – ident: ref23 doi: 10.1016/j.sigpro.2010.08.009 – ident: ref9 doi: 10.1007/978-3-642-37431-9_28 – ident: ref11 doi: 10.1109/CVPR.2011.5995521 – ident: ref41 doi: 10.1109/MSP.2020.3016905 – ident: ref47 doi: 10.1007/s11228-019-00526-z – ident: ref15 doi: 10.1109/CVPR.2008.4587834 – ident: ref35 doi: 10.1109/MLSP.2018.8516983 – ident: ref44 doi: 10.1137/20M1387961 – ident: ref45 doi: 10.1109/MLSP49062.2020.9231876 – ident: ref5 doi: 10.1109/CVPR.2009.5206815 – ident: ref56 doi: 10.1109/ICASSP39728.2021.9414443 – ident: ref13 doi: 10.7551/mitpress/7503.003.0110 – ident: ref19 doi: 10.1007/978-1-4757-4145-2 – ident: ref59 doi: 10.1109/TIP.2003.819861 – ident: ref50 doi: 10.1109/TPAMI.2021.3088914 – ident: ref22 doi: 10.1109/JOE.2003.816683 – ident: ref46 doi: 10.1109/CVPR42600.2020.00328 – ident: ref55 doi: 10.1017/9781009042529.006 – ident: ref3 doi: 10.1109/TIP.2007.910179 – ident: ref42 doi: 10.1109/TCI.2020.2964202 – ident: ref31 doi: 10.1109/JSTSP.2015.2496908 – ident: ref28 doi: 10.1109/TCI.2017.2700203 – ident: ref12 doi: 10.1109/83.661187 – ident: ref38 doi: 10.1109/ICCV.2017.244 – ident: ref43 doi: 10.1088/1361-6420/ab460a – ident: ref54 doi: 10.1109/TCI.2021.3094714 – ident: ref27 doi: 10.1080/01621459.2017.1285773 – ident: ref49 doi: 10.1109/TCI.2021.3094062 – volume-title: arXiv:2105.15044 year: 2021 ident: ref48 article-title: Inversion of integral models: A neural network approach – volume-title: arXiv:2007.06823 year: 2020 ident: ref53 article-title: Hands-on Bayesian neural networks—A tutorial for deep learning users – ident: ref7 doi: 10.1109/TCI.2021.3081059 – ident: ref37 doi: 10.1109/TIP.2021.3092814 – ident: ref25 doi: 10.1109/ICIP.2008.4711843 – ident: ref20 doi: 10.1186/s13634-020-00675-6 – ident: ref36 doi: 10.1109/CVPR42600.2020.00340 – ident: ref10 doi: 10.1007/978-3-642-40246-3_8 – ident: ref33 doi: 10.1109/CVPR.2018.00854 – ident: ref8 doi: 10.1007/s10851-019-00884-1 – ident: ref24 doi: 10.1109/TSP.2012.2190066 – ident: ref58 doi: 10.1109/ICASSP.2019.8682542 – start-page: 277 volume-title: Deconvolution and Blind Deconvolution in Astronomy year: 2007 ident: ref1 – ident: ref51 doi: 10.1561/2000000111 – ident: ref29 doi: 10.1109/TIP.2014.2383321 – volume-title: arXiv:1810.00363 year: 2018 ident: ref40 article-title: A kernel perspective for regularizing deep neural networks – ident: ref30 doi: 10.1109/TIP.2008.2007354 – ident: ref6 doi: 10.1364/AO.55.002346 – ident: ref26 doi: 10.1007/s10462-011-9236-8 – ident: ref61 doi: 10.1007/978-3-319-24574-4_28 |
| SSID | ssj0014516 |
| Score | 2.505473 |
| Snippet | In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our VBA generic framework incorporates smoothness priors on... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bayes methods Bayesian analysis blind deconvolution Color imagery Deconvolution Deep learning Engineering Sciences Image quality Image restoration Kernel Kernels Kullback-Leibler divergence Machine learning Majorization-Minimization neural network Neural networks Optimization Signal and Image processing Smoothness Training Tuning unrolling Variational Bayesian approach |
| Title | Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution |
| URI | https://ieeexplore.ieee.org/document/9994775 https://www.ncbi.nlm.nih.gov/pubmed/37015435 https://www.proquest.com/docview/2758715772 https://www.proquest.com/docview/2796160756 https://hal.science/hal-03881393 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e4IDhRZooCCDuCCR3cTxIzluX9oiijh0UW-R7ThtRZtF22wl-PXMJN4IECBuUTJ5acaeb2bsbwDeqLzwqUt8rGuRYICifWzyTMQ48zmf8FopQ6mB049qNhfvz-X5Brwb9sJ477vFZ35Mh10tv1q4FaXKJghmhNZyBCOdq36v1lAxoIazXWVT6lgj7F-XJJNicnbyCQNBzsdovCLj_BcXNLqkBZBdZ5W_g8zO2Rxvwen6M_s1Jl_Gq9aO3fffGBz_9z8ewoOAOtm0N5NHsOGbbdgKCJSF8X27Dfd_oifcgaN5s6S8QsU-Y0QdsoZs33zztPOSTa8vFsur9vKGIfBlJzc4M7F9RK0VO6Qo-y4Y9WOYHx-dHczi0HYhdui-29igN5MF4jLJk9ppaYh2zNbOoqv3qRVGaOt4nec2NU5Y6RHzqMy6Ojc6rYoqewKbzaLxu8BSnQlhamMLz4W1qhCyctJU2gmXc59EMFlronSBk5xaY1yXXWySFCXqriTdlUF3Ebwd7vja83H8Q_Y1KncQIyLt2fRDSeeIAwexb3aXRrBDChqkgm4i2FvbQhlG9W3JMbjSqcSAJIJXw2Ucj1RkMY1frEimUETaJ1UET3sbGp6daUKsmXz253c-h3vUzL5P8OzBZrtc-RcIeVr7srP1HzY1-gw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t4wF4YLAxCAwwiBck0iaOHSePHWxqoZ14aNHeIttxGGJLUZdOgr-eu8SNAAHiLUouv3Rn33d39ncAL9Msd7GNXKgqEWGAolyos0SEOPNZF_EqTTWlBman6Xgh3p3Jsy143e-Fcc61i8_cgA7bWn65tGtKlQ0RzAil5DbckEII2e3W6msG1HK2rW1KFSoE_puiZJQP55MPGApyPkDzFQnnvzih7XNaAtn2Vvk7zGzdzckuzDYf2q0y-TJYN2Zgv__G4fi_f3IX7njcyUadodyDLVfvwa7HoMyP8Ks9uP0TQeE-HC_qFWUWSvYRY2qfN2RH-pujvZdsdPFpufrcnF8yhL5scolzEztC3FqytxRnX3uzvg-Lk-P5m3HoGy-EFh14E2r0ZzJHZCZ5VFklNRGPmcoadPYuNkILZSyvsszE2gojHaKeNDG2yrSKy7xMDmCnXtbuIbBYJULoSpvccWFMmgtZWqlLZYXNuIsCGG40UVjPSk7NMS6KNjqJ8gJ1V5DuCq-7AF71d3ztGDn-IfsClduLEZX2eDQt6Byx4CD6Ta7jAPZJQb2U100AhxtbKPy4vio4hlcqlhiSBPC8v4wjksosunbLNcnkKdH2yTSAB50N9c9OFGHWRD768zufwc3xfDYtppPT94_hFrW279I9h7DTrNbuCQKgxjxt7f4HciH9WQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unrolled+Variational+Bayesian+Algorithm+for+Image+Blind+Deconvolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Huang%2C+Yunshi&rft.au=Chouzenoux%2C+Emilie&rft.au=Jean-Christophe+Pesquet&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=32&rft.spage=430&rft_id=info:doi/10.1109%2FTIP.2022.3224322&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |