The role of pre-crash driving instability in contributing to crash intensity using naturalistic driving data
•Developing a framework to quantify instability in driving prior to crash occurrence.•Exploring the association of driving instability, in terms of volatility, with crash intensity.•Investigating the correlation of behavioral and environmental factors with driving volatility.•Higher instability in d...
Saved in:
| Published in | Accident analysis and prevention Vol. 132; p. 105226 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0001-4575 1879-2057 1879-2057 |
| DOI | 10.1016/j.aap.2019.07.002 |
Cover
| Abstract | •Developing a framework to quantify instability in driving prior to crash occurrence.•Exploring the association of driving instability, in terms of volatility, with crash intensity.•Investigating the correlation of behavioral and environmental factors with driving volatility.•Higher instability in driving increase the probability of a severe crash.•Distracted and aggressive driving increase instability in driving.
While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions. Although police-reported crash data provides information on crashes, this study takes advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that allows new insights due to detailed information on driver behavior in normal, pre-crash, and near-crash situations, in addition to trip and vehicle performance characteristics. This paper investigates the role of pre-crash driving instability, or driving volatility, in crash intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle movements in space but also the instability of vehicles prior to the crash and their contribution to crash intensity using path analysis. A subset of the data containing 617 crash events with around 0.18 million temporal trajectories are analyzed. To quantify driving instability, microscopic variations or volatility in vehicular movements before a crash are analyzed. Specifically, nine measures of pre-crash driving volatility are calculated and used to explain crash intensity. While most of the measures are significantly correlated with crash intensity, substantial positive correlations are observed for two measures representing speed and deceleration volatilities. Modeling results of the fixed and random parameter probit models revealed that volatility is one of the leading factors increasing the probability of a severe crash. Additionally, the speed prior to a crash is highly correlated with intensity outcomes, as expected. Interestingly, distracted and aggressive driving are highly correlated with driving volatility and have substantial indirect effects on crash intensity. With volatile driving serving as a leading indicator of crash intensity, given the crashes analyzed in this study, early warnings and alerts for the subject vehicle driver and proximate vehicles can be helpful when volatile behavior is observed. |
|---|---|
| AbstractList | While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions. Although police-reported crash data provides information on crashes, this study takes advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that allows new insights due to detailed information on driver behavior in normal, pre-crash, and near-crash situations, in addition to trip and vehicle performance characteristics. This paper investigates the role of pre-crash driving instability, or driving volatility, in crash intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle movements in space but also the instability of vehicles prior to the crash and their contribution to crash intensity using path analysis. A subset of the data containing 617 crash events with around 0.18 million temporal trajectories are analyzed. To quantify driving instability, microscopic variations or volatility in vehicular movements before a crash are analyzed. Specifically, nine measures of pre-crash driving volatility are calculated and used to explain crash intensity. While most of the measures are significantly correlated with crash intensity, substantial positive correlations are observed for two measures representing speed and deceleration volatilities. Modeling results of the fixed and random parameter probit models revealed that volatility is one of the leading factors increasing the probability of a severe crash. Additionally, the speed prior to a crash is highly correlated with intensity outcomes, as expected. Interestingly, distracted and aggressive driving are highly correlated with driving volatility and have substantial indirect effects on crash intensity. With volatile driving serving as a leading indicator of crash intensity, given the crashes analyzed in this study, early warnings and alerts for the subject vehicle driver and proximate vehicles can be helpful when volatile behavior is observed.While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions. Although police-reported crash data provides information on crashes, this study takes advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that allows new insights due to detailed information on driver behavior in normal, pre-crash, and near-crash situations, in addition to trip and vehicle performance characteristics. This paper investigates the role of pre-crash driving instability, or driving volatility, in crash intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle movements in space but also the instability of vehicles prior to the crash and their contribution to crash intensity using path analysis. A subset of the data containing 617 crash events with around 0.18 million temporal trajectories are analyzed. To quantify driving instability, microscopic variations or volatility in vehicular movements before a crash are analyzed. Specifically, nine measures of pre-crash driving volatility are calculated and used to explain crash intensity. While most of the measures are significantly correlated with crash intensity, substantial positive correlations are observed for two measures representing speed and deceleration volatilities. Modeling results of the fixed and random parameter probit models revealed that volatility is one of the leading factors increasing the probability of a severe crash. Additionally, the speed prior to a crash is highly correlated with intensity outcomes, as expected. Interestingly, distracted and aggressive driving are highly correlated with driving volatility and have substantial indirect effects on crash intensity. With volatile driving serving as a leading indicator of crash intensity, given the crashes analyzed in this study, early warnings and alerts for the subject vehicle driver and proximate vehicles can be helpful when volatile behavior is observed. While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions. Although police-reported crash data provides information on crashes, this study takes advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that allows new insights due to detailed information on driver behavior in normal, pre-crash, and near-crash situations, in addition to trip and vehicle performance characteristics. This paper investigates the role of pre-crash driving instability, or driving volatility, in crash intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle movements in space but also the instability of vehicles prior to the crash and their contribution to crash intensity using path analysis. A subset of the data containing 617 crash events with around 0.18 million temporal trajectories are analyzed. To quantify driving instability, microscopic variations or volatility in vehicular movements before a crash are analyzed. Specifically, nine measures of pre-crash driving volatility are calculated and used to explain crash intensity. While most of the measures are significantly correlated with crash intensity, substantial positive correlations are observed for two measures representing speed and deceleration volatilities. Modeling results of the fixed and random parameter probit models revealed that volatility is one of the leading factors increasing the probability of a severe crash. Additionally, the speed prior to a crash is highly correlated with intensity outcomes, as expected. Interestingly, distracted and aggressive driving are highly correlated with driving volatility and have substantial indirect effects on crash intensity. With volatile driving serving as a leading indicator of crash intensity, given the crashes analyzed in this study, early warnings and alerts for the subject vehicle driver and proximate vehicles can be helpful when volatile behavior is observed. •Developing a framework to quantify instability in driving prior to crash occurrence.•Exploring the association of driving instability, in terms of volatility, with crash intensity.•Investigating the correlation of behavioral and environmental factors with driving volatility.•Higher instability in driving increase the probability of a severe crash.•Distracted and aggressive driving increase instability in driving. While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity for researchers to conduct an in-depth analysis of crash contributing factors, and design appropriate interventions. Although police-reported crash data provides information on crashes, this study takes advantage of the SHRP2 Naturalistic Driving Study (NDS) which is a unique dataset that allows new insights due to detailed information on driver behavior in normal, pre-crash, and near-crash situations, in addition to trip and vehicle performance characteristics. This paper investigates the role of pre-crash driving instability, or driving volatility, in crash intensity (measured on a 4-point scale from a tire-strike to an injury crash) by analyzing microscopic vehicle kinematic data. NDS data are used to investigate not only the vehicle movements in space but also the instability of vehicles prior to the crash and their contribution to crash intensity using path analysis. A subset of the data containing 617 crash events with around 0.18 million temporal trajectories are analyzed. To quantify driving instability, microscopic variations or volatility in vehicular movements before a crash are analyzed. Specifically, nine measures of pre-crash driving volatility are calculated and used to explain crash intensity. While most of the measures are significantly correlated with crash intensity, substantial positive correlations are observed for two measures representing speed and deceleration volatilities. Modeling results of the fixed and random parameter probit models revealed that volatility is one of the leading factors increasing the probability of a severe crash. Additionally, the speed prior to a crash is highly correlated with intensity outcomes, as expected. Interestingly, distracted and aggressive driving are highly correlated with driving volatility and have substantial indirect effects on crash intensity. With volatile driving serving as a leading indicator of crash intensity, given the crashes analyzed in this study, early warnings and alerts for the subject vehicle driver and proximate vehicles can be helpful when volatile behavior is observed. |
| ArticleNumber | 105226 |
| Author | Khattak, Asad J. Kamrani, Mohsen Arvin, Ramin |
| Author_xml | – sequence: 1 givenname: Ramin surname: Arvin fullname: Arvin, Ramin – sequence: 2 givenname: Mohsen surname: Kamrani fullname: Kamrani, Mohsen email: mkamrani@vols.utk.edu – sequence: 3 givenname: Asad J. surname: Khattak fullname: Khattak, Asad J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31465934$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFr3DAQhUVJSTZpfkAvxcde7EqyZcnkVELaFAK9pGchS-PuLF5pI8mB_PvIbLaHHnIaDfO9B3rvkpz54IGQz4w2jLL-264x5tBwyoaGyoZS_oFsmJJDzamQZ2RDKWV1J6S4IJcp7coqlRTn5KJlXS-GttuQ-XELVQwzVGGqDhFqG03aVi7iM_q_FfqUzYgz5pfyrmzwOeK45PWWQ3WE0WfwaUWWtB68yUs0M6aM9p-TM9l8Ih8nMye4fptX5M-Pu8fb-_rh989ft98fatsqlmvVjYKPo3LU9aptQU7ArQXGBjqYfugEk0b009jbXpa_W-OssVyJydFuYtC2V-Tr0fcQw9MCKes9JgvzbDyEJWnOVcuYUFwW9Msbuox7cPoQcW_iiz4lVAB5BGwMKUWYtMVsMq5JGJw1o3rtQu906UKvXWgqdemiKNl_ypP5e5qbowZKPM8IUSeL4C04jGCzdgHfUb8CoxejFA |
| CitedBy_id | crossref_primary_10_1016_j_aap_2022_106923 crossref_primary_10_1016_j_aap_2020_105873 crossref_primary_10_1016_j_trc_2020_102642 crossref_primary_10_1177_0361198120918572 crossref_primary_10_1016_j_aap_2020_105835 crossref_primary_10_1007_s10696_024_09569_3 crossref_primary_10_1016_j_trf_2022_11_006 crossref_primary_10_1016_j_aap_2022_106880 crossref_primary_10_1016_j_ijtst_2024_02_011 crossref_primary_10_3390_electronics13142718 crossref_primary_10_1016_j_aap_2024_107545 crossref_primary_10_1016_j_ssci_2022_105933 crossref_primary_10_3390_su14105751 crossref_primary_10_1080_19439962_2024_2368113 crossref_primary_10_1080_19439962_2024_2341393 crossref_primary_10_1080_15472450_2020_1834392 crossref_primary_10_1016_j_aap_2021_106537 crossref_primary_10_35940_ijeat_D2426_0410421 crossref_primary_10_1016_j_aap_2022_106876 crossref_primary_10_1080_17457300_2022_2090580 crossref_primary_10_1080_23311916_2019_1708652 crossref_primary_10_1016_j_aap_2020_105865 crossref_primary_10_1108_JICV_06_2022_0024 crossref_primary_10_1016_j_aap_2022_106872 crossref_primary_10_1038_s41598_022_15693_7 crossref_primary_10_3390_ijerph19159734 crossref_primary_10_1061_JTEPBS_0000569 crossref_primary_10_1080_23249935_2023_2298498 crossref_primary_10_1016_j_trf_2022_09_011 crossref_primary_10_1016_j_jth_2020_100956 crossref_primary_10_1016_j_aap_2022_106821 crossref_primary_10_1080_17457300_2022_2103573 crossref_primary_10_1016_j_aap_2022_106622 crossref_primary_10_1016_j_aap_2021_106304 crossref_primary_10_1016_j_aap_2021_106502 crossref_primary_10_1016_j_aap_2023_107433 crossref_primary_10_1016_j_trc_2019_06_017 crossref_primary_10_1109_ACCESS_2025_3538693 crossref_primary_10_1016_j_aap_2023_107155 crossref_primary_10_1177_03611981231179475 crossref_primary_10_1016_j_aap_2019_105405 crossref_primary_10_1016_j_aap_2019_105406 crossref_primary_10_1016_j_aap_2023_107072 crossref_primary_10_1016_j_trf_2022_10_011 crossref_primary_10_2139_ssrn_4129112 crossref_primary_10_1016_j_amar_2020_100142 crossref_primary_10_3390_su142215184 crossref_primary_10_1080_15389588_2021_1984440 crossref_primary_10_1016_j_aap_2020_105444 crossref_primary_10_3390_su13147802 crossref_primary_10_1016_j_trf_2021_12_017 crossref_primary_10_3390_ijerph191811358 crossref_primary_10_1016_j_trf_2023_07_014 crossref_primary_10_1109_TITS_2024_3381175 crossref_primary_10_1016_j_trc_2020_01_028 crossref_primary_10_1080_19427867_2023_2233782 crossref_primary_10_1016_j_aap_2021_106158 crossref_primary_10_1016_j_aap_2019_105355 crossref_primary_10_1080_15389588_2023_2291337 crossref_primary_10_1080_15389588_2023_2286429 crossref_primary_10_1016_j_aap_2024_107779 crossref_primary_10_1080_15472450_2019_1699077 crossref_primary_10_1080_15568318_2021_1919797 |
| Cites_doi | 10.1016/j.aap.2011.03.025 10.1016/j.aap.2005.09.007 10.1016/j.aap.2013.02.003 10.3141/2663-13 10.1016/j.aap.2005.07.001 10.1016/j.aap.2007.06.005 10.1016/j.trc.2018.03.018 10.1016/j.aap.2017.04.012 10.1016/j.trpro.2017.05.407 10.1016/S0001-4575(03)00037-X 10.1016/j.aap.2018.04.030 10.1016/S0001-4575(96)00050-4 10.1016/j.aap.2019.05.014 10.1016/j.trc.2016.01.017 10.1016/j.aap.2010.05.005 10.1016/j.aap.2005.07.004 10.1016/S0191-2615(02)00090-5 10.1016/j.jsr.2004.06.003 10.1016/j.aap.2017.10.018 10.1177/0361198119845899 10.1080/15389588.2016.1262540 10.1016/j.aap.2011.02.010 10.1016/j.aap.2012.03.005 10.1016/j.aap.2007.11.010 10.1016/j.aap.2019.01.022 10.1016/j.aap.2017.11.014 10.1016/j.jsr.2003.05.009 10.1016/j.aap.2019.01.014 10.1080/00140130802277547 10.1080/15389588.2013.782400 10.1177/0361198118758035 10.1016/j.trf.2005.04.019 10.1016/S0001-4575(01)00028-8 10.1177/0361198118773869 10.1016/j.trf.2013.12.005 10.1016/j.ssci.2011.07.008 10.1016/j.ssci.2013.09.002 10.1016/j.aap.2005.10.015 10.2307/1907382 10.1016/j.ssci.2011.03.007 10.1016/j.aap.2011.09.015 10.1177/0361198118767409 10.1016/j.aap.2017.08.034 10.1016/j.aap.2019.02.020 10.1016/j.aap.2014.05.016 10.1016/j.aap.2008.10.005 10.1016/j.aap.2016.11.018 10.1177/0361198119841573 10.1016/j.aap.2007.06.013 10.1016/j.aap.2015.01.003 10.1016/j.aap.2014.01.018 10.1016/j.aap.2014.06.017 10.3141/2103-02 10.1016/j.csda.2005.05.007 10.1007/BF01386213 10.1016/j.aap.2016.04.029 10.1016/j.aap.2018.04.019 10.1016/j.jsr.2014.12.001 10.3141/2659-09 10.1177/0361198119839347 10.1016/j.aap.2017.03.012 10.1016/j.aap.2019.02.029 10.1016/j.jsr.2012.10.011 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.aap.2019.07.002 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Welfare & Social Work Public Health |
| EISSN | 1879-2057 |
| ExternalDocumentID | 31465934 10_1016_j_aap_2019_07_002 S0001457519306517 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABDMP ABFNM ABIVO ABJNI ABLVK ABMAC ABMMH ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AHRSL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SPC SPCBC SSB SSG SSH SSO SSS SST SSZ T5K VH1 WUQ XPP ZCG ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 |
| ID | FETCH-LOGICAL-c381t-84b52bb8d0d6833e7fe2cce11909a694517a56fb6c67019cadcac285fd04f1e33 |
| IEDL.DBID | .~1 |
| ISSN | 0001-4575 1879-2057 |
| IngestDate | Sun Sep 28 03:54:13 EDT 2025 Wed Feb 19 02:32:12 EST 2025 Thu Apr 24 23:03:12 EDT 2025 Wed Oct 01 05:19:50 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vehicle stability Ordered probit Path analysis Volatility Random parameter Naturalistic driving study SHRP2 |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-84b52bb8d0d6833e7fe2cce11909a694517a56fb6c67019cadcac285fd04f1e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31465934 |
| PQID | 2283115827 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2283115827 pubmed_primary_31465934 crossref_citationtrail_10_1016_j_aap_2019_07_002 crossref_primary_10_1016_j_aap_2019_07_002 elsevier_sciencedirect_doi_10_1016_j_aap_2019_07_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Accident analysis and prevention |
| PublicationTitleAlternate | Accid Anal Prev |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Arvin, Kamrani, Khattak (bib0035) 2019; 127 Paleti, Eluru, Bhat (bib0290) 2010; 42 Wang, Chen, Guo, Yu, Stevenson, Zhao (bib0405) 2019; 127 Aarts, Van Schagen (bib0005) 2006; 38 Donmez, Liu (bib0085) 2015; 52 Sadia, Bekhor, Polus (bib0330) 2018; 116 Haghighi, Liu, Zhang, Porter (bib0155) 2018; 111 Nickkar, Jeihani, Sahebi (bib0280) 2019; 2673 Huang, Sun, Zhang (bib0210) 2018; 117 Bonett (bib0070) 2006; 50 Federal Highway Administration (bib0105) 2018 Savolainen, Mannering, Lord, Quddus (bib0335) 2011; 43 O’donnell, Connor (bib0285) 1996; 28 Kamrani, Arvin, Khattak (bib0225) 2018; 2672 Papazikou, Quddus, Thomas (bib0295) 2017 Horberry, Anderson, Regan, Triggs, Brown (bib0195) 2006; 38 Wang, Wang, Tarko, Tremont (bib0410) 2015; 76 Jalayer, Shabanpour, Pour-Rouholamin, Golshani, Zhou (bib0215) 2018; 117 Wang, Zhang (bib0415) 2017; 25 Behnood, Roshandeh, Mannering (bib0060) 2014; 3 Davis (bib0080) 2015 Shinar, Compton (bib0350) 2004; 36 Balusu, Pinjari, Mannering, Eluru (bib0045) 2018; 20 Greene (bib0145) 2003 Bhat (bib0065) 2003; 37 Hauer (bib0190) 2009; 2103 Esfahani, Song (bib0095) 2019 Theofilatos, Yannis (bib0370) 2014; 72 Figlewski (bib0115) 1994 Hamdar, Qin, Talebpour (bib0170) 2016; 67 Behnood, Mannering (bib0055) 2017; 18 Zeng, Gu, Zhang, Wen, Lee, Hao (bib0440) 2019; 127 Stavrinos, Jones, Garner, Griffin, Franklin, Ball (bib0355) 2013; 61 Taylor, Lynam, Baruya (bib0360) 2000 Shakouri, Ikuma, Aghazadeh, Punniaraj, Ishak (bib0340) 2014; 71 Neyens, Boyle (bib0275) 2008; 40 Wali, Khattak, Xu (bib0395) 2018; 110 Halton (bib0160) 1960; 2 Zwillinger, Kokoska (bib0455) 2000 Das, Abdel-Aty (bib0075) 2011; 49 Yu, Zheng, Abdel-Aty, Gao (bib0435) 2019; 125 Anastasopoulos, Mannering (bib0025) 2009; 41 Mokhtarimousavi, Anderson, Azizinamini, Hadi (bib0265) 2019 Hankey, Perez, McClafferty (bib0175) 2016 Pei, Wong, Sze (bib0310) 2012; 48 Hamdar, Mahmassani, Chen (bib0165) 2008; 40 Anastasopoulos, Mannering, Shankar, Haddock (bib0030) 2012; 45 Kockelman, Kweon (bib0245) 2002; 34 Zeng, Wen, Huang, Pei, Wong (bib0450) 2017; 99 Rahimi, Azimi, Asgari, Jin (bib0320) 2019 Ghasemzadeh, Hammit, Ahmed, Young (bib0140) 2018; 2672 Young, Salmon (bib0430) 2012; 50 Hanowski, Olson, Hickman, Dingus (bib0180) 2006 Huang, Siddiqui, Abdel-Aty (bib0205) 2011; 43 Kamrani, Arvin, Khattak (bib0230) 2019 Kamrani, Arvin, Khattak (bib0220) 2018 Liu, Lee (bib0255) 2005; 8 Qu, Kuang, Oh, Jin (bib0315) 2014; 15 Zeng, Wen, Huang, Abdel-Aty (bib0445) 2017; 100 Teh, Jamson, Carsten, Jamson (bib0365) 2014; 22 Huang, Hu, Abdel-Aty (bib0200) 2014; 62 Sheng, Pakdamanian, Han, Kim, Tiwari, Kim, Feng (bib0345) 2019 National Highway Traffic Safety Administration (bib0270) 2008 Rakauskas, Gugerty, Ward (bib0325) 2004; 35 Anastasopoulos (bib0020) 2016; 11 Loehlin (bib0260) 2004 Feng, Bao, Sayer, Flannagan, Manser, Wunderlich (bib0110) 2017; 104 Azimi, Asgari, Rahimi, Jin (bib0040) 2019 Kamrani, Wali, Khattak (bib0235) 2017 Washington, Karlaftis, Mannering (bib0420) 2010 Hauer (bib0185) 2006; 38 Wali, Ahmed, Ahmad (bib0390) 2017 Ghasemzadeh, Ahmed (bib0135) 2018; 90 Gargoum, El-Basyouny (bib0120) 2016; 93 Everitt, Skrondal (bib0100) 2002; vol. 106 Lambert-Bélanger, Dubois, Weaver, Mullen, Bedard (bib0250) 2012; 43 Parsa, Kamal, Taghipour, Mohammadian (bib0305) 2019 Vadeby, Forsman (bib0385) 2017; 103 Parsa, Taghipour, Derrible, Mohammadian (bib0300) 2019; 129 Yasmin, Eluru, Pinjari, Tay (bib0425) 2014; 66 American Automobile Association (bib0015) 2009 Ghasemzadeh, Ahmed (bib0125) 2017 Wali, Khattak, Waters, Chimba, Li (bib0400) 2018; 2672 Greene, Hensher (bib0150) 2019 Ghasemzadeh, Ahmed (bib0130) 2018 Abdel-Aty (bib0010) 2003; 34 Eluru, Bhat, Hensher (bib0090) 2008; 40 Beede, Kass (bib0050) 2006; 38 Tobin (bib0375) 1958 Kircher, Thorslund (bib0240) 2009; 52 Train (bib0380) 2000 Halton (10.1016/j.aap.2019.07.002_bib0160) 1960; 2 Young (10.1016/j.aap.2019.07.002_bib0430) 2012; 50 Balusu (10.1016/j.aap.2019.07.002_bib0045) 2018; 20 Parsa (10.1016/j.aap.2019.07.002_bib0305) 2019 Ghasemzadeh (10.1016/j.aap.2019.07.002_bib0130) 2018 Sadia (10.1016/j.aap.2019.07.002_bib0330) 2018; 116 Wali (10.1016/j.aap.2019.07.002_bib0400) 2018; 2672 Davis (10.1016/j.aap.2019.07.002_bib0080) 2015 Yasmin (10.1016/j.aap.2019.07.002_bib0425) 2014; 66 Beede (10.1016/j.aap.2019.07.002_bib0050) 2006; 38 Bonett (10.1016/j.aap.2019.07.002_bib0070) 2006; 50 Eluru (10.1016/j.aap.2019.07.002_bib0090) 2008; 40 Gargoum (10.1016/j.aap.2019.07.002_bib0120) 2016; 93 Kircher (10.1016/j.aap.2019.07.002_bib0240) 2009; 52 Savolainen (10.1016/j.aap.2019.07.002_bib0335) 2011; 43 Lambert-Bélanger (10.1016/j.aap.2019.07.002_bib0250) 2012; 43 Theofilatos (10.1016/j.aap.2019.07.002_bib0370) 2014; 72 Zeng (10.1016/j.aap.2019.07.002_bib0445) 2017; 100 Behnood (10.1016/j.aap.2019.07.002_bib0055) 2017; 18 Yu (10.1016/j.aap.2019.07.002_bib0435) 2019; 125 Greene (10.1016/j.aap.2019.07.002_bib0145) 2003 Hamdar (10.1016/j.aap.2019.07.002_bib0165) 2008; 40 Kamrani (10.1016/j.aap.2019.07.002_bib0235) 2017 Behnood (10.1016/j.aap.2019.07.002_bib0060) 2014; 3 Rakauskas (10.1016/j.aap.2019.07.002_bib0325) 2004; 35 Kamrani (10.1016/j.aap.2019.07.002_bib0220) 2018 Taylor (10.1016/j.aap.2019.07.002_bib0360) 2000 Jalayer (10.1016/j.aap.2019.07.002_bib0215) 2018; 117 O’donnell (10.1016/j.aap.2019.07.002_bib0285) 1996; 28 Washington (10.1016/j.aap.2019.07.002_bib0420) 2010 Figlewski (10.1016/j.aap.2019.07.002_bib0115) 1994 Kamrani (10.1016/j.aap.2019.07.002_bib0225) 2018; 2672 Anastasopoulos (10.1016/j.aap.2019.07.002_bib0030) 2012; 45 Zwillinger (10.1016/j.aap.2019.07.002_bib0455) 2000 Kockelman (10.1016/j.aap.2019.07.002_bib0245) 2002; 34 Shinar (10.1016/j.aap.2019.07.002_bib0350) 2004; 36 Liu (10.1016/j.aap.2019.07.002_bib0255) 2005; 8 Wang (10.1016/j.aap.2019.07.002_bib0405) 2019; 127 Nickkar (10.1016/j.aap.2019.07.002_bib0280) 2019; 2673 Stavrinos (10.1016/j.aap.2019.07.002_bib0355) 2013; 61 Huang (10.1016/j.aap.2019.07.002_bib0200) 2014; 62 Rahimi (10.1016/j.aap.2019.07.002_bib0320) 2019 American Automobile Association (10.1016/j.aap.2019.07.002_bib0015) 2009 Papazikou (10.1016/j.aap.2019.07.002_bib0295) 2017 Hauer (10.1016/j.aap.2019.07.002_bib0185) 2006; 38 Zeng (10.1016/j.aap.2019.07.002_bib0450) 2017; 99 Abdel-Aty (10.1016/j.aap.2019.07.002_bib0010) 2003; 34 Esfahani (10.1016/j.aap.2019.07.002_bib0095) 2019 Loehlin (10.1016/j.aap.2019.07.002_bib0260) 2004 Greene (10.1016/j.aap.2019.07.002_bib0150) 2019 Hankey (10.1016/j.aap.2019.07.002_bib0175) 2016 Parsa (10.1016/j.aap.2019.07.002_bib0300) 2019; 129 Mokhtarimousavi (10.1016/j.aap.2019.07.002_bib0265) 2019 Aarts (10.1016/j.aap.2019.07.002_bib0005) 2006; 38 Horberry (10.1016/j.aap.2019.07.002_bib0195) 2006; 38 Neyens (10.1016/j.aap.2019.07.002_bib0275) 2008; 40 Huang (10.1016/j.aap.2019.07.002_bib0210) 2018; 117 Das (10.1016/j.aap.2019.07.002_bib0075) 2011; 49 Feng (10.1016/j.aap.2019.07.002_bib0110) 2017; 104 Wang (10.1016/j.aap.2019.07.002_bib0410) 2015; 76 Ghasemzadeh (10.1016/j.aap.2019.07.002_bib0140) 2018; 2672 Hauer (10.1016/j.aap.2019.07.002_bib0190) 2009; 2103 Wali (10.1016/j.aap.2019.07.002_bib0390) 2017 Bhat (10.1016/j.aap.2019.07.002_bib0065) 2003; 37 Wang (10.1016/j.aap.2019.07.002_bib0415) 2017; 25 Sheng (10.1016/j.aap.2019.07.002_bib0345) 2019 Federal Highway Administration (10.1016/j.aap.2019.07.002_bib0105) 2018 Kamrani (10.1016/j.aap.2019.07.002_bib0230) 2019 Azimi (10.1016/j.aap.2019.07.002_bib0040) 2019 Paleti (10.1016/j.aap.2019.07.002_bib0290) 2010; 42 Everitt (10.1016/j.aap.2019.07.002_bib0100) 2002; vol. 106 Huang (10.1016/j.aap.2019.07.002_bib0205) 2011; 43 Qu (10.1016/j.aap.2019.07.002_bib0315) 2014; 15 Zeng (10.1016/j.aap.2019.07.002_bib0440) 2019; 127 Teh (10.1016/j.aap.2019.07.002_bib0365) 2014; 22 Pei (10.1016/j.aap.2019.07.002_bib0310) 2012; 48 Haghighi (10.1016/j.aap.2019.07.002_bib0155) 2018; 111 Hanowski (10.1016/j.aap.2019.07.002_bib0180) 2006 Anastasopoulos (10.1016/j.aap.2019.07.002_bib0025) 2009; 41 Ghasemzadeh (10.1016/j.aap.2019.07.002_bib0125) 2017 Anastasopoulos (10.1016/j.aap.2019.07.002_bib0020) 2016; 11 Arvin (10.1016/j.aap.2019.07.002_bib0035) 2019; 127 Donmez (10.1016/j.aap.2019.07.002_bib0085) 2015; 52 Shakouri (10.1016/j.aap.2019.07.002_bib0340) 2014; 71 Wali (10.1016/j.aap.2019.07.002_bib0395) 2018; 110 Ghasemzadeh (10.1016/j.aap.2019.07.002_bib0135) 2018; 90 Tobin (10.1016/j.aap.2019.07.002_bib0375) 1958 Vadeby (10.1016/j.aap.2019.07.002_bib0385) 2017; 103 Hamdar (10.1016/j.aap.2019.07.002_bib0170) 2016; 67 National Highway Traffic Safety Administration (10.1016/j.aap.2019.07.002_bib0270) 2008 Train (10.1016/j.aap.2019.07.002_bib0380) 2000 |
| References_xml | – volume: 3 start-page: 56 year: 2014 end-page: 91 ident: bib0060 article-title: Latent class analysis of the effects of age, gender, and alcohol consumption on driver-injury severities publication-title: Anal. Methods Accid. Res. – year: 2018 ident: bib0130 article-title: Exploring factors contributing to injury severity at work zones considering adverse weather conditions publication-title: IATSS Res. – start-page: 80 year: 2017 end-page: 90 ident: bib0235 article-title: Can data generated by connected vehicles enhance safety? Proactive approach to intersection safety management publication-title: Transp. Res. Record J. Transp. Res. Board – volume: 67 start-page: 193 year: 2016 end-page: 213 ident: bib0170 article-title: Weather and road geometry impact on longitudinal driving behavior: exploratory analysis using an empirically supported acceleration modeling framework publication-title: Transp. Res. C Emerg. Technol. – year: 2006 ident: bib0180 article-title: The 100-car Naturalistic Driving Study: A Descriptive Analysis of Light Vehicle-heavy Vehicle Interactions From the Light Vehicle Driver’s Perspective – volume: 38 start-page: 78 year: 2006 end-page: 83 ident: bib0185 article-title: The frequency–severity indeterminacy publication-title: Accid. Anal. Prev. – volume: 34 start-page: 313 year: 2002 end-page: 321 ident: bib0245 article-title: Driver injury severity: an application of ordered probit models publication-title: Accid. Anal. Prev. – volume: 28 start-page: 739 year: 1996 end-page: 753 ident: bib0285 article-title: Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice publication-title: Accid. Anal. Prev. – volume: 71 start-page: 166 year: 2014 end-page: 176 ident: bib0340 article-title: Effects of work zone configurations and traffic density on performance variables and subjective workload publication-title: Accid. Anal. Prev. – year: 2019 ident: bib0040 article-title: Investigation of heterogeneity in severity analysis for large truck crashes publication-title: Paper Presented at the Transportation Research Board – volume: 104 start-page: 125 year: 2017 end-page: 136 ident: bib0110 article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data publication-title: Accid. Anal. Prev. – year: 2004 ident: bib0260 article-title: Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis – volume: 38 start-page: 185 year: 2006 end-page: 191 ident: bib0195 article-title: Driver distraction: the effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance publication-title: Accid. Anal. Prev. – volume: 20 start-page: 46 year: 2018 end-page: 67 ident: bib0045 article-title: Non-decreasing threshold variances in mixed generalized ordered response models: a negative correlations approach to variance reduction publication-title: Anal. Methods Accid. Res. – volume: 90 start-page: 379 year: 2018 end-page: 392 ident: bib0135 article-title: Utilizing naturalistic driving data for in-depth analysis of driver lane-keeping behavior in rain: non-parametric MARS and parametric logistic regression modeling approaches publication-title: Transp. Res. C Emerg. Technol. – year: 1994 ident: bib0115 article-title: Forecasting Volatility Using Historical Data – volume: 2 start-page: 84 year: 1960 end-page: 90 ident: bib0160 article-title: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals publication-title: Numer. Math. – volume: 62 start-page: 339 year: 2014 end-page: 347 ident: bib0200 article-title: Indexing crash worthiness and crash aggressivity by major car brands publication-title: Saf. Sci. – volume: 2672 start-page: 9 year: 2018 end-page: 20 ident: bib0400 article-title: Development of safety performance functions: incorporating unobserved heterogeneity and functional form analysis publication-title: Transp. Res. Rec. – volume: 99 start-page: 184 year: 2017 end-page: 191 ident: bib0450 article-title: A multivariate random-parameters Tobit model for analyzing highway crash rates by injury severity publication-title: Accid. Anal. Prev. – start-page: 24 year: 1958 end-page: 36 ident: bib0375 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica J. Econom. Soc. – volume: 36 start-page: 429 year: 2004 end-page: 437 ident: bib0350 article-title: Aggressive driving: an observational study of driver, vehicle, and situational variables publication-title: Accid. Anal. Prev. – volume: 127 start-page: 118 year: 2019 end-page: 133 ident: bib0035 article-title: How instantaneous driving behavior contributes to crashes at intersections: extracting useful information from connected vehicle message data publication-title: Accid. Anal. Prev. – volume: 35 start-page: 453 year: 2004 end-page: 464 ident: bib0325 article-title: Effects of naturalistic cell phone conversations on driving performance publication-title: J. Saf. Res. – volume: 117 start-page: 318 year: 2018 end-page: 327 ident: bib0210 article-title: Effects of congestion on drivers’ speed choice: assessing the mediating role of state aggressiveness based on taxi floating car data publication-title: Accid. Anal. Prev. – year: 2019 ident: bib0305 article-title: Does security of neighborhoods affect non-mandatory trips? a copula-based joint multinomial-ordinal model of mode and trip distance choices publication-title: Presented at Transportation Research Board 98th Annual Meeting – volume: 117 start-page: 128 year: 2018 end-page: 135 ident: bib0215 article-title: Wrong-way driving crashes: a random-parameters ordered probit analysis of injury severity publication-title: Accid. Anal. Prev. – volume: 110 start-page: 101 year: 2018 end-page: 114 ident: bib0395 article-title: Contributory fault and level of personal injury to drivers involved in head-on collisions: application of copula-based bivariate ordinal models publication-title: Accid. Anal. Prev. – start-page: 99 year: 2017 end-page: 108 ident: bib0125 article-title: Drivers’ lane-keeping ability in heavy rain: preliminary investigation using SHRP 2 naturalistic driving study data publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 93 start-page: 32 year: 2016 end-page: 40 ident: bib0120 article-title: Exploring the association between speed and safety: a path analysis approach publication-title: Accid. Anal. Prev. – volume: 116 start-page: 21 year: 2018 end-page: 29 ident: bib0330 article-title: Structural equations modelling of drivers’ speed selection using environmental, driver, and risk factors publication-title: Accid. Anal. Prev. – year: 2000 ident: bib0455 article-title: Standard Probability and Statistical Tables and Formula – volume: 50 start-page: 2953 year: 2006 end-page: 2957 ident: bib0070 article-title: Confidence interval for a coefficient of quartile variation publication-title: Comput. Stat. Data Anal. – year: 2010 ident: bib0420 article-title: Statistical and Econometric Methods for Transportation Data Analysis – volume: 43 start-page: 1666 year: 2011 end-page: 1676 ident: bib0335 article-title: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives publication-title: Accid. Anal. Prev. – volume: 2103 start-page: 10 year: 2009 end-page: 17 ident: bib0190 article-title: Speed and safety publication-title: Transp. Res. Rec. – volume: 40 start-page: 254 year: 2008 end-page: 259 ident: bib0275 article-title: The influence of driver distraction on the severity of injuries sustained by teenage drivers and their passengers publication-title: Accid. Anal. Prev. – volume: 129 start-page: 202 year: 2019 end-page: 210 ident: bib0300 article-title: Real-time accident detection: coping with imbalanced data publication-title: Accid. Anal. Prev. – volume: 34 start-page: 597 year: 2003 end-page: 603 ident: bib0010 article-title: Analysis of driver injury severity levels at multiple locations using ordered probit models publication-title: J. Saf. Res. – volume: 125 start-page: 70 year: 2019 end-page: 78 ident: bib0435 article-title: Exploring crash mechanisms with microscopic traffic flow variables: a hybrid approach with latent class logit and path analysis models publication-title: Accid. Anal. Prev. – volume: 2672 start-page: 290 year: 2018 end-page: 301 ident: bib0225 article-title: Extracting useful information from Basic Safety Message Data: an empirical study of driving volatility measures and crash frequency at intersections publication-title: Transp. Res. Rec. – year: 2000 ident: bib0360 article-title: The Effects of Drivers' Speed on the Frequency of Road Accidents – volume: vol. 106 year: 2002 ident: bib0100 publication-title: The Cambridge Dictionary of Statistics – volume: 52 start-page: 23 year: 2015 end-page: 28 ident: bib0085 article-title: Associations of distraction involvement and age with driver injury severities publication-title: J. Saf. Res. – year: 2019 ident: bib0345 article-title: A Case Study of Trust on Autonomous Driving – volume: 43 start-page: 1364 year: 2011 end-page: 1370 ident: bib0205 article-title: Indexing crash worthiness and crash aggressivity by vehicle type publication-title: Accid. Anal. Prev. – volume: 66 start-page: 120 year: 2014 end-page: 135 ident: bib0425 article-title: Examining driver injury severity in two vehicle crashes—a copula based approach publication-title: Accid. Anal. Prev. – volume: 50 start-page: 165 year: 2012 end-page: 174 ident: bib0430 article-title: Examining the relationship between driver distraction and driving errors: a discussion of theory, studies and methods publication-title: Saf. Sci. – volume: 41 start-page: 153 year: 2009 end-page: 159 ident: bib0025 article-title: A note on modeling vehicle accident frequencies with random-parameters count models publication-title: Accid. Anal. Prev. – volume: 72 start-page: 244 year: 2014 end-page: 256 ident: bib0370 article-title: A review of the effect of traffic and weather characteristics on road safety publication-title: Accid. Anal. Prev. – volume: 11 start-page: 17 year: 2016 end-page: 32 ident: bib0020 article-title: Random parameters multivariate tobit and zero-inflated count data models: addressing unobserved and zero-state heterogeneity in accident injury-severity rate and frequency analysis publication-title: Anal. Methods Accid. Res. – volume: 8 start-page: 369 year: 2005 end-page: 382 ident: bib0255 article-title: Effects of car-phone use and aggressive disposition during critical driving maneuvers publication-title: Transp. Res. F Traffic Psychol. Behav. – volume: 100 start-page: 37 year: 2017 end-page: 43 ident: bib0445 article-title: A Bayesian spatial random parameters Tobit model for analyzing crash rates on roadway segments publication-title: Econometrica J. Econom. Soc. – year: 2019 ident: bib0150 article-title: Modeling Ordered Choices: A Primer – volume: 111 start-page: 34 year: 2018 end-page: 42 ident: bib0155 article-title: Impact of roadway geometric features on crash severity on rural two-lane highways publication-title: Accid. Anal. Prev. – volume: 2673 start-page: 988 year: 2019 end-page: 1000 ident: bib0280 article-title: Analysis of driving simulator sickness symptoms: zero-Inflated ordered probit approach publication-title: Transp. Res. Rec. – volume: 42 start-page: 1839 year: 2010 end-page: 1854 ident: bib0290 article-title: Examining the influence of aggressive driving behavior on driver injury severity in traffic crashes publication-title: Accid. Anal. Prev. – volume: 52 start-page: 165 year: 2009 end-page: 176 ident: bib0240 article-title: Effects of road surface appearance and low friction warning systems on driver behaviour and confidence in the warning system publication-title: Ergonomics – volume: 15 start-page: 89 year: 2014 end-page: 93 ident: bib0315 article-title: Safety evaluation for expressways: a comparative study for macroscopic and microscopic indicators publication-title: Traffic Inj. Prev. – volume: 127 start-page: 80 year: 2019 end-page: 86 ident: bib0405 article-title: Middle-aged Drivers’ subjective categorization for combined alignments on mountainous freeways and their speed choices publication-title: Accid. Anal. Prev. – year: 2018 ident: bib0105 article-title: Highway Statistics, 2016 – volume: 48 start-page: 464 year: 2012 end-page: 471 ident: bib0310 article-title: The roles of exposure and speed in road safety analysis publication-title: Accid. Anal. Prev. – volume: 61 start-page: 63 year: 2013 end-page: 70 ident: bib0355 article-title: Impact of distracted driving on safety and traffic flow publication-title: Accid. Anal. Prev. – year: 2003 ident: bib0145 article-title: Econometric Analysis – volume: 22 start-page: 207 year: 2014 end-page: 217 ident: bib0365 article-title: Temporal fluctuations in driving demand: the effect of traffic complexity on subjective measures of workload and driving performance publication-title: Transp. Res. F Traffic Psychol. Behav. – volume: 103 start-page: 20 year: 2017 end-page: 28 ident: bib0385 article-title: Changes in speed distribution: applying aggregated safety effect models to individual vehicle speeds publication-title: Accid. Anal. Prev. – volume: 49 start-page: 1156 year: 2011 end-page: 1163 ident: bib0075 article-title: A combined frequency–severity approach for the analysis of rear-end crashes on urban arterials publication-title: Saf. Sci. – year: 2019 ident: bib0230 article-title: The Role of Aggressive Driving and Speeding in Road Safety: Insights from Shrp2 Naturalistic Driving Study Data – year: 2019 ident: bib0095 article-title: A New Method for Microsimulation Model Calibration: A Case Study of I-710 – year: 2017 ident: bib0390 article-title: An ordered-probit analysis of enforcement of road speed limits publication-title: Proceedings of the Institution of Civil Engineers-Transport – start-page: 202 year: 2009 end-page: 638 ident: bib0015 article-title: Aggressive driving: Research update – volume: 25 start-page: 2119 year: 2017 end-page: 2125 ident: bib0415 article-title: Analysis of roadway and environmental factors affecting traffic crash severities publication-title: Transp. Res. Procedia – year: 2019 ident: bib0265 article-title: Improved support vector machine models for work zone crash injury severity prediction and analysis publication-title: Transp. Res. Rec. – volume: 38 start-page: 215 year: 2006 end-page: 224 ident: bib0005 article-title: Driving speed and the risk of road crashes: a review publication-title: Accid. Anal. Prev. – volume: 40 start-page: 315 year: 2008 end-page: 326 ident: bib0165 article-title: Aggressiveness propensity index for driving behavior at signalized intersections publication-title: Accid. Anal. Prev. – year: 2016 ident: bib0175 article-title: Description of the SHRP 2 Naturalistic Database and the Crash, Near-crash, and Baseline Data Sets – volume: 45 start-page: 628 year: 2012 end-page: 633 ident: bib0030 article-title: A study of factors affecting highway accident rates using the random-parameters tobit model publication-title: Accid. Anal. Prev. – volume: 18 start-page: 456 year: 2017 end-page: 462 ident: bib0055 article-title: The effects of drug and alcohol consumption on driver injury severities in single-vehicle crashes publication-title: Traffic Inj. Prev. – year: 2018 ident: bib0220 article-title: Analyzing highly volatile driving trips taken by alternative fuel vehicles publication-title: Paper Presented at the Transportation Research Board 97th Annual Meeting – year: 2017 ident: bib0295 article-title: Detecting Deviation From Normal Driving Using SHRP2 NDS Data – volume: 127 start-page: 87 year: 2019 end-page: 95 ident: bib0440 article-title: Analyzing freeway crash severity using a Bayesian spatial generalized ordered logit model with conditional autoregressive priors publication-title: Accid. Anal. Prev. – year: 2019 ident: bib0320 article-title: Clustering approach toward large truck crash analysis publication-title: Transp. Res. Rec. – volume: 43 start-page: 333 year: 2012 end-page: 338 ident: bib0250 article-title: Aggressive driving behaviour in young drivers (aged 16 through 25) involved in fatal crashes publication-title: J. Saf. Res. – volume: 40 start-page: 1033 year: 2008 end-page: 1054 ident: bib0090 article-title: A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes publication-title: Accid. Anal. Prev. – volume: 37 start-page: 837 year: 2003 end-page: 855 ident: bib0065 article-title: Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences publication-title: Transp. Res. B Methodol. – year: 2000 ident: bib0380 article-title: Halton Sequences for Mixed Logit – volume: 76 start-page: 110 year: 2015 end-page: 117 ident: bib0410 article-title: The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study publication-title: Accid. Anal. Prev. – year: 2015 ident: bib0080 article-title: National telephone survey of reported and unreported motor vehicle crashes publication-title: Findings Report no. DOT HS-812-183 – volume: 2672 start-page: 137 year: 2018 end-page: 147 ident: bib0140 article-title: Parametric ordinal logistic regression and non-parametric decision tree approaches for assessing the impact of weather conditions on driver speed selection using naturalistic driving data publication-title: Transp. Res. Rec. – year: 2008 ident: bib0270 article-title: National Motor Vehicle Crash Causation Survey: Report to Congress – volume: 38 start-page: 415 year: 2006 end-page: 421 ident: bib0050 article-title: Engrossed in conversation: the impact of cell phones on simulated driving performance publication-title: Accid. Anal. Prev. – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0150 – volume: 43 start-page: 1666 issue: 5 year: 2011 ident: 10.1016/j.aap.2019.07.002_bib0335 article-title: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.03.025 – volume: 38 start-page: 185 issue: 1 year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0195 article-title: Driver distraction: the effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.09.007 – volume: 61 start-page: 63 year: 2013 ident: 10.1016/j.aap.2019.07.002_bib0355 article-title: Impact of distracted driving on safety and traffic flow publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2013.02.003 – start-page: 99 issue: 2663 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0125 article-title: Drivers’ lane-keeping ability in heavy rain: preliminary investigation using SHRP 2 naturalistic driving study data publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2663-13 – volume: 38 start-page: 78 issue: 1 year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0185 article-title: The frequency–severity indeterminacy publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.07.001 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0040 article-title: Investigation of heterogeneity in severity analysis for large truck crashes – volume: 40 start-page: 254 issue: 1 year: 2008 ident: 10.1016/j.aap.2019.07.002_bib0275 article-title: The influence of driver distraction on the severity of injuries sustained by teenage drivers and their passengers publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.06.005 – volume: 90 start-page: 379 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0135 article-title: Utilizing naturalistic driving data for in-depth analysis of driver lane-keeping behavior in rain: non-parametric MARS and parametric logistic regression modeling approaches publication-title: Transp. Res. C Emerg. Technol. doi: 10.1016/j.trc.2018.03.018 – volume: 104 start-page: 125 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0110 article-title: Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.04.012 – volume: 25 start-page: 2119 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0415 article-title: Analysis of roadway and environmental factors affecting traffic crash severities publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2017.05.407 – volume: 36 start-page: 429 issue: 3 year: 2004 ident: 10.1016/j.aap.2019.07.002_bib0350 article-title: Aggressive driving: an observational study of driver, vehicle, and situational variables publication-title: Accid. Anal. Prev. doi: 10.1016/S0001-4575(03)00037-X – year: 2004 ident: 10.1016/j.aap.2019.07.002_bib0260 – volume: 117 start-page: 318 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0210 article-title: Effects of congestion on drivers’ speed choice: assessing the mediating role of state aggressiveness based on taxi floating car data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2018.04.030 – volume: 28 start-page: 739 issue: 6 year: 1996 ident: 10.1016/j.aap.2019.07.002_bib0285 article-title: Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice publication-title: Accid. Anal. Prev. doi: 10.1016/S0001-4575(96)00050-4 – volume: 129 start-page: 202 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0300 article-title: Real-time accident detection: coping with imbalanced data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.05.014 – volume: 67 start-page: 193 year: 2016 ident: 10.1016/j.aap.2019.07.002_bib0170 article-title: Weather and road geometry impact on longitudinal driving behavior: exploratory analysis using an empirically supported acceleration modeling framework publication-title: Transp. Res. C Emerg. Technol. doi: 10.1016/j.trc.2016.01.017 – volume: 42 start-page: 1839 issue: 6 year: 2010 ident: 10.1016/j.aap.2019.07.002_bib0290 article-title: Examining the influence of aggressive driving behavior on driver injury severity in traffic crashes publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2010.05.005 – year: 2010 ident: 10.1016/j.aap.2019.07.002_bib0420 – volume: 38 start-page: 215 issue: 2 year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0005 article-title: Driving speed and the risk of road crashes: a review publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.07.004 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0345 – volume: 37 start-page: 837 issue: 9 year: 2003 ident: 10.1016/j.aap.2019.07.002_bib0065 article-title: Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences publication-title: Transp. Res. B Methodol. doi: 10.1016/S0191-2615(02)00090-5 – year: 2015 ident: 10.1016/j.aap.2019.07.002_bib0080 article-title: National telephone survey of reported and unreported motor vehicle crashes – year: 2000 ident: 10.1016/j.aap.2019.07.002_bib0360 – volume: 35 start-page: 453 issue: 4 year: 2004 ident: 10.1016/j.aap.2019.07.002_bib0325 article-title: Effects of naturalistic cell phone conversations on driving performance publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2004.06.003 – year: 2016 ident: 10.1016/j.aap.2019.07.002_bib0175 – year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0390 article-title: An ordered-probit analysis of enforcement of road speed limits publication-title: Proceedings of the Institution of Civil Engineers-Transport – volume: 110 start-page: 101 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0395 article-title: Contributory fault and level of personal injury to drivers involved in head-on collisions: application of copula-based bivariate ordinal models publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.10.018 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0265 article-title: Improved support vector machine models for work zone crash injury severity prediction and analysis publication-title: Transp. Res. Rec. doi: 10.1177/0361198119845899 – volume: 18 start-page: 456 issue: 5 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0055 article-title: The effects of drug and alcohol consumption on driver injury severities in single-vehicle crashes publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2016.1262540 – volume: 43 start-page: 1364 issue: 4 year: 2011 ident: 10.1016/j.aap.2019.07.002_bib0205 article-title: Indexing crash worthiness and crash aggressivity by vehicle type publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.02.010 – year: 1994 ident: 10.1016/j.aap.2019.07.002_bib0115 – volume: 48 start-page: 464 year: 2012 ident: 10.1016/j.aap.2019.07.002_bib0310 article-title: The roles of exposure and speed in road safety analysis publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2012.03.005 – volume: 40 start-page: 1033 issue: 3 year: 2008 ident: 10.1016/j.aap.2019.07.002_bib0090 article-title: A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.11.010 – volume: 125 start-page: 70 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0435 article-title: Exploring crash mechanisms with microscopic traffic flow variables: a hybrid approach with latent class logit and path analysis models publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.01.022 – volume: 111 start-page: 34 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0155 article-title: Impact of roadway geometric features on crash severity on rural two-lane highways publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.11.014 – volume: 34 start-page: 597 issue: 5 year: 2003 ident: 10.1016/j.aap.2019.07.002_bib0010 article-title: Analysis of driver injury severity levels at multiple locations using ordered probit models publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2003.05.009 – volume: 127 start-page: 118 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0035 article-title: How instantaneous driving behavior contributes to crashes at intersections: extracting useful information from connected vehicle message data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.01.014 – volume: 52 start-page: 165 issue: 2 year: 2009 ident: 10.1016/j.aap.2019.07.002_bib0240 article-title: Effects of road surface appearance and low friction warning systems on driver behaviour and confidence in the warning system publication-title: Ergonomics doi: 10.1080/00140130802277547 – year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0180 – volume: 15 start-page: 89 issue: 1 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0315 article-title: Safety evaluation for expressways: a comparative study for macroscopic and microscopic indicators publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2013.782400 – year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0105 – volume: 2672 start-page: 137 issue: 12 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0140 article-title: Parametric ordinal logistic regression and non-parametric decision tree approaches for assessing the impact of weather conditions on driver speed selection using naturalistic driving data publication-title: Transp. Res. Rec. doi: 10.1177/0361198118758035 – year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0220 article-title: Analyzing highly volatile driving trips taken by alternative fuel vehicles – volume: 20 start-page: 46 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0045 article-title: Non-decreasing threshold variances in mixed generalized ordered response models: a negative correlations approach to variance reduction publication-title: Anal. Methods Accid. Res. – year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0130 article-title: Exploring factors contributing to injury severity at work zones considering adverse weather conditions publication-title: IATSS Res. – volume: 8 start-page: 369 issue: 4–5 year: 2005 ident: 10.1016/j.aap.2019.07.002_bib0255 article-title: Effects of car-phone use and aggressive disposition during critical driving maneuvers publication-title: Transp. Res. F Traffic Psychol. Behav. doi: 10.1016/j.trf.2005.04.019 – volume: 34 start-page: 313 issue: 3 year: 2002 ident: 10.1016/j.aap.2019.07.002_bib0245 article-title: Driver injury severity: an application of ordered probit models publication-title: Accid. Anal. Prev. doi: 10.1016/S0001-4575(01)00028-8 – volume: 2672 start-page: 290 issue: 38 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0225 article-title: Extracting useful information from Basic Safety Message Data: an empirical study of driving volatility measures and crash frequency at intersections publication-title: Transp. Res. Rec. doi: 10.1177/0361198118773869 – volume: 22 start-page: 207 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0365 article-title: Temporal fluctuations in driving demand: the effect of traffic complexity on subjective measures of workload and driving performance publication-title: Transp. Res. F Traffic Psychol. Behav. doi: 10.1016/j.trf.2013.12.005 – volume: 50 start-page: 165 issue: 2 year: 2012 ident: 10.1016/j.aap.2019.07.002_bib0430 article-title: Examining the relationship between driver distraction and driving errors: a discussion of theory, studies and methods publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.07.008 – volume: 62 start-page: 339 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0200 article-title: Indexing crash worthiness and crash aggressivity by major car brands publication-title: Saf. Sci. doi: 10.1016/j.ssci.2013.09.002 – volume: 38 start-page: 415 issue: 2 year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0050 article-title: Engrossed in conversation: the impact of cell phones on simulated driving performance publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.10.015 – start-page: 24 year: 1958 ident: 10.1016/j.aap.2019.07.002_bib0375 article-title: Estimation of relationships for limited dependent variables publication-title: Econometrica J. Econom. Soc. doi: 10.2307/1907382 – volume: 49 start-page: 1156 issue: 8–9 year: 2011 ident: 10.1016/j.aap.2019.07.002_bib0075 article-title: A combined frequency–severity approach for the analysis of rear-end crashes on urban arterials publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.03.007 – year: 2003 ident: 10.1016/j.aap.2019.07.002_bib0145 – volume: 45 start-page: 628 year: 2012 ident: 10.1016/j.aap.2019.07.002_bib0030 article-title: A study of factors affecting highway accident rates using the random-parameters tobit model publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.09.015 – volume: 2672 start-page: 9 issue: 30 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0400 article-title: Development of safety performance functions: incorporating unobserved heterogeneity and functional form analysis publication-title: Transp. Res. Rec. doi: 10.1177/0361198118767409 – volume: 116 start-page: 21 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0330 article-title: Structural equations modelling of drivers’ speed selection using environmental, driver, and risk factors publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.08.034 – volume: 127 start-page: 80 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0405 article-title: Middle-aged Drivers’ subjective categorization for combined alignments on mountainous freeways and their speed choices publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.02.020 – year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0295 – volume: 3 start-page: 56 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0060 article-title: Latent class analysis of the effects of age, gender, and alcohol consumption on driver-injury severities publication-title: Anal. Methods Accid. Res. – volume: 71 start-page: 166 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0340 article-title: Effects of work zone configurations and traffic density on performance variables and subjective workload publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.05.016 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0305 article-title: Does security of neighborhoods affect non-mandatory trips? a copula-based joint multinomial-ordinal model of mode and trip distance choices – start-page: 202 year: 2009 ident: 10.1016/j.aap.2019.07.002_bib0015 – volume: 41 start-page: 153 issue: 1 year: 2009 ident: 10.1016/j.aap.2019.07.002_bib0025 article-title: A note on modeling vehicle accident frequencies with random-parameters count models publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2008.10.005 – year: 2008 ident: 10.1016/j.aap.2019.07.002_bib0270 – volume: 99 start-page: 184 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0450 article-title: A multivariate random-parameters Tobit model for analyzing highway crash rates by injury severity publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.11.018 – volume: 2673 start-page: 988 issue: 4 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0280 article-title: Analysis of driving simulator sickness symptoms: zero-Inflated ordered probit approach publication-title: Transp. Res. Rec. doi: 10.1177/0361198119841573 – volume: 40 start-page: 315 issue: 1 year: 2008 ident: 10.1016/j.aap.2019.07.002_bib0165 article-title: Aggressiveness propensity index for driving behavior at signalized intersections publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.06.013 – volume: 76 start-page: 110 year: 2015 ident: 10.1016/j.aap.2019.07.002_bib0410 article-title: The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.01.003 – volume: 66 start-page: 120 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0425 article-title: Examining driver injury severity in two vehicle crashes—a copula based approach publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.01.018 – volume: 72 start-page: 244 year: 2014 ident: 10.1016/j.aap.2019.07.002_bib0370 article-title: A review of the effect of traffic and weather characteristics on road safety publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.06.017 – volume: 2103 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.aap.2019.07.002_bib0190 article-title: Speed and safety publication-title: Transp. Res. Rec. doi: 10.3141/2103-02 – volume: 50 start-page: 2953 issue: 11 year: 2006 ident: 10.1016/j.aap.2019.07.002_bib0070 article-title: Confidence interval for a coefficient of quartile variation publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.05.007 – year: 2000 ident: 10.1016/j.aap.2019.07.002_bib0455 – volume: vol. 106 year: 2002 ident: 10.1016/j.aap.2019.07.002_bib0100 – volume: 2 start-page: 84 issue: 1 year: 1960 ident: 10.1016/j.aap.2019.07.002_bib0160 article-title: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals publication-title: Numer. Math. doi: 10.1007/BF01386213 – volume: 93 start-page: 32 year: 2016 ident: 10.1016/j.aap.2019.07.002_bib0120 article-title: Exploring the association between speed and safety: a path analysis approach publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.04.029 – volume: 117 start-page: 128 year: 2018 ident: 10.1016/j.aap.2019.07.002_bib0215 article-title: Wrong-way driving crashes: a random-parameters ordered probit analysis of injury severity publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2018.04.019 – volume: 52 start-page: 23 year: 2015 ident: 10.1016/j.aap.2019.07.002_bib0085 article-title: Associations of distraction involvement and age with driver injury severities publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2014.12.001 – year: 2000 ident: 10.1016/j.aap.2019.07.002_bib0380 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0095 – start-page: 80 issue: 2659 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0235 article-title: Can data generated by connected vehicles enhance safety? Proactive approach to intersection safety management publication-title: Transp. Res. Record J. Transp. Res. Board doi: 10.3141/2659-09 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0320 article-title: Clustering approach toward large truck crash analysis publication-title: Transp. Res. Rec. doi: 10.1177/0361198119839347 – volume: 100 start-page: 37 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0445 article-title: A Bayesian spatial random parameters Tobit model for analyzing crash rates on roadway segments publication-title: Econometrica J. Econom. Soc. – volume: 103 start-page: 20 year: 2017 ident: 10.1016/j.aap.2019.07.002_bib0385 article-title: Changes in speed distribution: applying aggregated safety effect models to individual vehicle speeds publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.03.012 – volume: 127 start-page: 87 year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0440 article-title: Analyzing freeway crash severity using a Bayesian spatial generalized ordered logit model with conditional autoregressive priors publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.02.029 – volume: 43 start-page: 333 issue: 5–6 year: 2012 ident: 10.1016/j.aap.2019.07.002_bib0250 article-title: Aggressive driving behaviour in young drivers (aged 16 through 25) involved in fatal crashes publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2012.10.011 – year: 2019 ident: 10.1016/j.aap.2019.07.002_bib0230 – volume: 11 start-page: 17 year: 2016 ident: 10.1016/j.aap.2019.07.002_bib0020 article-title: Random parameters multivariate tobit and zero-inflated count data models: addressing unobserved and zero-state heterogeneity in accident injury-severity rate and frequency analysis publication-title: Anal. Methods Accid. Res. |
| SSID | ssj0007875 |
| Score | 2.5538855 |
| Snippet | •Developing a framework to quantify instability in driving prior to crash occurrence.•Exploring the association of driving instability, in terms of volatility,... While the cost of crashes exceeds $1 Trillion a year in the U.S. alone, the availability of high-resolution naturalistic driving data provides an opportunity... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105226 |
| SubjectTerms | Naturalistic driving study Ordered probit Path analysis Random parameter SHRP2 Vehicle stability Volatility |
| Title | The role of pre-crash driving instability in contributing to crash intensity using naturalistic driving data |
| URI | https://dx.doi.org/10.1016/j.aap.2019.07.002 https://www.ncbi.nlm.nih.gov/pubmed/31465934 https://www.proquest.com/docview/2283115827 |
| Volume | 132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hekGqqvLRdilFRkI9IKUkseMkR4SKtqzgUBXBzbIduw2sNigsh17625mxk60qtRx6SuLYieWZeCb2mzcAh7UttagpR1ia-0Q4kSVa1jLxvCnKxhBJHcUOX1zK6ZU4vylu1uB0jIUhWOUw98c5PczWQ8nxMJrH921LMb60JVaSC4J2NKOIciFKymLw6ddvmAcqZMxigL_NVHvc2QwYL62JsjKrA3_nsLLyF9v0L98z2KCz1_BqcB7ZSezfJqy5xRa8jCtvLAYUbcFejLhl127ude_YRzYWdP3dNsxRMRhhClnnGWFAbK8ffrCmb2lpgbXkLgbA7E88ZwHJHlJi4b1lx2LlNuLesQrB5r-zwA5KTIrYr9WTCHu6A1dnn7-dTpMh5UJi0XQvk0qYIjematJGVpy70rvcWpeh21CjDAUOsy6kN9JK4nG3urHa5lXhm1T4zHH-BtYX3cK9A2a9MKmrrM3KSuiiNI4bKzOL06_jVSMnkI6DrezAR05pMeZqBJ7dKpSPIvmolHbJ8wkcrZrcRzKO5yqLUYLqD41SaCyea3YwSlvhl0bbJ3rhuscHRURB6D9XeTmBt1ENVr3gaHCKmovd_3vpe9igqxjjuAfry_7RfUBnZ2n2gzbvw4uTL7PpJR1nX69nT4Wu_70 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAJISivpQWMhDgghSaxYydHVLVaoO2pFb1ZtmOXwGpTpdsDF357Z-xkUSXogVvkR2J5Jp6x_c03AO8ap4xoKEdYXoZMeFFkRjYyC7ytVGuJpI5ih4-O5fxUfDmrzjZgb4qFIVjluPanNT2u1mPJ7jibuxddRzG-dCWmyAVBO1qoO3BXVKWiHdjH339wHqiRKY0B7pup-XS1GUFexhBnZdFEAs_xaOUvxulfzmc0QgeP4OHoPbJPaYCPYcMvt-BBOnpjKaJoC3ZSyC375hfBDJ69Z1NBP_x8AgvUDEagQtYHRiAQN5jL76wdOjpbYB35ixEx-wufWYSyx5xYWLfqWWrcJeA7NiHc_DmL9KBEpYjjWr-JwKdP4fRg_2Rvno05FzKHtnuV1cJWpbV1m7ey5tyr4EvnfIF-Q4NCFDjPppLBSieJyN2Z1hlX1lVocxEKz_kz2Fz2S_8CmAvC5r52rlC1MJWynlsnC4frr-d1K2eQT5Ot3UhITnkxFnpCnv3QKB9N8tE5XZOXM_iw7nKR2DhuaywmCeobKqXRWtzW7e0kbY2_Gt2fmKXvry41MQWhA12XagbPkxqsR8HR4lQNFy__76Nv4N785OhQH34-_roN96kmBTzuwOZquPKv0PNZ2ddRs68BZMb_rw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+pre-crash+driving+instability+in+contributing+to+crash+intensity+using+naturalistic+driving+data&rft.jtitle=Accident+analysis+and+prevention&rft.au=Arvin%2C+Ramin&rft.au=Kamrani%2C+Mohsen&rft.au=Khattak%2C+Asad+J&rft.date=2019-11-01&rft.eissn=1879-2057&rft.volume=132&rft.spage=105226&rft_id=info:doi/10.1016%2Fj.aap.2019.07.002&rft_id=info%3Apmid%2F31465934&rft.externalDocID=31465934 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon |