HATCH: results from simulated radiances, AVIRIS and Hyperion

The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis. HATCH was developed to update the previously available model, the Atm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 41; no. 6; pp. 1215 - 1222
Main Authors Goetz, A.F.H., Kindel, B.C., Ferri, M., Zheng Qu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2003.812905

Cover

Abstract The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis. HATCH was developed to update the previously available model, the Atmosphere Removal model (ATREM). In this paper, we test the HATCH model against model data using MODTRAN 4 as well as with Airborne Visible/Infrared Imaging Spectroradiomter and Hyperion data for which simultaneous ground reflectances were acquired. We also compare HATCH to the commercially available ACORN model. Results show that HATCH produces smoother-looking spectra than its predecessor ATREM and is less influenced by liquid water in vegetation. Comparisons with MODTRAN were made by calculating above-atmosphere radiances from a hypothetical target with a 0.5 reflectance at all wavelengths between 400 and 2500 nm and retrieving them with HATCH. The results show a maximum deviation of 10% at several wavelengths, highlighting the differences between the models. Hyperion images contain striping artifacts. We show that optimum removal is obtained by normalizing the means and standard deviations of each column after converting radiance to reflectance with an atmospheric model. HATCH produces water vapor corrections virtually unaffected by vegetation liquid water if the water vapor band at 940 nm is used in the calculation. Retrievals using the 1140-nm band are subject to errors associated with liquid water in vegetation. Retrievals of reflectance from Hyperion radiances require use of the 1140-nm band because the 940-nm band falls in the detector crossover region.
AbstractList The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis. HATCH was developed to update the previously available model, the Atmosphere Removal model (ATREM). In this paper, we test the HATCH model against model data using MODTRAN 4 as well as with Airborne Visible/Infrared Imaging Spectroradiomter and Hyperion data for which simultaneous ground reflectances were acquired. We also compare HATCH to the commercially available eRN model. Results show that HATCH produces smoother-looking spectra than its predecessor ATREM and is less influenced by liquid water in vegetation. Comparisons with MODTRAN were made by calculating above-atmosphere radiances from a hypothetical target with a 0.5 reflectance at all wavelengths between 400 and 2500 nm and retrieving them with HATCH. The results show a maximum deviation of 10% at several wavelengths, highlighting the differences between the models. Hyperion images contain striping artifacts. We show that optimum removal is obtained by normalizing the means and standard deviations of each column after converting radiance to reflectance with an atmospheric model. HATCH produces water vapor corrections virtually unaffected by vegetation liquid water if the water vapor band at 940 nm is used in the calculation. Retrievals using the 1140-nm band are subject to errors associated with liquid water in vegetation. Retrievals of reflectance from Hyperion radiances require use of the 1140-nm band because the 940-nm band falls in the detector crossover region.
The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis. HATCH was developed to update the previously available model, the Atmosphere Removal model (ATREM). In this paper, we test the HATCH model against model data using MODTRAN 4 as well as with Airborne Visible/Infrared Imaging Spectroradiometer and Hyperion data for which simultaneous ground reflectances were acquired. We also compare HATCH to the commercially available ACORN model. Results show that HATCH produces smoother-looking spectra than its predecessor ATREM and is less influenced by liquid water in vegetation. Comparisons with MOD-TRAN were made by calculating above-atmosphere radiances from a hypothetical target with a 0.5 reflectance at all wavelengths between 400 and 2500 nm and retrieving them with HATCH. The results show a maximum deviation of 10 percent at several wavelengths, highlighting the differences between the models. Hyperion images contain striping artifacts. We show that optimum removal is obtained by normalizing the means and standard deviations of each column after converting radiance to reflectance with an atmospheric model. HATCH produces water vapor corrections virtually unaffected by vegetation liquid water if the water vapor band at 940 nm is used in the calculation. Retrievals using the ll40-nm band are subject to errors associated with liquid water in vegetation. Retrievals of reflectance from Hyperion radiances require use of the ll40-nm band because the 940-nm band falls in the detector crossover region.
The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis.
The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from imaging spectrometer sensors to reflectance on a pixel-by-pixel basis. HATCH was developed to update the previously available model, the Atmosphere Removal model (ATREM). In this paper, we test the HATCH model against model data using MODTRAN 4 as well as with Airborne Visible/Infrared Imaging Spectroradiomter and Hyperion data for which simultaneous ground reflectances were acquired. We also compare HATCH to the commercially available ACORN model. Results show that HATCH produces smoother-looking spectra than its predecessor ATREM and is less influenced by liquid water in vegetation. Comparisons with MODTRAN were made by calculating above-atmosphere radiances from a hypothetical target with a 0.5 reflectance at all wavelengths between 400 and 2500 nm and retrieving them with HATCH. The results show a maximum deviation of 10% at several wavelengths, highlighting the differences between the models. Hyperion images contain striping artifacts. We show that optimum removal is obtained by normalizing the means and standard deviations of each column after converting radiance to reflectance with an atmospheric model. HATCH produces water vapor corrections virtually unaffected by vegetation liquid water if the water vapor band at 940 nm is used in the calculation. Retrievals using the 1140-nm band are subject to errors associated with liquid water in vegetation. Retrievals of reflectance from Hyperion radiances require use of the 1140-nm band because the 940-nm band falls in the detector crossover region.
Author Goetz, A.F.H.
Zheng Qu
Kindel, B.C.
Ferri, M.
Author_xml – sequence: 1
  givenname: A.F.H.
  surname: Goetz
  fullname: Goetz, A.F.H.
  organization: Dept. of Geol. Sci., Univ. of Colorado, Boulder, CO, USA
– sequence: 2
  givenname: B.C.
  surname: Kindel
  fullname: Kindel, B.C.
– sequence: 3
  givenname: M.
  surname: Ferri
  fullname: Ferri, M.
– sequence: 4
  surname: Zheng Qu
  fullname: Zheng Qu
BookMark eNqNkc1Lw0AQxRdRsFbvgpfgwZOpsx_Z7IqXUrQtFIS2el02mwmkpEndTQ79702pIHiQnubye2_ezLsi53VTIyG3FEaUgn5aT5erEQPgI0WZhuSMDGiSqBikEOdkAFTLmCnNLslVCBsAKhKaDsjLbLyezJ4jj6Gr2hAVvtlGodx2lW0xj7zNS1s7DI_R-HO-nK8iW-fRbL9DXzb1NbkobBXw5mcOycfba28XL96n88l4ETuuaBurTAmQLMkyhFQxUbicAzLkuROZ7MPalAlptUqFpKkFUCidkC4tkiSTBfAheTj67nzz1WFozbYMDqvK1th0wfR38ZRqegLImVbiBDDVDJjkPXj_B9w0na_7a41SggOj4gDBEXK-CcFjYXa-3Fq_NxTMoR1zaMcc2jHHdnqJ_CNxZWvb_qmtt2X1n_DuKCwR8XcP6-Myzb8BK3-a0Q
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_proenv_2011_09_052
crossref_primary_10_1016_j_rse_2006_02_025
crossref_primary_10_1007_s12517_021_08665_0
crossref_primary_10_1016_j_rse_2007_12_014
crossref_primary_10_1109_TGRS_2005_857915
crossref_primary_10_1364_AO_45_002360
crossref_primary_10_3390_rs10111698
crossref_primary_10_1007_s12524_008_0026_y
crossref_primary_10_1080_01431161_2017_1365389
crossref_primary_10_7780_kjrs_2015_31_4_4
crossref_primary_10_1016_j_foreco_2006_03_021
crossref_primary_10_1109_TGRS_2008_2011616
crossref_primary_10_1109_TGRS_2023_3236818
crossref_primary_10_1007_s11430_007_0149_y
crossref_primary_10_1109_LGRS_2004_824747
crossref_primary_10_1080_01431160802036540
crossref_primary_10_1109_TGRS_2003_813205
crossref_primary_10_1109_TGRS_2003_813125
crossref_primary_10_1016_j_rse_2008_10_017
crossref_primary_10_1080_01431161_2012_742216
crossref_primary_10_1109_JSTARS_2016_2520501
crossref_primary_10_1016_j_rse_2006_12_005
crossref_primary_10_5589_cjrs3401_suppl1
crossref_primary_10_5589_m07_067
crossref_primary_10_1109_TGRS_2010_2089799
crossref_primary_10_17482_uumfd_308630
crossref_primary_10_1029_2021JG006273
crossref_primary_10_1109_TGRS_2008_916470
Cites_doi 10.1109/36.3001
10.1016/S0034-4257(98)00045-5
10.1117/12.366315
10.1109/TGRS.2003.813125
10.1117/12.257161
10.1016/S0034-4257(98)00064-9
10.1126/science.228.4704.1147
10.1109/TGRS.2003.815999
10.1117/12.478777
10.1016/0034-4257(93)90014-O
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2003.812905
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
Technology Research Database
Aerospace Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)【Remote access available】
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1222
ExternalDocumentID 2429514721
10_1109_TGRS_2003_812905
1220229
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c381t-8b840625bbe07824fcd30e2e3dc4b6290a7246a9874617a008e6c46c7f55b6f03
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Sun Sep 28 01:31:07 EDT 2025
Sat Sep 27 21:38:12 EDT 2025
Mon Sep 29 03:42:53 EDT 2025
Fri Jul 25 10:46:27 EDT 2025
Wed Oct 01 05:07:18 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Aug 26 16:37:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-8b840625bbe07824fcd30e2e3dc4b6290a7246a9874617a008e6c46c7f55b6f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884302143
PQPubID 23500
PageCount 8
ParticipantIDs crossref_primary_10_1109_TGRS_2003_812905
proquest_miscellaneous_28329841
proquest_journals_884302143
crossref_citationtrail_10_1109_TGRS_2003_812905
proquest_miscellaneous_28937191
proquest_miscellaneous_27920263
ieee_primary_1220229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-June
2003-06-00
20030601
PublicationDateYYYYMMDD 2003-06-01
PublicationDate_xml – month: 06
  year: 2003
  text: 2003-June
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2003
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
adler-golden (ref7) 1999; 3753
miller (ref10) 2002; 4725
ref9
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref9
  doi: 10.1109/36.3001
– ident: ref3
  doi: 10.1016/S0034-4257(98)00045-5
– volume: 3753
  start-page: 61
  year: 1999
  ident: ref7
  article-title: atmospheric correction for shortwave spectral imagery based on modtran4
  publication-title: Proc SPIE
  doi: 10.1117/12.366315
– ident: ref1
  doi: 10.1109/TGRS.2003.813125
– ident: ref6
  doi: 10.1117/12.257161
– ident: ref4
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref8
  doi: 10.1126/science.228.4704.1147
– ident: ref5
  doi: 10.1109/TGRS.2003.815999
– volume: 4725
  start-page: 438
  year: 2002
  ident: ref10
  article-title: performance assessment of acorn atmospheric correction algorithm
  publication-title: Proc SPIE
  doi: 10.1117/12.478777
– ident: ref2
  doi: 10.1016/0034-4257(93)90014-O
SSID ssj0014517
Score 1.9099746
Snippet The atmospheric correction program High-accuracy Atmospheric Correction for Hyperspectral data (HATCH) has been developed specifically to convert radiance from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1215
SubjectTerms Atmosphere
Atmospheric modeling
Hyperspectral imaging
Hyperspectral sensors
Image sensors
Optical imaging
Pixel
Reflectivity
Spectroscopy
Vegetation
Vegetation mapping
Title HATCH: results from simulated radiances, AVIRIS and Hyperion
URI https://ieeexplore.ieee.org/document/1220229
https://www.proquest.com/docview/884302143
https://www.proquest.com/docview/27920263
https://www.proquest.com/docview/28329841
https://www.proquest.com/docview/28937191
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)【Remote access available】
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BSpXooTwrloXiQy9IZDdOnIcRl1VVWCrBgZe4RbYzkRA0i0hyaH89Yye7tKVacYvksWKNX_N5Zr4B-JoUKuRFqDye6sQTEiNPYi49su0DwmIKubCJwucX8eRG_LiL7pbgcJ4Lg4gu-AyH9tP58vOpaexT2YgHBNUDuQzLSSLbXK25x0BEvEuNjt2PZi5JX46uTy-vHPPnMLWvLtFfV5CrqfLmIHa3y8kqnM_G1QaVPAybWg_N738oG9878DX41JmZbNyui3VYwnIDPv5BPrgBH1zwp6k24Xgyvv42OWKEvJvHumI25YRV9z9tZS_M2bOjL6Dz5JCNb88uz66YKnM2-WU5kqflFtycfKfuXldVwTN0O9deqgnTEerRGq15IAqThz4GGOZG6Jj0o5JAxEqmiSDrRpGNgLERsUmKKNJx4YefoVdOS9wGpgtEbahdJij8XKRCSKFiQnAkK3neh9FM0ZnpKMdt5YvHzEEPX2Z2amwlzDBrp6YPB_MeTy3dxgLZTavpV7lWyX0YzOYy6_ZjlaWpCC07XNiH_XkrbSTrHVElTpsqs0yKBEgXSdDpJ1PBF0lYekHJd_4_tAGsBG31Rs_nu9CrnxvcI5um1l_cYn4BHTbwMQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ98GiLWArUBy5IzW4ek4cRlxWiZKHbQ7tFvUW2M5EQJVs1yQF-PWMnuzy14hbJY8Uav-bzzHwD8DKtVBRUkfKCTKceSoo9SaX02LYPGYspCtAmCs9Pk_wCP1zGl1twtM6FISIXfEZj--l8-eXSdPapbBKEDNVDeQtux4hp2GdrrX0GGAdDcnTifrVySvpysnh_du64P8eZfXeJf7uEXFWVv45id78cP4D5amR9WMmXcdfqsfn-B2nj_w79IdwfDE0x7VfGI9iiehd2fqEf3IU7LvzTNHvwJp8u3uavBWPv7qpthE06Ec3nr7a2F5XixhEY8IlyJKafZmezc6HqUuTfLEvyst6Hi-N33N0b6ip4hu_n1ss0ozrGPVqTNRCwMmXkU0hRaVAnrB-VhpgomaXI9o1iK4ESg4lJqzjWSeVHj2G7Xtb0BISuiLThdpkS-iVmiBJVwhiOZWVQjmCyUnRhBtJxW_viqnDgw5eFnRpbCzMq-qkZwat1j-uecGOD7J7V9E-5XskjOFjNZTHsyKbIMowsP1w0gsN1K28l6x9RNS27prBcigxJN0nw-SczDDZJWIJBGTz999AO4W6-mJ8UJ7PTjwdwL-xrOXp-8Ay225uOnrOF0-oXbmH_ANEo83w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HATCH%3A+results+from+simulated+radiances%2C+AVIRIS+and+hyperion&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Goetz%2C+A.F.H.&rft.au=Kindel%2C+B.C.&rft.au=Ferri%2C+M.&rft.au=Zheng+Qu&rft.date=2003-06-01&rft.issn=0196-2892&rft.volume=41&rft.issue=6&rft.spage=1215&rft.epage=1222&rft_id=info:doi/10.1109%2FTGRS.2003.812905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2003_812905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon