A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers

•An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accuratel...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 155; pp. 196 - 205
Main Authors Zheng, Hanbo, Zhang, Yiyi, Liu, Jiefeng, Wei, Hua, Zhao, Junhui, Liao, Ruijin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0378-7796
1873-2046
DOI10.1016/j.epsr.2017.10.010

Cover

Abstract •An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accurately. Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively.
AbstractList Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively.
•An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accurately. Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively.
Author Zhang, Yiyi
Wei, Hua
Zhao, Junhui
Liao, Ruijin
Zheng, Hanbo
Liu, Jiefeng
Author_xml – sequence: 1
  givenname: Hanbo
  surname: Zheng
  fullname: Zheng, Hanbo
  email: hanbozheng@163.com
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China
– sequence: 2
  givenname: Yiyi
  surname: Zhang
  fullname: Zhang, Yiyi
  email: yiyizhang@gxu.edu.cn
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China
– sequence: 3
  givenname: Jiefeng
  surname: Liu
  fullname: Liu, Jiefeng
  email: liujiefeng9999@163.com
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China
– sequence: 4
  givenname: Hua
  surname: Wei
  fullname: Wei, Hua
  organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China
– sequence: 5
  givenname: Junhui
  surname: Zhao
  fullname: Zhao, Junhui
  organization: Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT 06516, USA
– sequence: 6
  givenname: Ruijin
  surname: Liao
  fullname: Liao, Ruijin
  organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
BookMark eNp9kF9rHCEUxaUk0E3SL9Anoc-zveqMjtCXEPonsCWFbfsqrnNn6zKjWzUJ-QT52nXYPuUhDyocz-9ezrkgZyEGJOQ9gzUDJj8e1njMac2BqSqsgcEbsmK9Eg2HVp6RFQjVN0pp-ZZc5HwAAKlVtyLP1zTEB5zoHId672zGgcZAH20VsdDNttn-_k59KLhPttRPPx9TJQb6Y3tH7bSPyZc_Mx1jWg46m4sPexpHOvic47RY9zZTF-uMUHKdRY_xERMtyYZcmRlTviLno50yvvv_XpJfXz7_vPnWbO6-3t5cbxonelYaBZppPgi5Q4V9C0xrDuPYdpJrB0zIlg9ad1p0DrjlbOcU570UetypodWduCQfTnNriL_3mIs5xPsU6krDoQMJgglRXf3J5VLMOeFonC-2-BohWT8ZBmap3RzMUrtZal-0WntF-Qv0mPxs09Pr0KcThDX6g8dksvMYHA6-NlrMEP1r-D8F5Z6K
CitedBy_id crossref_primary_10_3233_JIFS_223443
crossref_primary_10_1016_j_cplett_2024_141710
crossref_primary_10_1049_hve2_12195
crossref_primary_10_1299_jamdsm_2021jamdsm0037
crossref_primary_10_1016_j_isatra_2020_03_022
crossref_primary_10_1007_s10570_019_02331_1
crossref_primary_10_3390_w10091124
crossref_primary_10_1049_iet_smt_2018_5432
crossref_primary_10_3390_polym10020191
crossref_primary_10_1016_j_apsusc_2023_156445
crossref_primary_10_1142_S0218194019400023
crossref_primary_10_1080_15325008_2023_2204869
crossref_primary_10_1016_j_rser_2021_111347
crossref_primary_10_1016_j_chemosphere_2023_141010
crossref_primary_10_1049_iet_smt_2018_5276
crossref_primary_10_1080_15435075_2019_1602534
crossref_primary_10_3390_en12101916
crossref_primary_10_1016_j_jngse_2020_103716
crossref_primary_10_1016_j_flatc_2024_100706
crossref_primary_10_3390_en11010146
crossref_primary_10_1007_s13369_019_03739_4
crossref_primary_10_1109_ACCESS_2019_2927018
crossref_primary_10_1051_e3sconf_202125601038
crossref_primary_10_1109_TASC_2024_3463256
crossref_primary_10_3390_en12050857
crossref_primary_10_1007_s00202_023_01974_5
crossref_primary_10_1002_tee_23081
crossref_primary_10_1016_j_egyr_2023_09_183
crossref_primary_10_1109_ACCESS_2018_2865960
crossref_primary_10_1049_iet_smt_2018_5337
crossref_primary_10_3390_s18124430
crossref_primary_10_1155_2023_5097144
crossref_primary_10_1016_j_isatra_2022_03_006
crossref_primary_10_1016_j_aei_2021_101433
crossref_primary_10_3390_app9183788
crossref_primary_10_3390_polym11010085
crossref_primary_10_1080_03772063_2020_1732844
crossref_primary_10_3389_fchem_2018_00364
crossref_primary_10_32604_sdhm_2024_049298
crossref_primary_10_1016_j_lwt_2024_117135
crossref_primary_10_1007_s11831_022_09849_x
crossref_primary_10_3390_en11081922
crossref_primary_10_1088_1361_648X_ac2273
crossref_primary_10_1016_j_ijepes_2021_107828
crossref_primary_10_1016_j_apsusc_2021_149816
crossref_primary_10_3390_polym10101096
crossref_primary_10_1002_jbio_202100142
crossref_primary_10_3390_app13158753
crossref_primary_10_3390_info10060195
crossref_primary_10_3390_act13020074
crossref_primary_10_3390_nano11010231
crossref_primary_10_1109_TDEI_2024_3396795
crossref_primary_10_1007_s42835_019_00199_6
crossref_primary_10_1049_elp2_12147
crossref_primary_10_3390_en13020422
crossref_primary_10_1007_s00521_019_04698_5
crossref_primary_10_1016_j_asoc_2021_107518
crossref_primary_10_1016_j_fuel_2020_119629
crossref_primary_10_1016_j_egyr_2022_10_389
crossref_primary_10_1016_j_rinp_2021_104680
crossref_primary_10_1007_s13369_024_09689_w
crossref_primary_10_3390_polym14071449
crossref_primary_10_1109_TDEI_2018_007180
crossref_primary_10_3390_s22166281
crossref_primary_10_1109_ACCESS_2019_2958411
crossref_primary_10_1088_1361_6463_ab62c2
crossref_primary_10_1016_j_aei_2019_01_001
crossref_primary_10_1109_ACCESS_2019_2897606
crossref_primary_10_1109_ACCESS_2019_2906379
crossref_primary_10_3233_JIFS_189258
crossref_primary_10_1016_j_isatra_2021_01_060
crossref_primary_10_1109_ACCESS_2020_3012633
crossref_primary_10_1049_gtd2_12040
crossref_primary_10_1016_j_bbe_2018_08_004
crossref_primary_10_1021_acs_langmuir_4c01585
crossref_primary_10_1016_j_asoc_2023_111072
crossref_primary_10_1016_j_chemphys_2021_111304
crossref_primary_10_1063_1_5120560
crossref_primary_10_3390_en13071687
crossref_primary_10_3390_en11092437
crossref_primary_10_1155_2020_2091382
crossref_primary_10_3390_s20247242
crossref_primary_10_1049_elp2_12204
crossref_primary_10_1109_TDEI_2024_3379954
crossref_primary_10_3390_en15228587
crossref_primary_10_1155_2020_8853314
crossref_primary_10_3390_s23146645
crossref_primary_10_1016_j_seppur_2023_123807
crossref_primary_10_1016_j_tsep_2020_100671
crossref_primary_10_1155_2022_3931374
crossref_primary_10_2118_214298_PA
crossref_primary_10_1016_j_engappai_2020_103863
crossref_primary_10_1016_j_physe_2019_113947
crossref_primary_10_1080_0952813X_2018_1509380
crossref_primary_10_1049_iet_gtd_2017_1531
crossref_primary_10_3390_s20092730
crossref_primary_10_3390_app10030950
crossref_primary_10_1108_IJICC_02_2020_0019
crossref_primary_10_3233_JCM_226642
crossref_primary_10_1039_D4NJ01608D
crossref_primary_10_1049_elp2_12175
crossref_primary_10_32604_iasc_2021_017703
Cites_doi 10.1109/61.584363
10.1109/61.796227
10.1109/61.252690
10.1080/03650340.2014.941823
10.1109/61.956751
10.1016/j.agwat.2016.08.025
10.3390/w7095031
10.1109/72.935093
10.1109/TPWRD.2010.2091325
10.1109/TPWRD.2010.2096482
10.1016/j.epsr.2011.09.012
10.1109/MEI.2014.6804740
10.1109/TPWRD.2003.813605
10.1016/j.epsr.2017.01.035
10.1109/72.165591
10.1016/j.ymssp.2006.12.007
10.1016/S0893-6080(98)00032-X
10.1016/j.epsr.2014.01.002
10.1109/MEI.2007.4318269
10.1109/TSMCC.2008.2007253
10.1016/j.epsr.2015.05.014
10.1109/TDEI.2014.6832284
10.1016/j.enconman.2016.08.070
10.1016/j.epsr.2007.04.006
10.3390/en9090697
10.1109/59.867146
10.1109/TPWRD.2005.864044
10.1109/MEI.2002.1014963
10.1109/MEI.2015.7303257
10.1016/S1006-1266(07)60029-7
10.1109/59.910780
10.1016/j.enconman.2009.02.004
10.1016/j.eswa.2007.06.018
10.1023/B:MACH.0000008082.80494.e0
10.1016/S0022-1694(02)00289-5
10.1016/j.epsr.2004.07.008
10.1016/j.epsr.2016.09.024
10.1016/S0378-7796(03)00047-6
10.1016/j.eswa.2008.09.048
10.1109/MEI.2010.5599977
10.1109/TSMCB.2003.811113
10.1007/s11721-007-0002-0
10.1109/67.814667
10.1109/61.180341
10.1016/j.jhydrol.2010.12.041
10.1080/23249676.2014.923790
10.1080/18128600902823216
10.1109/TPWRD.2003.817736
10.1002/met.1533
10.1016/j.epsr.2004.11.013
10.1016/j.eswa.2007.11.019
10.1109/59.708845
10.1109/61.544265
10.1109/TPWRD.2007.893182
10.1016/S0305-0548(99)00144-6
10.1016/j.enconman.2010.09.033
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 2018
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 2018
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2017.10.010
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
EndPage 205
ExternalDocumentID 10_1016_j_epsr_2017_10_010
S0378779617304145
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
L7M
SSH
ID FETCH-LOGICAL-c381t-709192d36be7e84019920ff45629c013642d995935c02a21bc7228639fb7d4953
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Fri Jul 25 07:33:55 EDT 2025
Wed Oct 01 05:08:57 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dissolved gases
Wavelet technique
Oil-immersed power transformers
Least squares support vector machine
Forecasting
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-709192d36be7e84019920ff45629c013642d995935c02a21bc7228639fb7d4953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2050603133
PQPubID 2047565
PageCount 10
ParticipantIDs proquest_journals_2050603133
crossref_citationtrail_10_1016_j_epsr_2017_10_010
crossref_primary_10_1016_j_epsr_2017_10_010
elsevier_sciencedirect_doi_10_1016_j_epsr_2017_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Valipour (bib0420) 2012; 74
Fei, Sun (bib0255) 2008; 78
Liu, Song, Li, Mao, Wang (bib0020) 2015; 31
Jazebi, Vahidi, Jannati (bib0335) 2011; 52
Huang (bib0110) 2003; 18
Hao, Cai-Xin (bib0125) 2007; 22
Van Gestel, Suykens, Baesens, Viaene, Vanthienen, Dedene, De Moor, Vandewalle (bib0310) 2004; 54
Widodo, Yang (bib0340) 2007; 21
Liao, Zheng, Grzybowski, Yang, Zhang, Liao (bib0225) 2011; 26
Suykens, Van Gestel, De Brabanter (bib0300) 2002
Xiong, Sun, Liao, Li, Du (bib0195) 2005
Zendehboudi (bib0320) 2016; 127
Mohamed, Abdelaziz, Mostafa (bib0120) 2005; 75
Duval (bib0200) 2002; 18
Leung, Chen, Daouk (bib0250) 2000; 27
Shintemirov, Tang, Wu (bib0215) 2009; 39
Tomsovic, Tapper, Ingvarsson (bib0025) 1993; 8
Bakar, Abu-Siada, Islam (bib0015) 2014; 30
Valipour, Sefidkouhi, Raeini (bib0445) 2017; 180
Huang, Sun, Huang, Liao (bib0165) 2009
Bin, Ping, Yunbai, Xishan (bib0150) 2002
Yongqiang, Fangcheng, Heming (bib0190) 2005
Smola, Schölkopf, Müller (bib0390) 1998; 11
Yang, Liao (bib0040) 1999; 14
Thang, Aggarwal, Esp, McGrail (bib0100) 2000
Yusuff, Jimoh, Munda (bib0290) 2014; 110
Sun, Feng, Xu (bib0370) 2004
Honglei, Dengming, Yazhu (bib0095) 2000
Zhang, Liu (bib0315) 2009; 5
Wang, Liu, Griffin (bib0140) 2000; 13
Hippert, Pedreira, Souza (bib0240) 2001; 16
Flores, Mombello, Jardini, Ratta (bib0075) 2008
Poli, Kennedy, Blackwell (bib0380) 2007; 1
Schölkopf, Burges, Smola (bib0385) 1999
Afiqah, Musirin, Johari, Othman, Rahman, Othman (bib0080) 2010
Zhang, Zhou, Jiao (bib0330) 2004; 34
Denghua (bib0055) 2000
Huang, Yang, Huang (bib0035) 1997; 12
Zhang, Benveniste (bib0325) 1992; 3
Wang, Hung (bib0260) 2003; 67
Valipour, Mousavi, Valipour, Rezaei (bib0410) 2013
Ganyun, Haozhong, Haibao, Lixin (bib0275) 2005; 74
Zhang, Wang, Zhang (bib0295) 2017; 146
Valipour (bib0400) 2015; 61
Yang, Huang (bib0170) 1998; 13
Sarma, Kalyani (bib0115) 2004
Ahmad, bin Yaacob (bib0145) 2002
Vapnik (bib0280) 2013
Tasdighi, Kezunovic (bib0285) 2017; 142
Huang (bib0180) 2003; 18
Wu (bib0350) 2009; 36
Bicen, Aras, Kirkici (bib0005) 2014; 21
Morais, Rolim (bib0205) 2006; 21
Chang, Chen (bib0245) 2003; 270
Mo, Wang, Dong, Yan (bib0160) 2004; 24
Zhang, Yasuoka, Ishii, Yang, Yan (bib0050) 1999
Kennedy, Eberhart (bib0360) 1995
Huang, Yang, Huang (bib0030) 1996
Valipour, Montazar (bib0440) 2012; 69
Fei, Wang, Miao, Tu, Liu (bib0265) 2009; 50
Bacha, Souahlia, Gossa (bib0230) 2012; 83
Valipour (bib0395) 2013; 2
Yannopoulos, Lyberatos, Theodossiou, Li, Valipour, Tamburrino, Angelakis (bib0415) 2015; 7
Sun, Liu, Zhang, Shang, Yuan, Ma (bib0085) 2016; 9
Hooshmand, Banejad (bib0070) 2006; 17
Lin, Ling, Huang (bib0135) 1993; 8
Shi (bib0365) 2001
Sun, Zhang, Miao, Li (bib0130) 2007; 17
Akbari, Setayeshmehr, Borsi, Gockenbach, Fofana (bib0010) 2010; 26
Zhang, Ding, Liu, Griffin (bib0090) 1996; 11
Li, Wu, Wu (bib0220) 2011; 26
Sica, Guimarães, de Oliveira Duarte, Reis (bib0235) 2015; 127
Zhang, Ibuka, Yasuoka (bib0045) 1999
Valipour (bib0425) 2013; 3
Bratton, Kennedy (bib0375) 2007
Vapnik, Vapnik (bib0270) 1998
Valipour (bib0405) 2016; 23
Wang, Cotton, Northcote (bib0210) 2007; 23
Valipour (bib0435) 2014; 2
Thang, Aggarwal, McGrail, Esp (bib0175) 2001
Frank, Asuncion (bib0450) 2010
Lin, Wu, Huang (bib0155) 2009; 36
Zhang, Li, Ma, Ju (bib0185) 2005
Valipour (bib0430) 2013; 8
Widodo, Yang (bib0345) 2008; 35
Van Gestel, Suykens, Baestaens, Lambrechts, Lanckriet, Vandaele, De Moor, Vandewalle (bib0305) 2001; 12
Su (bib0060) 2000
Kisi, Cimen (bib0355) 2011; 399
Su, Mi, Lai, Austin (bib0065) 2000; 15
Guardado, Naredo, Moreno, Fuerte (bib0105) 2001; 16
Zhang (10.1016/j.epsr.2017.10.010_bib0185) 2005
Huang (10.1016/j.epsr.2017.10.010_bib0035) 1997; 12
Sarma (10.1016/j.epsr.2017.10.010_bib0115) 2004
Zhang (10.1016/j.epsr.2017.10.010_bib0325) 1992; 3
Valipour (10.1016/j.epsr.2017.10.010_bib0440) 2012; 69
Valipour (10.1016/j.epsr.2017.10.010_bib0395) 2013; 2
Zhang (10.1016/j.epsr.2017.10.010_bib0330) 2004; 34
Hippert (10.1016/j.epsr.2017.10.010_bib0240) 2001; 16
Tomsovic (10.1016/j.epsr.2017.10.010_bib0025) 1993; 8
Frank (10.1016/j.epsr.2017.10.010_bib0450) 2010
Huang (10.1016/j.epsr.2017.10.010_bib0030) 1996
Fei (10.1016/j.epsr.2017.10.010_bib0255) 2008; 78
Akbari (10.1016/j.epsr.2017.10.010_bib0010) 2010; 26
Afiqah (10.1016/j.epsr.2017.10.010_bib0080) 2010
Shi (10.1016/j.epsr.2017.10.010_bib0365) 2001
Valipour (10.1016/j.epsr.2017.10.010_bib0435) 2014; 2
Zhang (10.1016/j.epsr.2017.10.010_bib0050) 1999
Sica (10.1016/j.epsr.2017.10.010_bib0235) 2015; 127
Bin (10.1016/j.epsr.2017.10.010_bib0150) 2002
Schölkopf (10.1016/j.epsr.2017.10.010_bib0385) 1999
Smola (10.1016/j.epsr.2017.10.010_bib0390) 1998; 11
Huang (10.1016/j.epsr.2017.10.010_bib0165) 2009
Zhang (10.1016/j.epsr.2017.10.010_bib0090) 1996; 11
Bacha (10.1016/j.epsr.2017.10.010_bib0230) 2012; 83
Sun (10.1016/j.epsr.2017.10.010_bib0370) 2004
Honglei (10.1016/j.epsr.2017.10.010_bib0095) 2000
Lin (10.1016/j.epsr.2017.10.010_bib0135) 1993; 8
Morais (10.1016/j.epsr.2017.10.010_bib0205) 2006; 21
Vapnik (10.1016/j.epsr.2017.10.010_bib0270) 1998
Valipour (10.1016/j.epsr.2017.10.010_bib0400) 2015; 61
Huang (10.1016/j.epsr.2017.10.010_bib0110) 2003; 18
Wang (10.1016/j.epsr.2017.10.010_bib0210) 2007; 23
Zhang (10.1016/j.epsr.2017.10.010_bib0295) 2017; 146
Valipour (10.1016/j.epsr.2017.10.010_bib0430) 2013; 8
Van Gestel (10.1016/j.epsr.2017.10.010_bib0310) 2004; 54
Thang (10.1016/j.epsr.2017.10.010_bib0100) 2000
Huang (10.1016/j.epsr.2017.10.010_bib0180) 2003; 18
Mo (10.1016/j.epsr.2017.10.010_bib0160) 2004; 24
Sun (10.1016/j.epsr.2017.10.010_bib0130) 2007; 17
Van Gestel (10.1016/j.epsr.2017.10.010_bib0305) 2001; 12
Thang (10.1016/j.epsr.2017.10.010_bib0175) 2001
Yusuff (10.1016/j.epsr.2017.10.010_bib0290) 2014; 110
Yannopoulos (10.1016/j.epsr.2017.10.010_bib0415) 2015; 7
Su (10.1016/j.epsr.2017.10.010_bib0060) 2000
Sun (10.1016/j.epsr.2017.10.010_bib0085) 2016; 9
Yang (10.1016/j.epsr.2017.10.010_bib0170) 1998; 13
Lin (10.1016/j.epsr.2017.10.010_bib0155) 2009; 36
Flores (10.1016/j.epsr.2017.10.010_bib0075) 2008
Valipour (10.1016/j.epsr.2017.10.010_bib0420) 2012; 74
Bakar (10.1016/j.epsr.2017.10.010_bib0015) 2014; 30
Wu (10.1016/j.epsr.2017.10.010_bib0350) 2009; 36
Yang (10.1016/j.epsr.2017.10.010_bib0040) 1999; 14
Hao (10.1016/j.epsr.2017.10.010_bib0125) 2007; 22
Duval (10.1016/j.epsr.2017.10.010_bib0200) 2002; 18
Hooshmand (10.1016/j.epsr.2017.10.010_bib0070) 2006; 17
Vapnik (10.1016/j.epsr.2017.10.010_bib0280) 2013
Ahmad (10.1016/j.epsr.2017.10.010_bib0145) 2002
Li (10.1016/j.epsr.2017.10.010_bib0220) 2011; 26
Zhang (10.1016/j.epsr.2017.10.010_bib0045) 1999
Valipour (10.1016/j.epsr.2017.10.010_bib0425) 2013; 3
Wang (10.1016/j.epsr.2017.10.010_bib0260) 2003; 67
Kennedy (10.1016/j.epsr.2017.10.010_bib0360) 1995
Chang (10.1016/j.epsr.2017.10.010_bib0245) 2003; 270
Suykens (10.1016/j.epsr.2017.10.010_bib0300) 2002
Zendehboudi (10.1016/j.epsr.2017.10.010_bib0320) 2016; 127
Guardado (10.1016/j.epsr.2017.10.010_bib0105) 2001; 16
Widodo (10.1016/j.epsr.2017.10.010_bib0340) 2007; 21
Valipour (10.1016/j.epsr.2017.10.010_bib0445) 2017; 180
Zhang (10.1016/j.epsr.2017.10.010_bib0315) 2009; 5
Valipour (10.1016/j.epsr.2017.10.010_bib0410) 2013
Valipour (10.1016/j.epsr.2017.10.010_bib0405) 2016; 23
Wang (10.1016/j.epsr.2017.10.010_bib0140) 2000; 13
Shintemirov (10.1016/j.epsr.2017.10.010_bib0215) 2009; 39
Bicen (10.1016/j.epsr.2017.10.010_bib0005) 2014; 21
Xiong (10.1016/j.epsr.2017.10.010_bib0195) 2005
Su (10.1016/j.epsr.2017.10.010_bib0065) 2000; 15
Kisi (10.1016/j.epsr.2017.10.010_bib0355) 2011; 399
Ganyun (10.1016/j.epsr.2017.10.010_bib0275) 2005; 74
Widodo (10.1016/j.epsr.2017.10.010_bib0345) 2008; 35
Liao (10.1016/j.epsr.2017.10.010_bib0225) 2011; 26
Poli (10.1016/j.epsr.2017.10.010_bib0380) 2007; 1
Mohamed (10.1016/j.epsr.2017.10.010_bib0120) 2005; 75
Denghua (10.1016/j.epsr.2017.10.010_bib0055) 2000
Bratton (10.1016/j.epsr.2017.10.010_bib0375) 2007
Leung (10.1016/j.epsr.2017.10.010_bib0250) 2000; 27
Tasdighi (10.1016/j.epsr.2017.10.010_bib0285) 2017; 142
Yongqiang (10.1016/j.epsr.2017.10.010_bib0190) 2005
Jazebi (10.1016/j.epsr.2017.10.010_bib0335) 2011; 52
Liu (10.1016/j.epsr.2017.10.010_bib0020) 2015; 31
Fei (10.1016/j.epsr.2017.10.010_bib0265) 2009; 50
References_xml – volume: 39
  start-page: 69
  year: 2009
  end-page: 79
  ident: bib0215
  article-title: Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 2
  year: 2013
  ident: bib0395
  article-title: Evolution of irrigation-equipped areas as share of cultivated areas
  publication-title: Irrig. Drain. Syst. Eng.
– volume: 18
  start-page: 8
  year: 2002
  end-page: 17
  ident: bib0200
  article-title: A review of faults detectable by gas-in-oil analysis in transformers
  publication-title: IEEE Electr. Insul. Mag.
– start-page: 120
  year: 2007
  end-page: 127
  ident: bib0375
  article-title: Defining a standard for particle swarm optimization
  publication-title: Swarm Intelligence Symposium, 2007. SIS 2007. IEEE
– start-page: 1
  year: 2008
  end-page: 5
  ident: bib0075
  article-title: A novel algorithm for the diagnostics of power transformers using type-2 fuzzy logic systems
  publication-title: Transmission and Distribution Conference and Exposition, 2008. T&D. IEEE/PES
– volume: 11
  start-page: 637
  year: 1998
  end-page: 649
  ident: bib0390
  article-title: The connection between regularization operators and support vector kernels
  publication-title: Neural Netw.
– start-page: 325
  year: 2004
  end-page: 331
  ident: bib0370
  article-title: Particle swarm optimization with particles having quantum behavior
  publication-title: Evolutionary Computation, 2004. CEC2004. Congress on
– volume: 50
  start-page: 1604
  year: 2009
  end-page: 1609
  ident: bib0265
  article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
  publication-title: Energy Convers. Manage.
– volume: 30
  start-page: 39
  year: 2014
  end-page: 49
  ident: bib0015
  article-title: A review of dissolved gas analysis measurement and interpretation techniques
  publication-title: IEEE Electr. Insul. Mag.
– start-page: 218
  year: 1996
  end-page: 223
  ident: bib0030
  article-title: An evolutionary computation based fuzzy fault diagnosis system for a power transformer
  publication-title: Fuzzy Systems Symposium, 1996. Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian
– volume: 36
  start-page: 7604
  year: 2009
  end-page: 7610
  ident: bib0350
  article-title: The forecasting model based on wavelet ν-support vector machine
  publication-title: Expert Syst. Appl.
– year: 2000
  ident: bib0100
  article-title: Statistical and Neural Network Analysis of Dissolved Gases in Power Transformers
– volume: 399
  start-page: 132
  year: 2011
  end-page: 140
  ident: bib0355
  article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting
  publication-title: J. Hydrol.
– start-page: 313
  year: 2002
  end-page: 316
  ident: bib0145
  article-title: Dissolved gas analysis using expert system
  publication-title: Research and Development, 2002. SCOReD 2002. Student Conference on
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0360
  article-title: Particle swarm optimization
  publication-title: Neural Networks, 1995. Proceedings., IEEE International Conference on
– volume: 110
  start-page: 73
  year: 2014
  end-page: 83
  ident: bib0290
  article-title: Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression
  publication-title: Electr. Power Syst. Res.
– volume: 34
  start-page: 34
  year: 2004
  end-page: 39
  ident: bib0330
  article-title: Wavelet support vector machine
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 21
  start-page: 673
  year: 2006
  end-page: 680
  ident: bib0205
  article-title: A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil
  publication-title: IEEE Trans. Power Deliv.
– volume: 8
  start-page: 1638
  year: 1993
  end-page: 1646
  ident: bib0025
  article-title: A fuzzy information approach to integrating different transformer diagnostic methods
  publication-title: IEEE Trans. Power Deliv.
– volume: 69
  start-page: 128
  year: 2012
  end-page: 142
  ident: bib0440
  article-title: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation
  publication-title: Am. J. Sci. Res.
– year: 1998
  ident: bib0270
  article-title: Statistical Learning Theory
– volume: 15
  start-page: 593
  year: 2000
  end-page: 598
  ident: bib0065
  article-title: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer
  publication-title: IEEE Transactions On Power Systems
– volume: 270
  start-page: 158
  year: 2003
  end-page: 166
  ident: bib0245
  article-title: Estuary water-stage forecasting by using radial basis function neural network
  publication-title: J. Hydrol.
– volume: 16
  start-page: 643
  year: 2001
  end-page: 647
  ident: bib0105
  article-title: A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis
  publication-title: IEEE Trans. Power Deliv.
– volume: 13
  start-page: 946
  year: 1998
  end-page: 952
  ident: bib0170
  article-title: Intelligent decision support for diagnosis of incipient transformer faults using self-organizing polynomial networks
  publication-title: IEEE Trans. Power Syst.
– start-page: 400
  year: 1999
  end-page: 403
  ident: bib0050
  article-title: Application of fuzzy equivalent matrix for fault diagnosis of oil-immersed insulation
  publication-title: Dielectric Liquids, 1999. (ICDL'99) Proceedings of the 1999 IEEE 13th International Conference on
– volume: 52
  start-page: 1354
  year: 2011
  end-page: 1363
  ident: bib0335
  article-title: A novel application of wavelet based SVM to transient phenomena identification of power transformers
  publication-title: Energy Convers. Manage.
– volume: 74
  start-page: 1
  year: 2005
  end-page: 7
  ident: bib0275
  article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier
  publication-title: Electr. Power Syst. Res.
– volume: 14
  start-page: 1342
  year: 1999
  end-page: 1350
  ident: bib0040
  article-title: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers
  publication-title: IEEE Trans. Power Deliv.
– volume: 26
  start-page: 1111
  year: 2011
  end-page: 1118
  ident: bib0225
  article-title: An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning
  publication-title: IEEE Trans. Power Deliv.
– volume: 127
  start-page: 245
  year: 2016
  end-page: 255
  ident: bib0320
  article-title: Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels
  publication-title: Energy Convers. Manage.
– start-page: 2259
  year: 2005
  end-page: 2261
  ident: bib0190
  article-title: The fault diagnosis method for electrical equipment based on Bayesian network
  publication-title: Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on
– volume: 5
  start-page: 193
  year: 2009
  end-page: 213
  ident: bib0315
  article-title: Traffic forecasting using least squares support vector machines
  publication-title: Transportmetrica
– volume: 74
  start-page: 79
  year: 2012
  end-page: 86
  ident: bib0420
  article-title: Number of required observation data for rainfall forecasting according to the climate conditions
  publication-title: Am. J. Sci. Res.
– volume: 21
  start-page: 1360
  year: 2014
  end-page: 1367
  ident: bib0005
  article-title: Lifetime estimation and monitoring of power transformer considering annual load factors
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 83
  year: 2010
  end-page: 88
  ident: bib0080
  article-title: Fuzzy logic application in DGA methods to classify fault type in power transformer
  publication-title: International Conference on Electric Power Systems, High Voltages, Electric Machines, International Conference on Remote Sensing—Proceedings
– volume: 18
  start-page: 843
  year: 2003
  end-page: 848
  ident: bib0110
  article-title: Evolving neural nets for fault diagnosis of power transformers
  publication-title: IEEE Trans. Power Deliv.
– volume: 17
  start-page: 138
  year: 2007
  end-page: 142
  ident: bib0130
  article-title: Improved BP neural network for transformer fault diagnosis
  publication-title: J. China Univ. Min. Technol.
– start-page: 265
  year: 2000
  end-page: 268
  ident: bib0060
  article-title: A fuzzy logic tool for transformer fault diagnosis
  publication-title: Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on
– year: 2013
  ident: bib0410
  article-title: A new approach for environmental crises and its solutions by computer modeling
  publication-title: The 1st International Conference on Environmental Crises and Its Solutions, Kish Island, Iran
– start-page: 22
  year: 1999
  end-page: 27
  ident: bib0045
  article-title: Application of fuzzy data processing for fault diagnosis of power transformers
  publication-title: Proceeding of IEE Conference Publication, High Voltage Engineering Symposium
– volume: 12
  start-page: 809
  year: 2001
  end-page: 821
  ident: bib0305
  article-title: Financial time series prediction using least squares support vector machines within the evidence framework
  publication-title: IEEE Trans. Neural Netw.
– start-page: 81
  year: 2001
  end-page: 86
  ident: bib0365
  article-title: Particle swarm optimization: developments, applications and resources
  publication-title: Evolutionary Computation, 2001. Proceedings of the 2001 Congress on
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: bib0295
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
– start-page: 1422
  year: 2009
  end-page: 1426
  ident: bib0165
  article-title: Fault diagnosis of power transformers using rough set theory
  publication-title: Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on
– start-page: 162
  year: 2005
  end-page: 166
  ident: bib0195
  article-title: Study on kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer
  publication-title: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering)
– year: 1999
  ident: bib0385
  article-title: Advances in Kernel Methods: Support Vector Learning
– volume: 31
  start-page: 6
  year: 2015
  end-page: 12
  ident: bib0020
  article-title: Study of code absence in the IEC three-ratio method of dissolved gas analysis
  publication-title: IEEE Electr. Insul. Mag.
– volume: 12
  start-page: 761
  year: 1997
  end-page: 767
  ident: bib0035
  article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic
  publication-title: IEEE Trans. Power Deliv.
– volume: 180
  start-page: 50
  year: 2017
  end-page: 60
  ident: bib0445
  article-title: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events
  publication-title: Agric. Water Manage.
– volume: 16
  start-page: 44
  year: 2001
  end-page: 55
  ident: bib0240
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans. Power Syst.
– volume: 78
  start-page: 507
  year: 2008
  end-page: 514
  ident: bib0255
  article-title: Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 3
  start-page: 889
  year: 1992
  end-page: 898
  ident: bib0325
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 36
  start-page: 1371
  year: 2009
  end-page: 1379
  ident: bib0155
  article-title: Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 1292
  year: 2011
  end-page: 1293
  ident: bib0220
  article-title: DGA interpretation scheme derived from case study
  publication-title: IEEE Trans. Power Deliv.
– year: 2000
  ident: bib0055
  article-title: A New Fuzzy Information Optimization Processing Technique for Monitoring the Transformer
– start-page: 147
  year: 2000
  end-page: 150
  ident: bib0095
  article-title: Wavelet ANN based transformer fault diagnosis using gas-in-oil analysis
  publication-title: Properties and Applications of Dielectric Materials, 2000. Proceedings of the 6th International Conference on
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: bib0380
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: 23
  start-page: 5
  year: 2007
  end-page: 14
  ident: bib0210
  article-title: Dissolved gas analysis of alternative fluids for power transformers
  publication-title: IEEE Electr. Insul. Mag.
– volume: 83
  start-page: 73
  year: 2012
  end-page: 79
  ident: bib0230
  article-title: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine
  publication-title: Electr. Power Syst. Res.
– start-page: 444
  year: 2004
  end-page: 447
  ident: bib0115
  article-title: ANN approach for condition monitoring of power transformers using DGA
  publication-title: TENCON 2004. 2004 IEEE Region 10 Conference
– volume: 21
  start-page: 2560
  year: 2007
  end-page: 2574
  ident: bib0340
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 75
  start-page: 29
  year: 2005
  end-page: 39
  ident: bib0120
  article-title: A neural network-based scheme for fault diagnosis of power transformers
  publication-title: Electr. Power Syst. Res.
– volume: 24
  start-page: 162
  year: 2004
  end-page: 167
  ident: bib0160
  article-title: Diagnostic model of insulation faults in power equipment based on rough set theory
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 9
  start-page: 697
  year: 2016
  ident: bib0085
  article-title: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers
  publication-title: Energies
– volume: 23
  start-page: 91
  year: 2016
  end-page: 100
  ident: bib0405
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
– volume: 18
  start-page: 1257
  year: 2003
  end-page: 1261
  ident: bib0180
  article-title: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus
  publication-title: IEEE Trans. Power Deliv.
– volume: 61
  start-page: 679
  year: 2015
  end-page: 694
  ident: bib0400
  article-title: Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations
  publication-title: Arch. Agron. Soil Sci.
– volume: 8
  start-page: 35
  year: 2013
  end-page: 43
  ident: bib0430
  article-title: Increasing irrigation efficiency by management strategies: cutback and surge irrigation
  publication-title: ARPN J. Agric. Biol. Sci.
– volume: 26
  start-page: 27
  year: 2010
  end-page: 40
  ident: bib0010
  article-title: Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers
  publication-title: IEEE Electr. Insul. Mag.
– volume: 7
  start-page: 5031
  year: 2015
  end-page: 5060
  ident: bib0415
  article-title: Evolution of water lifting devices (pumps) over the centuries worldwide
  publication-title: Water
– volume: 54
  start-page: 5
  year: 2004
  end-page: 32
  ident: bib0310
  article-title: Benchmarking least squares support vector machine classifiers
  publication-title: Mach. Learn.
– volume: 142
  start-page: 258
  year: 2017
  end-page: 267
  ident: bib0285
  article-title: Preventing transmission distance relays maloperation under unintended bulk DG tripping using SVM-based approach
  publication-title: Electr. Power Syst. Res.
– year: 2013
  ident: bib0280
  article-title: The Nature of Statistical Learning theory
– start-page: 1881
  year: 2001
  end-page: 1886
  ident: bib0175
  article-title: Application of self-organising map algorithm for analysis and interpretation of dissolved gases in power transformers
  publication-title: Power Engineering Society Summer Meeting, 2001
– volume: 127
  start-page: 109
  year: 2015
  end-page: 117
  ident: bib0235
  article-title: A cognitive system for fault prognosis in power transformers
  publication-title: Electr. Power Syst. Res.
– year: 2002
  ident: bib0300
  article-title: Least Squares Support Vector Machines
– volume: 3
  start-page: 631
  year: 2013
  end-page: 640
  ident: bib0425
  publication-title: Use of Surface Water Supply Index to Assessing of Water Resources Management in Colorado and Oregon
– volume: 2
  start-page: 33
  year: 2014
  end-page: 46
  ident: bib0435
  article-title: Application of new mass transfer formulae for computation of evapotranspiration
  publication-title: J. Appl. Water Eng. Res.
– volume: 27
  start-page: 1093
  year: 2000
  end-page: 1110
  ident: bib0250
  article-title: Forecasting exchange rates using general regression neural networks
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 50
  year: 2000
  end-page: 55
  ident: bib0140
  article-title: Neural net and expert system diagnose transformer faults
  publication-title: IEEE Comput. Appl. Power
– start-page: 2231
  year: 2002
  end-page: 2234
  ident: bib0150
  article-title: Study on the fault diagnosis of transformer based on the grey relational analysis
  publication-title: Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on
– volume: 11
  start-page: 1836
  year: 1996
  end-page: 1841
  ident: bib0090
  article-title: An artificial neural network approach to transformer fault diagnosis
  publication-title: IEEE Trans. Power Deliv.
– volume: 67
  start-page: 53
  year: 2003
  end-page: 58
  ident: bib0260
  article-title: Novel grey model for the prediction of trend of dissolved gases in oil-filled power apparatus
  publication-title: Electr. Power Syst. Res.
– start-page: 213
  year: 2010
  ident: bib0450
  article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]
– volume: 22
  start-page: 930
  year: 2007
  end-page: 935
  ident: bib0125
  article-title: Artificial immune network classification algorithm for fault diagnosis of power transformer
  publication-title: IEEE Trans. Power Deliv.
– volume: 35
  start-page: 307
  year: 2008
  end-page: 316
  ident: bib0345
  article-title: Wavelet support vector machine for induction machine fault diagnosis based on transient current signal
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 157
  year: 2006
  end-page: 161
  ident: bib0070
  article-title: Application of fuzzy logic in fault diagnosis in transformers using dissolved gas based on different standards
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 8
  start-page: 231
  year: 1993
  end-page: 238
  ident: bib0135
  article-title: An expert system for transformer fault diagnosis using dissolved gas analysis
  publication-title: IEEE Trans. Power Deliv.
– start-page: 1763
  year: 2005
  end-page: 1766
  ident: bib0185
  article-title: Power transformer fault diagnosis based on extension theory
  publication-title: Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on
– year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0055
– volume: 12
  start-page: 761
  year: 1997
  ident: 10.1016/j.epsr.2017.10.010_bib0035
  article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.584363
– volume: 14
  start-page: 1342
  year: 1999
  ident: 10.1016/j.epsr.2017.10.010_bib0040
  article-title: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.796227
– volume: 8
  start-page: 1638
  year: 1993
  ident: 10.1016/j.epsr.2017.10.010_bib0025
  article-title: A fuzzy information approach to integrating different transformer diagnostic methods
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.252690
– volume: 61
  start-page: 679
  year: 2015
  ident: 10.1016/j.epsr.2017.10.010_bib0400
  article-title: Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2014.941823
– volume: 16
  start-page: 643
  year: 2001
  ident: 10.1016/j.epsr.2017.10.010_bib0105
  article-title: A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.956751
– volume: 180
  start-page: 50
  year: 2017
  ident: 10.1016/j.epsr.2017.10.010_bib0445
  article-title: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2016.08.025
– volume: 7
  start-page: 5031
  year: 2015
  ident: 10.1016/j.epsr.2017.10.010_bib0415
  article-title: Evolution of water lifting devices (pumps) over the centuries worldwide
  publication-title: Water
  doi: 10.3390/w7095031
– volume: 12
  start-page: 809
  year: 2001
  ident: 10.1016/j.epsr.2017.10.010_bib0305
  article-title: Financial time series prediction using least squares support vector machines within the evidence framework
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.935093
– volume: 26
  start-page: 1292
  year: 2011
  ident: 10.1016/j.epsr.2017.10.010_bib0220
  article-title: DGA interpretation scheme derived from case study
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2010.2091325
– volume: 26
  start-page: 1111
  year: 2011
  ident: 10.1016/j.epsr.2017.10.010_bib0225
  article-title: An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2010.2096482
– volume: 83
  start-page: 73
  year: 2012
  ident: 10.1016/j.epsr.2017.10.010_bib0230
  article-title: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.09.012
– year: 1999
  ident: 10.1016/j.epsr.2017.10.010_bib0385
– start-page: 120
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0375
  article-title: Defining a standard for particle swarm optimization
– volume: 30
  start-page: 39
  year: 2014
  ident: 10.1016/j.epsr.2017.10.010_bib0015
  article-title: A review of dissolved gas analysis measurement and interpretation techniques
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2014.6804740
– volume: 18
  start-page: 843
  year: 2003
  ident: 10.1016/j.epsr.2017.10.010_bib0110
  article-title: Evolving neural nets for fault diagnosis of power transformers
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2003.813605
– start-page: 1
  year: 2008
  ident: 10.1016/j.epsr.2017.10.010_bib0075
  article-title: A novel algorithm for the diagnostics of power transformers using type-2 fuzzy logic systems
– start-page: 83
  year: 2010
  ident: 10.1016/j.epsr.2017.10.010_bib0080
  article-title: Fuzzy logic application in DGA methods to classify fault type in power transformer
  publication-title: International Conference on Electric Power Systems, High Voltages, Electric Machines, International Conference on Remote Sensing—Proceedings
– volume: 146
  start-page: 270
  year: 2017
  ident: 10.1016/j.epsr.2017.10.010_bib0295
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– year: 2002
  ident: 10.1016/j.epsr.2017.10.010_bib0300
– volume: 8
  start-page: 35
  year: 2013
  ident: 10.1016/j.epsr.2017.10.010_bib0430
  article-title: Increasing irrigation efficiency by management strategies: cutback and surge irrigation
  publication-title: ARPN J. Agric. Biol. Sci.
– volume: 3
  start-page: 889
  year: 1992
  ident: 10.1016/j.epsr.2017.10.010_bib0325
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.165591
– start-page: 1942
  year: 1995
  ident: 10.1016/j.epsr.2017.10.010_bib0360
  article-title: Particle swarm optimization
– volume: 21
  start-page: 2560
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0340
  article-title: Support vector machine in machine condition monitoring and fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.007
– volume: 11
  start-page: 637
  year: 1998
  ident: 10.1016/j.epsr.2017.10.010_bib0390
  article-title: The connection between regularization operators and support vector kernels
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00032-X
– volume: 24
  start-page: 162
  year: 2004
  ident: 10.1016/j.epsr.2017.10.010_bib0160
  article-title: Diagnostic model of insulation faults in power equipment based on rough set theory
  publication-title: Proc. Chin. Soc. Electr. Eng.
– volume: 110
  start-page: 73
  year: 2014
  ident: 10.1016/j.epsr.2017.10.010_bib0290
  article-title: Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.01.002
– volume: 23
  start-page: 5
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0210
  article-title: Dissolved gas analysis of alternative fluids for power transformers
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2007.4318269
– volume: 74
  start-page: 79
  year: 2012
  ident: 10.1016/j.epsr.2017.10.010_bib0420
  article-title: Number of required observation data for rainfall forecasting according to the climate conditions
  publication-title: Am. J. Sci. Res.
– start-page: 2259
  year: 2005
  ident: 10.1016/j.epsr.2017.10.010_bib0190
  article-title: The fault diagnosis method for electrical equipment based on Bayesian network
– volume: 39
  start-page: 69
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0215
  article-title: Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2008.2007253
– volume: 127
  start-page: 109
  year: 2015
  ident: 10.1016/j.epsr.2017.10.010_bib0235
  article-title: A cognitive system for fault prognosis in power transformers
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.05.014
– volume: 21
  start-page: 1360
  year: 2014
  ident: 10.1016/j.epsr.2017.10.010_bib0005
  article-title: Lifetime estimation and monitoring of power transformer considering annual load factors
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2014.6832284
– volume: 127
  start-page: 245
  year: 2016
  ident: 10.1016/j.epsr.2017.10.010_bib0320
  article-title: Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.08.070
– volume: 78
  start-page: 507
  year: 2008
  ident: 10.1016/j.epsr.2017.10.010_bib0255
  article-title: Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2007.04.006
– volume: 3
  start-page: 631
  year: 2013
  ident: 10.1016/j.epsr.2017.10.010_bib0425
– volume: 2
  year: 2013
  ident: 10.1016/j.epsr.2017.10.010_bib0395
  article-title: Evolution of irrigation-equipped areas as share of cultivated areas
  publication-title: Irrig. Drain. Syst. Eng.
– year: 2013
  ident: 10.1016/j.epsr.2017.10.010_bib0280
– start-page: 265
  year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0060
  article-title: A fuzzy logic tool for transformer fault diagnosis
– volume: 9
  start-page: 697
  year: 2016
  ident: 10.1016/j.epsr.2017.10.010_bib0085
  article-title: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers
  publication-title: Energies
  doi: 10.3390/en9090697
– year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0100
– start-page: 1422
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0165
  article-title: Fault diagnosis of power transformers using rough set theory
– volume: 15
  start-page: 593
  year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0065
  article-title: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer
  publication-title: IEEE Transactions On Power Systems
  doi: 10.1109/59.867146
– volume: 21
  start-page: 673
  year: 2006
  ident: 10.1016/j.epsr.2017.10.010_bib0205
  article-title: A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2005.864044
– start-page: 147
  year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0095
  article-title: Wavelet ANN based transformer fault diagnosis using gas-in-oil analysis
– volume: 18
  start-page: 8
  year: 2002
  ident: 10.1016/j.epsr.2017.10.010_bib0200
  article-title: A review of faults detectable by gas-in-oil analysis in transformers
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2002.1014963
– start-page: 400
  year: 1999
  ident: 10.1016/j.epsr.2017.10.010_bib0050
  article-title: Application of fuzzy equivalent matrix for fault diagnosis of oil-immersed insulation
– year: 1998
  ident: 10.1016/j.epsr.2017.10.010_bib0270
– volume: 31
  start-page: 6
  year: 2015
  ident: 10.1016/j.epsr.2017.10.010_bib0020
  article-title: Study of code absence in the IEC three-ratio method of dissolved gas analysis
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2015.7303257
– start-page: 22
  year: 1999
  ident: 10.1016/j.epsr.2017.10.010_bib0045
  article-title: Application of fuzzy data processing for fault diagnosis of power transformers
– volume: 17
  start-page: 138
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0130
  article-title: Improved BP neural network for transformer fault diagnosis
  publication-title: J. China Univ. Min. Technol.
  doi: 10.1016/S1006-1266(07)60029-7
– volume: 17
  start-page: 157
  year: 2006
  ident: 10.1016/j.epsr.2017.10.010_bib0070
  article-title: Application of fuzzy logic in fault diagnosis in transformers using dissolved gas based on different standards
  publication-title: World Acad. Sci. Eng. Technol.
– start-page: 325
  year: 2004
  ident: 10.1016/j.epsr.2017.10.010_bib0370
  article-title: Particle swarm optimization with particles having quantum behavior
– volume: 16
  start-page: 44
  year: 2001
  ident: 10.1016/j.epsr.2017.10.010_bib0240
  article-title: Neural networks for short-term load forecasting: a review and evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.910780
– volume: 50
  start-page: 1604
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0265
  article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.02.004
– volume: 69
  start-page: 128
  year: 2012
  ident: 10.1016/j.epsr.2017.10.010_bib0440
  article-title: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation
  publication-title: Am. J. Sci. Res.
– start-page: 444
  year: 2004
  ident: 10.1016/j.epsr.2017.10.010_bib0115
  article-title: ANN approach for condition monitoring of power transformers using DGA
– volume: 35
  start-page: 307
  year: 2008
  ident: 10.1016/j.epsr.2017.10.010_bib0345
  article-title: Wavelet support vector machine for induction machine fault diagnosis based on transient current signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.018
– year: 2013
  ident: 10.1016/j.epsr.2017.10.010_bib0410
  article-title: A new approach for environmental crises and its solutions by computer modeling
  publication-title: The 1st International Conference on Environmental Crises and Its Solutions, Kish Island, Iran
– volume: 54
  start-page: 5
  year: 2004
  ident: 10.1016/j.epsr.2017.10.010_bib0310
  article-title: Benchmarking least squares support vector machine classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008082.80494.e0
– start-page: 162
  year: 2005
  ident: 10.1016/j.epsr.2017.10.010_bib0195
  article-title: Study on kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer
  publication-title: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering)
– volume: 270
  start-page: 158
  year: 2003
  ident: 10.1016/j.epsr.2017.10.010_bib0245
  article-title: Estuary water-stage forecasting by using radial basis function neural network
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00289-5
– start-page: 81
  year: 2001
  ident: 10.1016/j.epsr.2017.10.010_bib0365
  article-title: Particle swarm optimization: developments, applications and resources
– volume: 74
  start-page: 1
  year: 2005
  ident: 10.1016/j.epsr.2017.10.010_bib0275
  article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.07.008
– volume: 142
  start-page: 258
  year: 2017
  ident: 10.1016/j.epsr.2017.10.010_bib0285
  article-title: Preventing transmission distance relays maloperation under unintended bulk DG tripping using SVM-based approach
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.09.024
– volume: 67
  start-page: 53
  year: 2003
  ident: 10.1016/j.epsr.2017.10.010_bib0260
  article-title: Novel grey model for the prediction of trend of dissolved gases in oil-filled power apparatus
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(03)00047-6
– volume: 36
  start-page: 7604
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0350
  article-title: The forecasting model based on wavelet ν-support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.048
– volume: 26
  start-page: 27
  year: 2010
  ident: 10.1016/j.epsr.2017.10.010_bib0010
  article-title: Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2010.5599977
– volume: 34
  start-page: 34
  year: 2004
  ident: 10.1016/j.epsr.2017.10.010_bib0330
  article-title: Wavelet support vector machine
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2003.811113
– start-page: 213
  year: 2010
  ident: 10.1016/j.epsr.2017.10.010_bib0450
– start-page: 1763
  year: 2005
  ident: 10.1016/j.epsr.2017.10.010_bib0185
  article-title: Power transformer fault diagnosis based on extension theory
– volume: 1
  start-page: 33
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0380
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 13
  start-page: 50
  year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0140
  article-title: Neural net and expert system diagnose transformer faults
  publication-title: IEEE Comput. Appl. Power
  doi: 10.1109/67.814667
– volume: 8
  start-page: 231
  year: 1993
  ident: 10.1016/j.epsr.2017.10.010_bib0135
  article-title: An expert system for transformer fault diagnosis using dissolved gas analysis
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.180341
– volume: 399
  start-page: 132
  year: 2011
  ident: 10.1016/j.epsr.2017.10.010_bib0355
  article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.041
– volume: 2
  start-page: 33
  year: 2014
  ident: 10.1016/j.epsr.2017.10.010_bib0435
  article-title: Application of new mass transfer formulae for computation of evapotranspiration
  publication-title: J. Appl. Water Eng. Res.
  doi: 10.1080/23249676.2014.923790
– volume: 5
  start-page: 193
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0315
  article-title: Traffic forecasting using least squares support vector machines
  publication-title: Transportmetrica
  doi: 10.1080/18128600902823216
– volume: 18
  start-page: 1257
  year: 2003
  ident: 10.1016/j.epsr.2017.10.010_bib0180
  article-title: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2003.817736
– volume: 23
  start-page: 91
  year: 2016
  ident: 10.1016/j.epsr.2017.10.010_bib0405
  article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.1533
– volume: 75
  start-page: 29
  year: 2005
  ident: 10.1016/j.epsr.2017.10.010_bib0120
  article-title: A neural network-based scheme for fault diagnosis of power transformers
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.11.013
– volume: 36
  start-page: 1371
  year: 2009
  ident: 10.1016/j.epsr.2017.10.010_bib0155
  article-title: Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.019
– volume: 13
  start-page: 946
  year: 1998
  ident: 10.1016/j.epsr.2017.10.010_bib0170
  article-title: Intelligent decision support for diagnosis of incipient transformer faults using self-organizing polynomial networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.708845
– start-page: 218
  year: 1996
  ident: 10.1016/j.epsr.2017.10.010_bib0030
  article-title: An evolutionary computation based fuzzy fault diagnosis system for a power transformer
– volume: 11
  start-page: 1836
  year: 1996
  ident: 10.1016/j.epsr.2017.10.010_bib0090
  article-title: An artificial neural network approach to transformer fault diagnosis
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.544265
– volume: 22
  start-page: 930
  year: 2007
  ident: 10.1016/j.epsr.2017.10.010_bib0125
  article-title: Artificial immune network classification algorithm for fault diagnosis of power transformer
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2007.893182
– volume: 27
  start-page: 1093
  year: 2000
  ident: 10.1016/j.epsr.2017.10.010_bib0250
  article-title: Forecasting exchange rates using general regression neural networks
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(99)00144-6
– start-page: 313
  year: 2002
  ident: 10.1016/j.epsr.2017.10.010_bib0145
  article-title: Dissolved gas analysis using expert system
– volume: 52
  start-page: 1354
  year: 2011
  ident: 10.1016/j.epsr.2017.10.010_bib0335
  article-title: A novel application of wavelet based SVM to transient phenomena identification of power transformers
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.09.033
– start-page: 2231
  year: 2002
  ident: 10.1016/j.epsr.2017.10.010_bib0150
  article-title: Study on the fault diagnosis of transformer based on the grey relational analysis
– start-page: 1881
  year: 2001
  ident: 10.1016/j.epsr.2017.10.010_bib0175
  article-title: Application of self-organising map algorithm for analysis and interpretation of dissolved gases in power transformers
SSID ssj0006975
Score 2.5463638
Snippet •An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the...
Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Basis functions
Correlation coefficients
Dissolved gases
Electric power
Electric utilities
Error analysis
Forecasting
Least squares support vector machine
Natural gas
Neural networks
Oil-immersed power transformers
Optimization algorithms
Particle swarm optimization
Radial basis function
Regression analysis
Studies
Support vector machines
Transformers
Wavelet analysis
Wavelet technique
Title A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers
URI https://dx.doi.org/10.1016/j.epsr.2017.10.010
https://www.proquest.com/docview/2050603133
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AKRWK
  dateStart: 19770901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzuoENhSZOHDdjVVGVV0EqILYojh0oKklFA2ys_G3u8igPIQaGSIlztiKf47tLvvuOsf2A-9rztWspHhOptoksFYnAilyhHNFWMi5Iks4Hfv_aO7kVtw3WrXNhCFZZ7f3lnl7s1lVLq5rN1mQ0ag1tFxebDNAEY0jueJRo7nmSqhgcvn3CPPygINslYYukq8SZEuNlJlPiBHXkISG8KIv2d-P0Y5subE9vmS1VTiN0yudaYQ2TrrLFL1SCa-y9A2n2YsZQlLYBMk4ashReI6oskcPZ0BrenMOMHULDqPicgCeXwwuIxnfZ0yi_fwR0YukwcTQlRDRkCdA_-2xMonfRFAjcTugLHAsmVGMN8tr5RVdynV33jq66fasqsmDFaKxzS6LDEHDt-spIg9EewVHtJKHAKIiJ0M3jmjjJXBHbPOKOiiXnbfRrEiU1gVM32FyapWaTQeJorm0cKiCKGttXiRAicTW5OJ6QyRZz6tkN44qBnAphjMMaavYQkkZC0gi1oUa22MGsz6Tk3_hTWtRKC7-tohANxJ_9dmsNh9U7PMX7RL7oYhC__c9hd9gCXrVLkPcum8ufns0e-jC5ahaLtMnmO8en_cEHugjwLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3N7Ch0MSJ42ZECFSgBaQCYovi2IGiklRtgI2Vv81dHryEGBgiRfbZinzOPZLP3zG2G3Bfe752LcVjItU2kaUiEViRK5QjWkrGBUlS99xvX3unt-J2gh3WZ2EIVlnZ_tKmF9a6amlWq9kc9vvNnu3iZpMBumBMyR1PTLIpT3BJGdj-6yfOww8Ktl2Stki8OjlTgrzMcEykoI7cJ4gXHaP93Tv9sNOF8zmeZ3NV1AgH5YMtsAmTLrLZL1yCS-ztANLs2QygqG0D5J00ZCm8RFRaIodOz-rddOGDHkJDv_iegDeXvQuIBnfZqJ_fPwJGsXSZOBoTJBqyBOinfTYg0btoDIRuJ_gFzgVDKrIGeR39Yiy5zK6Pj64O21ZVZcGK0VvnlsSIIeDa9ZWRBtM9wqPaSUKZURATo5vHNZGSuSK2ecQdFUvOWxjYJEpqQqeusEaapWaVQeJorm2cKiCOGttXiRAicTXFOJ6QyRpz6tUN44qCnCphDMIaa_YQkkZC0gi1oUbW2N7HmGFJwPGntKiVFn7bRiF6iD_HbdYaDquXeIz9xL7oYha__s9pd9h0-6rbCTsn52cbbAZ7WiXie5M18tGT2cKAJlfbxYZ9B09-8cE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+model+based+on+wavelet+LS-SVM+integrated+improved+PSO+algorithm+for+forecasting+of+dissolved+gas+contents+in+power+transformers&rft.jtitle=Electric+power+systems+research&rft.au=Zheng%2C+Hanbo&rft.au=Zhang%2C+Yiyi&rft.au=Liu%2C+Jiefeng&rft.au=Wei%2C+Hua&rft.date=2018-02-01&rft.issn=0378-7796&rft.volume=155&rft.spage=196&rft.epage=205&rft_id=info:doi/10.1016%2Fj.epsr.2017.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2017_10_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon