A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers
•An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accuratel...
Saved in:
| Published in | Electric power systems research Vol. 155; pp. 196 - 205 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.02.2018
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-7796 1873-2046 |
| DOI | 10.1016/j.epsr.2017.10.010 |
Cover
| Abstract | •An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accurately.
Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively. |
|---|---|
| AbstractList | Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively. •An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the traditional particle swarm optimization algorithm.•The integrated approach is capable of forecasting the dissolved gas contents more accurately. Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel approach combing wavelet technique with least squares support vector machine (LS-SVM) for forecasting of dissolved gases in oil-immersed power transformers has been proposed. The algorithm of particle swarm optimization (PSO) with mutation is developed to optimize the parameters of constructed wavelet LS-SVM regression (W-LSSVR). The existence of admissible wavelet kernels is proven by theoretic analysis. Evaluation of forecasting performance is based upon the measures of mean absolute percentage error (MAPE) and squared correlation coefficient (r2). On the basis of the proposed approach, a procedure is put forward to serve as an effective tool and experimental results show that this approach is capable of forecasting the dissolved gas contents accurately. Comparing with the back propagation neural network (BPNN), the radial basis function neural network (RBFNN), the generalized regression neural network (GRNN), and the SVM regression (SVR) in two practical cases (taken hydrogen as an example here), the MAPEs of the proposed approach are significantly better than that of the four methods (5.4238% vs 19.1458%, 11.7361%, 7.7395%, 8.3248%; 2.1567% vs 18.9453%, 10.2451%, 7.8636%, 2.4628%) respectively. |
| Author | Zhang, Yiyi Wei, Hua Zhao, Junhui Liao, Ruijin Zheng, Hanbo Liu, Jiefeng |
| Author_xml | – sequence: 1 givenname: Hanbo surname: Zheng fullname: Zheng, Hanbo email: hanbozheng@163.com organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China – sequence: 2 givenname: Yiyi surname: Zhang fullname: Zhang, Yiyi email: yiyizhang@gxu.edu.cn organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China – sequence: 3 givenname: Jiefeng surname: Liu fullname: Liu, Jiefeng email: liujiefeng9999@163.com organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China – sequence: 4 givenname: Hua surname: Wei fullname: Wei, Hua organization: Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, Guangxi 530004, China – sequence: 5 givenname: Junhui surname: Zhao fullname: Zhao, Junhui organization: Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT 06516, USA – sequence: 6 givenname: Ruijin surname: Liao fullname: Liao, Ruijin organization: State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China |
| BookMark | eNp9kF9rHCEUxaUk0E3SL9Anoc-zveqMjtCXEPonsCWFbfsqrnNn6zKjWzUJ-QT52nXYPuUhDyocz-9ezrkgZyEGJOQ9gzUDJj8e1njMac2BqSqsgcEbsmK9Eg2HVp6RFQjVN0pp-ZZc5HwAAKlVtyLP1zTEB5zoHId672zGgcZAH20VsdDNttn-_k59KLhPttRPPx9TJQb6Y3tH7bSPyZc_Mx1jWg46m4sPexpHOvic47RY9zZTF-uMUHKdRY_xERMtyYZcmRlTviLno50yvvv_XpJfXz7_vPnWbO6-3t5cbxonelYaBZppPgi5Q4V9C0xrDuPYdpJrB0zIlg9ad1p0DrjlbOcU570UetypodWduCQfTnNriL_3mIs5xPsU6krDoQMJgglRXf3J5VLMOeFonC-2-BohWT8ZBmap3RzMUrtZal-0WntF-Qv0mPxs09Pr0KcThDX6g8dksvMYHA6-NlrMEP1r-D8F5Z6K |
| CitedBy_id | crossref_primary_10_3233_JIFS_223443 crossref_primary_10_1016_j_cplett_2024_141710 crossref_primary_10_1049_hve2_12195 crossref_primary_10_1299_jamdsm_2021jamdsm0037 crossref_primary_10_1016_j_isatra_2020_03_022 crossref_primary_10_1007_s10570_019_02331_1 crossref_primary_10_3390_w10091124 crossref_primary_10_1049_iet_smt_2018_5432 crossref_primary_10_3390_polym10020191 crossref_primary_10_1016_j_apsusc_2023_156445 crossref_primary_10_1142_S0218194019400023 crossref_primary_10_1080_15325008_2023_2204869 crossref_primary_10_1016_j_rser_2021_111347 crossref_primary_10_1016_j_chemosphere_2023_141010 crossref_primary_10_1049_iet_smt_2018_5276 crossref_primary_10_1080_15435075_2019_1602534 crossref_primary_10_3390_en12101916 crossref_primary_10_1016_j_jngse_2020_103716 crossref_primary_10_1016_j_flatc_2024_100706 crossref_primary_10_3390_en11010146 crossref_primary_10_1007_s13369_019_03739_4 crossref_primary_10_1109_ACCESS_2019_2927018 crossref_primary_10_1051_e3sconf_202125601038 crossref_primary_10_1109_TASC_2024_3463256 crossref_primary_10_3390_en12050857 crossref_primary_10_1007_s00202_023_01974_5 crossref_primary_10_1002_tee_23081 crossref_primary_10_1016_j_egyr_2023_09_183 crossref_primary_10_1109_ACCESS_2018_2865960 crossref_primary_10_1049_iet_smt_2018_5337 crossref_primary_10_3390_s18124430 crossref_primary_10_1155_2023_5097144 crossref_primary_10_1016_j_isatra_2022_03_006 crossref_primary_10_1016_j_aei_2021_101433 crossref_primary_10_3390_app9183788 crossref_primary_10_3390_polym11010085 crossref_primary_10_1080_03772063_2020_1732844 crossref_primary_10_3389_fchem_2018_00364 crossref_primary_10_32604_sdhm_2024_049298 crossref_primary_10_1016_j_lwt_2024_117135 crossref_primary_10_1007_s11831_022_09849_x crossref_primary_10_3390_en11081922 crossref_primary_10_1088_1361_648X_ac2273 crossref_primary_10_1016_j_ijepes_2021_107828 crossref_primary_10_1016_j_apsusc_2021_149816 crossref_primary_10_3390_polym10101096 crossref_primary_10_1002_jbio_202100142 crossref_primary_10_3390_app13158753 crossref_primary_10_3390_info10060195 crossref_primary_10_3390_act13020074 crossref_primary_10_3390_nano11010231 crossref_primary_10_1109_TDEI_2024_3396795 crossref_primary_10_1007_s42835_019_00199_6 crossref_primary_10_1049_elp2_12147 crossref_primary_10_3390_en13020422 crossref_primary_10_1007_s00521_019_04698_5 crossref_primary_10_1016_j_asoc_2021_107518 crossref_primary_10_1016_j_fuel_2020_119629 crossref_primary_10_1016_j_egyr_2022_10_389 crossref_primary_10_1016_j_rinp_2021_104680 crossref_primary_10_1007_s13369_024_09689_w crossref_primary_10_3390_polym14071449 crossref_primary_10_1109_TDEI_2018_007180 crossref_primary_10_3390_s22166281 crossref_primary_10_1109_ACCESS_2019_2958411 crossref_primary_10_1088_1361_6463_ab62c2 crossref_primary_10_1016_j_aei_2019_01_001 crossref_primary_10_1109_ACCESS_2019_2897606 crossref_primary_10_1109_ACCESS_2019_2906379 crossref_primary_10_3233_JIFS_189258 crossref_primary_10_1016_j_isatra_2021_01_060 crossref_primary_10_1109_ACCESS_2020_3012633 crossref_primary_10_1049_gtd2_12040 crossref_primary_10_1016_j_bbe_2018_08_004 crossref_primary_10_1021_acs_langmuir_4c01585 crossref_primary_10_1016_j_asoc_2023_111072 crossref_primary_10_1016_j_chemphys_2021_111304 crossref_primary_10_1063_1_5120560 crossref_primary_10_3390_en13071687 crossref_primary_10_3390_en11092437 crossref_primary_10_1155_2020_2091382 crossref_primary_10_3390_s20247242 crossref_primary_10_1049_elp2_12204 crossref_primary_10_1109_TDEI_2024_3379954 crossref_primary_10_3390_en15228587 crossref_primary_10_1155_2020_8853314 crossref_primary_10_3390_s23146645 crossref_primary_10_1016_j_seppur_2023_123807 crossref_primary_10_1016_j_tsep_2020_100671 crossref_primary_10_1155_2022_3931374 crossref_primary_10_2118_214298_PA crossref_primary_10_1016_j_engappai_2020_103863 crossref_primary_10_1016_j_physe_2019_113947 crossref_primary_10_1080_0952813X_2018_1509380 crossref_primary_10_1049_iet_gtd_2017_1531 crossref_primary_10_3390_s20092730 crossref_primary_10_3390_app10030950 crossref_primary_10_1108_IJICC_02_2020_0019 crossref_primary_10_3233_JCM_226642 crossref_primary_10_1039_D4NJ01608D crossref_primary_10_1049_elp2_12175 crossref_primary_10_32604_iasc_2021_017703 |
| Cites_doi | 10.1109/61.584363 10.1109/61.796227 10.1109/61.252690 10.1080/03650340.2014.941823 10.1109/61.956751 10.1016/j.agwat.2016.08.025 10.3390/w7095031 10.1109/72.935093 10.1109/TPWRD.2010.2091325 10.1109/TPWRD.2010.2096482 10.1016/j.epsr.2011.09.012 10.1109/MEI.2014.6804740 10.1109/TPWRD.2003.813605 10.1016/j.epsr.2017.01.035 10.1109/72.165591 10.1016/j.ymssp.2006.12.007 10.1016/S0893-6080(98)00032-X 10.1016/j.epsr.2014.01.002 10.1109/MEI.2007.4318269 10.1109/TSMCC.2008.2007253 10.1016/j.epsr.2015.05.014 10.1109/TDEI.2014.6832284 10.1016/j.enconman.2016.08.070 10.1016/j.epsr.2007.04.006 10.3390/en9090697 10.1109/59.867146 10.1109/TPWRD.2005.864044 10.1109/MEI.2002.1014963 10.1109/MEI.2015.7303257 10.1016/S1006-1266(07)60029-7 10.1109/59.910780 10.1016/j.enconman.2009.02.004 10.1016/j.eswa.2007.06.018 10.1023/B:MACH.0000008082.80494.e0 10.1016/S0022-1694(02)00289-5 10.1016/j.epsr.2004.07.008 10.1016/j.epsr.2016.09.024 10.1016/S0378-7796(03)00047-6 10.1016/j.eswa.2008.09.048 10.1109/MEI.2010.5599977 10.1109/TSMCB.2003.811113 10.1007/s11721-007-0002-0 10.1109/67.814667 10.1109/61.180341 10.1016/j.jhydrol.2010.12.041 10.1080/23249676.2014.923790 10.1080/18128600902823216 10.1109/TPWRD.2003.817736 10.1002/met.1533 10.1016/j.epsr.2004.11.013 10.1016/j.eswa.2007.11.019 10.1109/59.708845 10.1109/61.544265 10.1109/TPWRD.2007.893182 10.1016/S0305-0548(99)00144-6 10.1016/j.enconman.2010.09.033 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 2018 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 2018 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2017.10.010 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| EndPage | 205 |
| ExternalDocumentID | 10_1016_j_epsr_2017_10_010 S0378779617304145 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD AFXIZ AGCQF AGRNS FR3 KR7 L7M SSH |
| ID | FETCH-LOGICAL-c381t-709192d36be7e84019920ff45629c013642d995935c02a21bc7228639fb7d4953 |
| IEDL.DBID | .~1 |
| ISSN | 0378-7796 |
| IngestDate | Fri Jul 25 07:33:55 EDT 2025 Wed Oct 01 05:08:57 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dissolved gases Wavelet technique Oil-immersed power transformers Least squares support vector machine Forecasting Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-709192d36be7e84019920ff45629c013642d995935c02a21bc7228639fb7d4953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2050603133 |
| PQPubID | 2047565 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2050603133 crossref_citationtrail_10_1016_j_epsr_2017_10_010 crossref_primary_10_1016_j_epsr_2017_10_010 elsevier_sciencedirect_doi_10_1016_j_epsr_2017_10_010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Valipour (bib0420) 2012; 74 Fei, Sun (bib0255) 2008; 78 Liu, Song, Li, Mao, Wang (bib0020) 2015; 31 Jazebi, Vahidi, Jannati (bib0335) 2011; 52 Huang (bib0110) 2003; 18 Hao, Cai-Xin (bib0125) 2007; 22 Van Gestel, Suykens, Baesens, Viaene, Vanthienen, Dedene, De Moor, Vandewalle (bib0310) 2004; 54 Widodo, Yang (bib0340) 2007; 21 Liao, Zheng, Grzybowski, Yang, Zhang, Liao (bib0225) 2011; 26 Suykens, Van Gestel, De Brabanter (bib0300) 2002 Xiong, Sun, Liao, Li, Du (bib0195) 2005 Zendehboudi (bib0320) 2016; 127 Mohamed, Abdelaziz, Mostafa (bib0120) 2005; 75 Duval (bib0200) 2002; 18 Leung, Chen, Daouk (bib0250) 2000; 27 Shintemirov, Tang, Wu (bib0215) 2009; 39 Tomsovic, Tapper, Ingvarsson (bib0025) 1993; 8 Bakar, Abu-Siada, Islam (bib0015) 2014; 30 Valipour, Sefidkouhi, Raeini (bib0445) 2017; 180 Huang, Sun, Huang, Liao (bib0165) 2009 Bin, Ping, Yunbai, Xishan (bib0150) 2002 Yongqiang, Fangcheng, Heming (bib0190) 2005 Smola, Schölkopf, Müller (bib0390) 1998; 11 Yang, Liao (bib0040) 1999; 14 Thang, Aggarwal, Esp, McGrail (bib0100) 2000 Yusuff, Jimoh, Munda (bib0290) 2014; 110 Sun, Feng, Xu (bib0370) 2004 Honglei, Dengming, Yazhu (bib0095) 2000 Zhang, Liu (bib0315) 2009; 5 Wang, Liu, Griffin (bib0140) 2000; 13 Hippert, Pedreira, Souza (bib0240) 2001; 16 Flores, Mombello, Jardini, Ratta (bib0075) 2008 Poli, Kennedy, Blackwell (bib0380) 2007; 1 Schölkopf, Burges, Smola (bib0385) 1999 Afiqah, Musirin, Johari, Othman, Rahman, Othman (bib0080) 2010 Zhang, Zhou, Jiao (bib0330) 2004; 34 Denghua (bib0055) 2000 Huang, Yang, Huang (bib0035) 1997; 12 Zhang, Benveniste (bib0325) 1992; 3 Wang, Hung (bib0260) 2003; 67 Valipour, Mousavi, Valipour, Rezaei (bib0410) 2013 Ganyun, Haozhong, Haibao, Lixin (bib0275) 2005; 74 Zhang, Wang, Zhang (bib0295) 2017; 146 Valipour (bib0400) 2015; 61 Yang, Huang (bib0170) 1998; 13 Sarma, Kalyani (bib0115) 2004 Ahmad, bin Yaacob (bib0145) 2002 Vapnik (bib0280) 2013 Tasdighi, Kezunovic (bib0285) 2017; 142 Huang (bib0180) 2003; 18 Wu (bib0350) 2009; 36 Bicen, Aras, Kirkici (bib0005) 2014; 21 Morais, Rolim (bib0205) 2006; 21 Chang, Chen (bib0245) 2003; 270 Mo, Wang, Dong, Yan (bib0160) 2004; 24 Zhang, Yasuoka, Ishii, Yang, Yan (bib0050) 1999 Kennedy, Eberhart (bib0360) 1995 Huang, Yang, Huang (bib0030) 1996 Valipour, Montazar (bib0440) 2012; 69 Fei, Wang, Miao, Tu, Liu (bib0265) 2009; 50 Bacha, Souahlia, Gossa (bib0230) 2012; 83 Valipour (bib0395) 2013; 2 Yannopoulos, Lyberatos, Theodossiou, Li, Valipour, Tamburrino, Angelakis (bib0415) 2015; 7 Sun, Liu, Zhang, Shang, Yuan, Ma (bib0085) 2016; 9 Hooshmand, Banejad (bib0070) 2006; 17 Lin, Ling, Huang (bib0135) 1993; 8 Shi (bib0365) 2001 Sun, Zhang, Miao, Li (bib0130) 2007; 17 Akbari, Setayeshmehr, Borsi, Gockenbach, Fofana (bib0010) 2010; 26 Zhang, Ding, Liu, Griffin (bib0090) 1996; 11 Li, Wu, Wu (bib0220) 2011; 26 Sica, Guimarães, de Oliveira Duarte, Reis (bib0235) 2015; 127 Zhang, Ibuka, Yasuoka (bib0045) 1999 Valipour (bib0425) 2013; 3 Bratton, Kennedy (bib0375) 2007 Vapnik, Vapnik (bib0270) 1998 Valipour (bib0405) 2016; 23 Wang, Cotton, Northcote (bib0210) 2007; 23 Valipour (bib0435) 2014; 2 Thang, Aggarwal, McGrail, Esp (bib0175) 2001 Frank, Asuncion (bib0450) 2010 Lin, Wu, Huang (bib0155) 2009; 36 Zhang, Li, Ma, Ju (bib0185) 2005 Valipour (bib0430) 2013; 8 Widodo, Yang (bib0345) 2008; 35 Van Gestel, Suykens, Baestaens, Lambrechts, Lanckriet, Vandaele, De Moor, Vandewalle (bib0305) 2001; 12 Su (bib0060) 2000 Kisi, Cimen (bib0355) 2011; 399 Su, Mi, Lai, Austin (bib0065) 2000; 15 Guardado, Naredo, Moreno, Fuerte (bib0105) 2001; 16 Zhang (10.1016/j.epsr.2017.10.010_bib0185) 2005 Huang (10.1016/j.epsr.2017.10.010_bib0035) 1997; 12 Sarma (10.1016/j.epsr.2017.10.010_bib0115) 2004 Zhang (10.1016/j.epsr.2017.10.010_bib0325) 1992; 3 Valipour (10.1016/j.epsr.2017.10.010_bib0440) 2012; 69 Valipour (10.1016/j.epsr.2017.10.010_bib0395) 2013; 2 Zhang (10.1016/j.epsr.2017.10.010_bib0330) 2004; 34 Hippert (10.1016/j.epsr.2017.10.010_bib0240) 2001; 16 Tomsovic (10.1016/j.epsr.2017.10.010_bib0025) 1993; 8 Frank (10.1016/j.epsr.2017.10.010_bib0450) 2010 Huang (10.1016/j.epsr.2017.10.010_bib0030) 1996 Fei (10.1016/j.epsr.2017.10.010_bib0255) 2008; 78 Akbari (10.1016/j.epsr.2017.10.010_bib0010) 2010; 26 Afiqah (10.1016/j.epsr.2017.10.010_bib0080) 2010 Shi (10.1016/j.epsr.2017.10.010_bib0365) 2001 Valipour (10.1016/j.epsr.2017.10.010_bib0435) 2014; 2 Zhang (10.1016/j.epsr.2017.10.010_bib0050) 1999 Sica (10.1016/j.epsr.2017.10.010_bib0235) 2015; 127 Bin (10.1016/j.epsr.2017.10.010_bib0150) 2002 Schölkopf (10.1016/j.epsr.2017.10.010_bib0385) 1999 Smola (10.1016/j.epsr.2017.10.010_bib0390) 1998; 11 Huang (10.1016/j.epsr.2017.10.010_bib0165) 2009 Zhang (10.1016/j.epsr.2017.10.010_bib0090) 1996; 11 Bacha (10.1016/j.epsr.2017.10.010_bib0230) 2012; 83 Sun (10.1016/j.epsr.2017.10.010_bib0370) 2004 Honglei (10.1016/j.epsr.2017.10.010_bib0095) 2000 Lin (10.1016/j.epsr.2017.10.010_bib0135) 1993; 8 Morais (10.1016/j.epsr.2017.10.010_bib0205) 2006; 21 Vapnik (10.1016/j.epsr.2017.10.010_bib0270) 1998 Valipour (10.1016/j.epsr.2017.10.010_bib0400) 2015; 61 Huang (10.1016/j.epsr.2017.10.010_bib0110) 2003; 18 Wang (10.1016/j.epsr.2017.10.010_bib0210) 2007; 23 Zhang (10.1016/j.epsr.2017.10.010_bib0295) 2017; 146 Valipour (10.1016/j.epsr.2017.10.010_bib0430) 2013; 8 Van Gestel (10.1016/j.epsr.2017.10.010_bib0310) 2004; 54 Thang (10.1016/j.epsr.2017.10.010_bib0100) 2000 Huang (10.1016/j.epsr.2017.10.010_bib0180) 2003; 18 Mo (10.1016/j.epsr.2017.10.010_bib0160) 2004; 24 Sun (10.1016/j.epsr.2017.10.010_bib0130) 2007; 17 Van Gestel (10.1016/j.epsr.2017.10.010_bib0305) 2001; 12 Thang (10.1016/j.epsr.2017.10.010_bib0175) 2001 Yusuff (10.1016/j.epsr.2017.10.010_bib0290) 2014; 110 Yannopoulos (10.1016/j.epsr.2017.10.010_bib0415) 2015; 7 Su (10.1016/j.epsr.2017.10.010_bib0060) 2000 Sun (10.1016/j.epsr.2017.10.010_bib0085) 2016; 9 Yang (10.1016/j.epsr.2017.10.010_bib0170) 1998; 13 Lin (10.1016/j.epsr.2017.10.010_bib0155) 2009; 36 Flores (10.1016/j.epsr.2017.10.010_bib0075) 2008 Valipour (10.1016/j.epsr.2017.10.010_bib0420) 2012; 74 Bakar (10.1016/j.epsr.2017.10.010_bib0015) 2014; 30 Wu (10.1016/j.epsr.2017.10.010_bib0350) 2009; 36 Yang (10.1016/j.epsr.2017.10.010_bib0040) 1999; 14 Hao (10.1016/j.epsr.2017.10.010_bib0125) 2007; 22 Duval (10.1016/j.epsr.2017.10.010_bib0200) 2002; 18 Hooshmand (10.1016/j.epsr.2017.10.010_bib0070) 2006; 17 Vapnik (10.1016/j.epsr.2017.10.010_bib0280) 2013 Ahmad (10.1016/j.epsr.2017.10.010_bib0145) 2002 Li (10.1016/j.epsr.2017.10.010_bib0220) 2011; 26 Zhang (10.1016/j.epsr.2017.10.010_bib0045) 1999 Valipour (10.1016/j.epsr.2017.10.010_bib0425) 2013; 3 Wang (10.1016/j.epsr.2017.10.010_bib0260) 2003; 67 Kennedy (10.1016/j.epsr.2017.10.010_bib0360) 1995 Chang (10.1016/j.epsr.2017.10.010_bib0245) 2003; 270 Suykens (10.1016/j.epsr.2017.10.010_bib0300) 2002 Zendehboudi (10.1016/j.epsr.2017.10.010_bib0320) 2016; 127 Guardado (10.1016/j.epsr.2017.10.010_bib0105) 2001; 16 Widodo (10.1016/j.epsr.2017.10.010_bib0340) 2007; 21 Valipour (10.1016/j.epsr.2017.10.010_bib0445) 2017; 180 Zhang (10.1016/j.epsr.2017.10.010_bib0315) 2009; 5 Valipour (10.1016/j.epsr.2017.10.010_bib0410) 2013 Valipour (10.1016/j.epsr.2017.10.010_bib0405) 2016; 23 Wang (10.1016/j.epsr.2017.10.010_bib0140) 2000; 13 Shintemirov (10.1016/j.epsr.2017.10.010_bib0215) 2009; 39 Bicen (10.1016/j.epsr.2017.10.010_bib0005) 2014; 21 Xiong (10.1016/j.epsr.2017.10.010_bib0195) 2005 Su (10.1016/j.epsr.2017.10.010_bib0065) 2000; 15 Kisi (10.1016/j.epsr.2017.10.010_bib0355) 2011; 399 Ganyun (10.1016/j.epsr.2017.10.010_bib0275) 2005; 74 Widodo (10.1016/j.epsr.2017.10.010_bib0345) 2008; 35 Liao (10.1016/j.epsr.2017.10.010_bib0225) 2011; 26 Poli (10.1016/j.epsr.2017.10.010_bib0380) 2007; 1 Mohamed (10.1016/j.epsr.2017.10.010_bib0120) 2005; 75 Denghua (10.1016/j.epsr.2017.10.010_bib0055) 2000 Bratton (10.1016/j.epsr.2017.10.010_bib0375) 2007 Leung (10.1016/j.epsr.2017.10.010_bib0250) 2000; 27 Tasdighi (10.1016/j.epsr.2017.10.010_bib0285) 2017; 142 Yongqiang (10.1016/j.epsr.2017.10.010_bib0190) 2005 Jazebi (10.1016/j.epsr.2017.10.010_bib0335) 2011; 52 Liu (10.1016/j.epsr.2017.10.010_bib0020) 2015; 31 Fei (10.1016/j.epsr.2017.10.010_bib0265) 2009; 50 |
| References_xml | – volume: 39 start-page: 69 year: 2009 end-page: 79 ident: bib0215 article-title: Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 2 year: 2013 ident: bib0395 article-title: Evolution of irrigation-equipped areas as share of cultivated areas publication-title: Irrig. Drain. Syst. Eng. – volume: 18 start-page: 8 year: 2002 end-page: 17 ident: bib0200 article-title: A review of faults detectable by gas-in-oil analysis in transformers publication-title: IEEE Electr. Insul. Mag. – start-page: 120 year: 2007 end-page: 127 ident: bib0375 article-title: Defining a standard for particle swarm optimization publication-title: Swarm Intelligence Symposium, 2007. SIS 2007. IEEE – start-page: 1 year: 2008 end-page: 5 ident: bib0075 article-title: A novel algorithm for the diagnostics of power transformers using type-2 fuzzy logic systems publication-title: Transmission and Distribution Conference and Exposition, 2008. T&D. IEEE/PES – volume: 11 start-page: 637 year: 1998 end-page: 649 ident: bib0390 article-title: The connection between regularization operators and support vector kernels publication-title: Neural Netw. – start-page: 325 year: 2004 end-page: 331 ident: bib0370 article-title: Particle swarm optimization with particles having quantum behavior publication-title: Evolutionary Computation, 2004. CEC2004. Congress on – volume: 50 start-page: 1604 year: 2009 end-page: 1609 ident: bib0265 article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil publication-title: Energy Convers. Manage. – volume: 30 start-page: 39 year: 2014 end-page: 49 ident: bib0015 article-title: A review of dissolved gas analysis measurement and interpretation techniques publication-title: IEEE Electr. Insul. Mag. – start-page: 218 year: 1996 end-page: 223 ident: bib0030 article-title: An evolutionary computation based fuzzy fault diagnosis system for a power transformer publication-title: Fuzzy Systems Symposium, 1996. Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian – volume: 36 start-page: 7604 year: 2009 end-page: 7610 ident: bib0350 article-title: The forecasting model based on wavelet ν-support vector machine publication-title: Expert Syst. Appl. – year: 2000 ident: bib0100 article-title: Statistical and Neural Network Analysis of Dissolved Gases in Power Transformers – volume: 399 start-page: 132 year: 2011 end-page: 140 ident: bib0355 article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting publication-title: J. Hydrol. – start-page: 313 year: 2002 end-page: 316 ident: bib0145 article-title: Dissolved gas analysis using expert system publication-title: Research and Development, 2002. SCOReD 2002. Student Conference on – start-page: 1942 year: 1995 end-page: 1948 ident: bib0360 article-title: Particle swarm optimization publication-title: Neural Networks, 1995. Proceedings., IEEE International Conference on – volume: 110 start-page: 73 year: 2014 end-page: 83 ident: bib0290 article-title: Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression publication-title: Electr. Power Syst. Res. – volume: 34 start-page: 34 year: 2004 end-page: 39 ident: bib0330 article-title: Wavelet support vector machine publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 21 start-page: 673 year: 2006 end-page: 680 ident: bib0205 article-title: A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil publication-title: IEEE Trans. Power Deliv. – volume: 8 start-page: 1638 year: 1993 end-page: 1646 ident: bib0025 article-title: A fuzzy information approach to integrating different transformer diagnostic methods publication-title: IEEE Trans. Power Deliv. – volume: 69 start-page: 128 year: 2012 end-page: 142 ident: bib0440 article-title: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation publication-title: Am. J. Sci. Res. – year: 1998 ident: bib0270 article-title: Statistical Learning Theory – volume: 15 start-page: 593 year: 2000 end-page: 598 ident: bib0065 article-title: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer publication-title: IEEE Transactions On Power Systems – volume: 270 start-page: 158 year: 2003 end-page: 166 ident: bib0245 article-title: Estuary water-stage forecasting by using radial basis function neural network publication-title: J. Hydrol. – volume: 16 start-page: 643 year: 2001 end-page: 647 ident: bib0105 article-title: A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis publication-title: IEEE Trans. Power Deliv. – volume: 13 start-page: 946 year: 1998 end-page: 952 ident: bib0170 article-title: Intelligent decision support for diagnosis of incipient transformer faults using self-organizing polynomial networks publication-title: IEEE Trans. Power Syst. – start-page: 400 year: 1999 end-page: 403 ident: bib0050 article-title: Application of fuzzy equivalent matrix for fault diagnosis of oil-immersed insulation publication-title: Dielectric Liquids, 1999. (ICDL'99) Proceedings of the 1999 IEEE 13th International Conference on – volume: 52 start-page: 1354 year: 2011 end-page: 1363 ident: bib0335 article-title: A novel application of wavelet based SVM to transient phenomena identification of power transformers publication-title: Energy Convers. Manage. – volume: 74 start-page: 1 year: 2005 end-page: 7 ident: bib0275 article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier publication-title: Electr. Power Syst. Res. – volume: 14 start-page: 1342 year: 1999 end-page: 1350 ident: bib0040 article-title: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers publication-title: IEEE Trans. Power Deliv. – volume: 26 start-page: 1111 year: 2011 end-page: 1118 ident: bib0225 article-title: An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning publication-title: IEEE Trans. Power Deliv. – volume: 127 start-page: 245 year: 2016 end-page: 255 ident: bib0320 article-title: Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels publication-title: Energy Convers. Manage. – start-page: 2259 year: 2005 end-page: 2261 ident: bib0190 article-title: The fault diagnosis method for electrical equipment based on Bayesian network publication-title: Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on – volume: 5 start-page: 193 year: 2009 end-page: 213 ident: bib0315 article-title: Traffic forecasting using least squares support vector machines publication-title: Transportmetrica – volume: 74 start-page: 79 year: 2012 end-page: 86 ident: bib0420 article-title: Number of required observation data for rainfall forecasting according to the climate conditions publication-title: Am. J. Sci. Res. – volume: 21 start-page: 1360 year: 2014 end-page: 1367 ident: bib0005 article-title: Lifetime estimation and monitoring of power transformer considering annual load factors publication-title: IEEE Trans. Dielectr. Electr. Insul. – start-page: 83 year: 2010 end-page: 88 ident: bib0080 article-title: Fuzzy logic application in DGA methods to classify fault type in power transformer publication-title: International Conference on Electric Power Systems, High Voltages, Electric Machines, International Conference on Remote Sensing—Proceedings – volume: 18 start-page: 843 year: 2003 end-page: 848 ident: bib0110 article-title: Evolving neural nets for fault diagnosis of power transformers publication-title: IEEE Trans. Power Deliv. – volume: 17 start-page: 138 year: 2007 end-page: 142 ident: bib0130 article-title: Improved BP neural network for transformer fault diagnosis publication-title: J. China Univ. Min. Technol. – start-page: 265 year: 2000 end-page: 268 ident: bib0060 article-title: A fuzzy logic tool for transformer fault diagnosis publication-title: Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on – year: 2013 ident: bib0410 article-title: A new approach for environmental crises and its solutions by computer modeling publication-title: The 1st International Conference on Environmental Crises and Its Solutions, Kish Island, Iran – start-page: 22 year: 1999 end-page: 27 ident: bib0045 article-title: Application of fuzzy data processing for fault diagnosis of power transformers publication-title: Proceeding of IEE Conference Publication, High Voltage Engineering Symposium – volume: 12 start-page: 809 year: 2001 end-page: 821 ident: bib0305 article-title: Financial time series prediction using least squares support vector machines within the evidence framework publication-title: IEEE Trans. Neural Netw. – start-page: 81 year: 2001 end-page: 86 ident: bib0365 article-title: Particle swarm optimization: developments, applications and resources publication-title: Evolutionary Computation, 2001. Proceedings of the 2001 Congress on – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: bib0295 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr. Power Syst. Res. – start-page: 1422 year: 2009 end-page: 1426 ident: bib0165 article-title: Fault diagnosis of power transformers using rough set theory publication-title: Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on – start-page: 162 year: 2005 end-page: 166 ident: bib0195 article-title: Study on kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer publication-title: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering) – year: 1999 ident: bib0385 article-title: Advances in Kernel Methods: Support Vector Learning – volume: 31 start-page: 6 year: 2015 end-page: 12 ident: bib0020 article-title: Study of code absence in the IEC three-ratio method of dissolved gas analysis publication-title: IEEE Electr. Insul. Mag. – volume: 12 start-page: 761 year: 1997 end-page: 767 ident: bib0035 article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic publication-title: IEEE Trans. Power Deliv. – volume: 180 start-page: 50 year: 2017 end-page: 60 ident: bib0445 article-title: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events publication-title: Agric. Water Manage. – volume: 16 start-page: 44 year: 2001 end-page: 55 ident: bib0240 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans. Power Syst. – volume: 78 start-page: 507 year: 2008 end-page: 514 ident: bib0255 article-title: Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm publication-title: Electr. Power Syst. Res. – volume: 3 start-page: 889 year: 1992 end-page: 898 ident: bib0325 article-title: Wavelet networks publication-title: IEEE Trans. Neural Netw. – volume: 36 start-page: 1371 year: 2009 end-page: 1379 ident: bib0155 article-title: Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers publication-title: Expert Syst. Appl. – volume: 26 start-page: 1292 year: 2011 end-page: 1293 ident: bib0220 article-title: DGA interpretation scheme derived from case study publication-title: IEEE Trans. Power Deliv. – year: 2000 ident: bib0055 article-title: A New Fuzzy Information Optimization Processing Technique for Monitoring the Transformer – start-page: 147 year: 2000 end-page: 150 ident: bib0095 article-title: Wavelet ANN based transformer fault diagnosis using gas-in-oil analysis publication-title: Properties and Applications of Dielectric Materials, 2000. Proceedings of the 6th International Conference on – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: bib0380 article-title: Particle swarm optimization publication-title: Swarm Intell. – volume: 23 start-page: 5 year: 2007 end-page: 14 ident: bib0210 article-title: Dissolved gas analysis of alternative fluids for power transformers publication-title: IEEE Electr. Insul. Mag. – volume: 83 start-page: 73 year: 2012 end-page: 79 ident: bib0230 article-title: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine publication-title: Electr. Power Syst. Res. – start-page: 444 year: 2004 end-page: 447 ident: bib0115 article-title: ANN approach for condition monitoring of power transformers using DGA publication-title: TENCON 2004. 2004 IEEE Region 10 Conference – volume: 21 start-page: 2560 year: 2007 end-page: 2574 ident: bib0340 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 75 start-page: 29 year: 2005 end-page: 39 ident: bib0120 article-title: A neural network-based scheme for fault diagnosis of power transformers publication-title: Electr. Power Syst. Res. – volume: 24 start-page: 162 year: 2004 end-page: 167 ident: bib0160 article-title: Diagnostic model of insulation faults in power equipment based on rough set theory publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 9 start-page: 697 year: 2016 ident: bib0085 article-title: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers publication-title: Energies – volume: 23 start-page: 91 year: 2016 end-page: 100 ident: bib0405 article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms publication-title: Meteorol. Appl. – volume: 18 start-page: 1257 year: 2003 end-page: 1261 ident: bib0180 article-title: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus publication-title: IEEE Trans. Power Deliv. – volume: 61 start-page: 679 year: 2015 end-page: 694 ident: bib0400 article-title: Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations publication-title: Arch. Agron. Soil Sci. – volume: 8 start-page: 35 year: 2013 end-page: 43 ident: bib0430 article-title: Increasing irrigation efficiency by management strategies: cutback and surge irrigation publication-title: ARPN J. Agric. Biol. Sci. – volume: 26 start-page: 27 year: 2010 end-page: 40 ident: bib0010 article-title: Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers publication-title: IEEE Electr. Insul. Mag. – volume: 7 start-page: 5031 year: 2015 end-page: 5060 ident: bib0415 article-title: Evolution of water lifting devices (pumps) over the centuries worldwide publication-title: Water – volume: 54 start-page: 5 year: 2004 end-page: 32 ident: bib0310 article-title: Benchmarking least squares support vector machine classifiers publication-title: Mach. Learn. – volume: 142 start-page: 258 year: 2017 end-page: 267 ident: bib0285 article-title: Preventing transmission distance relays maloperation under unintended bulk DG tripping using SVM-based approach publication-title: Electr. Power Syst. Res. – year: 2013 ident: bib0280 article-title: The Nature of Statistical Learning theory – start-page: 1881 year: 2001 end-page: 1886 ident: bib0175 article-title: Application of self-organising map algorithm for analysis and interpretation of dissolved gases in power transformers publication-title: Power Engineering Society Summer Meeting, 2001 – volume: 127 start-page: 109 year: 2015 end-page: 117 ident: bib0235 article-title: A cognitive system for fault prognosis in power transformers publication-title: Electr. Power Syst. Res. – year: 2002 ident: bib0300 article-title: Least Squares Support Vector Machines – volume: 3 start-page: 631 year: 2013 end-page: 640 ident: bib0425 publication-title: Use of Surface Water Supply Index to Assessing of Water Resources Management in Colorado and Oregon – volume: 2 start-page: 33 year: 2014 end-page: 46 ident: bib0435 article-title: Application of new mass transfer formulae for computation of evapotranspiration publication-title: J. Appl. Water Eng. Res. – volume: 27 start-page: 1093 year: 2000 end-page: 1110 ident: bib0250 article-title: Forecasting exchange rates using general regression neural networks publication-title: Comput. Oper. Res. – volume: 13 start-page: 50 year: 2000 end-page: 55 ident: bib0140 article-title: Neural net and expert system diagnose transformer faults publication-title: IEEE Comput. Appl. Power – start-page: 2231 year: 2002 end-page: 2234 ident: bib0150 article-title: Study on the fault diagnosis of transformer based on the grey relational analysis publication-title: Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on – volume: 11 start-page: 1836 year: 1996 end-page: 1841 ident: bib0090 article-title: An artificial neural network approach to transformer fault diagnosis publication-title: IEEE Trans. Power Deliv. – volume: 67 start-page: 53 year: 2003 end-page: 58 ident: bib0260 article-title: Novel grey model for the prediction of trend of dissolved gases in oil-filled power apparatus publication-title: Electr. Power Syst. Res. – start-page: 213 year: 2010 ident: bib0450 article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml] – volume: 22 start-page: 930 year: 2007 end-page: 935 ident: bib0125 article-title: Artificial immune network classification algorithm for fault diagnosis of power transformer publication-title: IEEE Trans. Power Deliv. – volume: 35 start-page: 307 year: 2008 end-page: 316 ident: bib0345 article-title: Wavelet support vector machine for induction machine fault diagnosis based on transient current signal publication-title: Expert Syst. Appl. – volume: 17 start-page: 157 year: 2006 end-page: 161 ident: bib0070 article-title: Application of fuzzy logic in fault diagnosis in transformers using dissolved gas based on different standards publication-title: World Acad. Sci. Eng. Technol. – volume: 8 start-page: 231 year: 1993 end-page: 238 ident: bib0135 article-title: An expert system for transformer fault diagnosis using dissolved gas analysis publication-title: IEEE Trans. Power Deliv. – start-page: 1763 year: 2005 end-page: 1766 ident: bib0185 article-title: Power transformer fault diagnosis based on extension theory publication-title: Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference on – year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0055 – volume: 12 start-page: 761 year: 1997 ident: 10.1016/j.epsr.2017.10.010_bib0035 article-title: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.584363 – volume: 14 start-page: 1342 year: 1999 ident: 10.1016/j.epsr.2017.10.010_bib0040 article-title: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.796227 – volume: 8 start-page: 1638 year: 1993 ident: 10.1016/j.epsr.2017.10.010_bib0025 article-title: A fuzzy information approach to integrating different transformer diagnostic methods publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.252690 – volume: 61 start-page: 679 year: 2015 ident: 10.1016/j.epsr.2017.10.010_bib0400 article-title: Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2014.941823 – volume: 16 start-page: 643 year: 2001 ident: 10.1016/j.epsr.2017.10.010_bib0105 article-title: A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysis publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.956751 – volume: 180 start-page: 50 year: 2017 ident: 10.1016/j.epsr.2017.10.010_bib0445 article-title: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2016.08.025 – volume: 7 start-page: 5031 year: 2015 ident: 10.1016/j.epsr.2017.10.010_bib0415 article-title: Evolution of water lifting devices (pumps) over the centuries worldwide publication-title: Water doi: 10.3390/w7095031 – volume: 12 start-page: 809 year: 2001 ident: 10.1016/j.epsr.2017.10.010_bib0305 article-title: Financial time series prediction using least squares support vector machines within the evidence framework publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.935093 – volume: 26 start-page: 1292 year: 2011 ident: 10.1016/j.epsr.2017.10.010_bib0220 article-title: DGA interpretation scheme derived from case study publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2010.2091325 – volume: 26 start-page: 1111 year: 2011 ident: 10.1016/j.epsr.2017.10.010_bib0225 article-title: An integrated decision-making model for condition assessment of power transformers using fuzzy approach and evidential reasoning publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2010.2096482 – volume: 83 start-page: 73 year: 2012 ident: 10.1016/j.epsr.2017.10.010_bib0230 article-title: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2011.09.012 – year: 1999 ident: 10.1016/j.epsr.2017.10.010_bib0385 – start-page: 120 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0375 article-title: Defining a standard for particle swarm optimization – volume: 30 start-page: 39 year: 2014 ident: 10.1016/j.epsr.2017.10.010_bib0015 article-title: A review of dissolved gas analysis measurement and interpretation techniques publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2014.6804740 – volume: 18 start-page: 843 year: 2003 ident: 10.1016/j.epsr.2017.10.010_bib0110 article-title: Evolving neural nets for fault diagnosis of power transformers publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2003.813605 – start-page: 1 year: 2008 ident: 10.1016/j.epsr.2017.10.010_bib0075 article-title: A novel algorithm for the diagnostics of power transformers using type-2 fuzzy logic systems – start-page: 83 year: 2010 ident: 10.1016/j.epsr.2017.10.010_bib0080 article-title: Fuzzy logic application in DGA methods to classify fault type in power transformer publication-title: International Conference on Electric Power Systems, High Voltages, Electric Machines, International Conference on Remote Sensing—Proceedings – volume: 146 start-page: 270 year: 2017 ident: 10.1016/j.epsr.2017.10.010_bib0295 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – year: 2002 ident: 10.1016/j.epsr.2017.10.010_bib0300 – volume: 8 start-page: 35 year: 2013 ident: 10.1016/j.epsr.2017.10.010_bib0430 article-title: Increasing irrigation efficiency by management strategies: cutback and surge irrigation publication-title: ARPN J. Agric. Biol. Sci. – volume: 3 start-page: 889 year: 1992 ident: 10.1016/j.epsr.2017.10.010_bib0325 article-title: Wavelet networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.165591 – start-page: 1942 year: 1995 ident: 10.1016/j.epsr.2017.10.010_bib0360 article-title: Particle swarm optimization – volume: 21 start-page: 2560 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0340 article-title: Support vector machine in machine condition monitoring and fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.12.007 – volume: 11 start-page: 637 year: 1998 ident: 10.1016/j.epsr.2017.10.010_bib0390 article-title: The connection between regularization operators and support vector kernels publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00032-X – volume: 24 start-page: 162 year: 2004 ident: 10.1016/j.epsr.2017.10.010_bib0160 article-title: Diagnostic model of insulation faults in power equipment based on rough set theory publication-title: Proc. Chin. Soc. Electr. Eng. – volume: 110 start-page: 73 year: 2014 ident: 10.1016/j.epsr.2017.10.010_bib0290 article-title: Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.01.002 – volume: 23 start-page: 5 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0210 article-title: Dissolved gas analysis of alternative fluids for power transformers publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2007.4318269 – volume: 74 start-page: 79 year: 2012 ident: 10.1016/j.epsr.2017.10.010_bib0420 article-title: Number of required observation data for rainfall forecasting according to the climate conditions publication-title: Am. J. Sci. Res. – start-page: 2259 year: 2005 ident: 10.1016/j.epsr.2017.10.010_bib0190 article-title: The fault diagnosis method for electrical equipment based on Bayesian network – volume: 39 start-page: 69 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0215 article-title: Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2008.2007253 – volume: 127 start-page: 109 year: 2015 ident: 10.1016/j.epsr.2017.10.010_bib0235 article-title: A cognitive system for fault prognosis in power transformers publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.05.014 – volume: 21 start-page: 1360 year: 2014 ident: 10.1016/j.epsr.2017.10.010_bib0005 article-title: Lifetime estimation and monitoring of power transformer considering annual load factors publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2014.6832284 – volume: 127 start-page: 245 year: 2016 ident: 10.1016/j.epsr.2017.10.010_bib0320 article-title: Implementation of GA-LSSVM modelling approach for estimating the performance of solid desiccant wheels publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.08.070 – volume: 78 start-page: 507 year: 2008 ident: 10.1016/j.epsr.2017.10.010_bib0255 article-title: Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2007.04.006 – volume: 3 start-page: 631 year: 2013 ident: 10.1016/j.epsr.2017.10.010_bib0425 – volume: 2 year: 2013 ident: 10.1016/j.epsr.2017.10.010_bib0395 article-title: Evolution of irrigation-equipped areas as share of cultivated areas publication-title: Irrig. Drain. Syst. Eng. – year: 2013 ident: 10.1016/j.epsr.2017.10.010_bib0280 – start-page: 265 year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0060 article-title: A fuzzy logic tool for transformer fault diagnosis – volume: 9 start-page: 697 year: 2016 ident: 10.1016/j.epsr.2017.10.010_bib0085 article-title: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers publication-title: Energies doi: 10.3390/en9090697 – year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0100 – start-page: 1422 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0165 article-title: Fault diagnosis of power transformers using rough set theory – volume: 15 start-page: 593 year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0065 article-title: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer publication-title: IEEE Transactions On Power Systems doi: 10.1109/59.867146 – volume: 21 start-page: 673 year: 2006 ident: 10.1016/j.epsr.2017.10.010_bib0205 article-title: A hybrid tool for detection of incipient faults in transformers based on the dissolved gas analysis of insulating oil publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2005.864044 – start-page: 147 year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0095 article-title: Wavelet ANN based transformer fault diagnosis using gas-in-oil analysis – volume: 18 start-page: 8 year: 2002 ident: 10.1016/j.epsr.2017.10.010_bib0200 article-title: A review of faults detectable by gas-in-oil analysis in transformers publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2002.1014963 – start-page: 400 year: 1999 ident: 10.1016/j.epsr.2017.10.010_bib0050 article-title: Application of fuzzy equivalent matrix for fault diagnosis of oil-immersed insulation – year: 1998 ident: 10.1016/j.epsr.2017.10.010_bib0270 – volume: 31 start-page: 6 year: 2015 ident: 10.1016/j.epsr.2017.10.010_bib0020 article-title: Study of code absence in the IEC three-ratio method of dissolved gas analysis publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2015.7303257 – start-page: 22 year: 1999 ident: 10.1016/j.epsr.2017.10.010_bib0045 article-title: Application of fuzzy data processing for fault diagnosis of power transformers – volume: 17 start-page: 138 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0130 article-title: Improved BP neural network for transformer fault diagnosis publication-title: J. China Univ. Min. Technol. doi: 10.1016/S1006-1266(07)60029-7 – volume: 17 start-page: 157 year: 2006 ident: 10.1016/j.epsr.2017.10.010_bib0070 article-title: Application of fuzzy logic in fault diagnosis in transformers using dissolved gas based on different standards publication-title: World Acad. Sci. Eng. Technol. – start-page: 325 year: 2004 ident: 10.1016/j.epsr.2017.10.010_bib0370 article-title: Particle swarm optimization with particles having quantum behavior – volume: 16 start-page: 44 year: 2001 ident: 10.1016/j.epsr.2017.10.010_bib0240 article-title: Neural networks for short-term load forecasting: a review and evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910780 – volume: 50 start-page: 1604 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0265 article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.02.004 – volume: 69 start-page: 128 year: 2012 ident: 10.1016/j.epsr.2017.10.010_bib0440 article-title: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation publication-title: Am. J. Sci. Res. – start-page: 444 year: 2004 ident: 10.1016/j.epsr.2017.10.010_bib0115 article-title: ANN approach for condition monitoring of power transformers using DGA – volume: 35 start-page: 307 year: 2008 ident: 10.1016/j.epsr.2017.10.010_bib0345 article-title: Wavelet support vector machine for induction machine fault diagnosis based on transient current signal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.06.018 – year: 2013 ident: 10.1016/j.epsr.2017.10.010_bib0410 article-title: A new approach for environmental crises and its solutions by computer modeling publication-title: The 1st International Conference on Environmental Crises and Its Solutions, Kish Island, Iran – volume: 54 start-page: 5 year: 2004 ident: 10.1016/j.epsr.2017.10.010_bib0310 article-title: Benchmarking least squares support vector machine classifiers publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000008082.80494.e0 – start-page: 162 year: 2005 ident: 10.1016/j.epsr.2017.10.010_bib0195 article-title: Study on kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer publication-title: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering) – volume: 270 start-page: 158 year: 2003 ident: 10.1016/j.epsr.2017.10.010_bib0245 article-title: Estuary water-stage forecasting by using radial basis function neural network publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00289-5 – start-page: 81 year: 2001 ident: 10.1016/j.epsr.2017.10.010_bib0365 article-title: Particle swarm optimization: developments, applications and resources – volume: 74 start-page: 1 year: 2005 ident: 10.1016/j.epsr.2017.10.010_bib0275 article-title: Fault diagnosis of power transformer based on multi-layer SVM classifier publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2004.07.008 – volume: 142 start-page: 258 year: 2017 ident: 10.1016/j.epsr.2017.10.010_bib0285 article-title: Preventing transmission distance relays maloperation under unintended bulk DG tripping using SVM-based approach publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.09.024 – volume: 67 start-page: 53 year: 2003 ident: 10.1016/j.epsr.2017.10.010_bib0260 article-title: Novel grey model for the prediction of trend of dissolved gases in oil-filled power apparatus publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(03)00047-6 – volume: 36 start-page: 7604 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0350 article-title: The forecasting model based on wavelet ν-support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.048 – volume: 26 start-page: 27 year: 2010 ident: 10.1016/j.epsr.2017.10.010_bib0010 article-title: Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2010.5599977 – volume: 34 start-page: 34 year: 2004 ident: 10.1016/j.epsr.2017.10.010_bib0330 article-title: Wavelet support vector machine publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2003.811113 – start-page: 213 year: 2010 ident: 10.1016/j.epsr.2017.10.010_bib0450 – start-page: 1763 year: 2005 ident: 10.1016/j.epsr.2017.10.010_bib0185 article-title: Power transformer fault diagnosis based on extension theory – volume: 1 start-page: 33 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0380 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 13 start-page: 50 year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0140 article-title: Neural net and expert system diagnose transformer faults publication-title: IEEE Comput. Appl. Power doi: 10.1109/67.814667 – volume: 8 start-page: 231 year: 1993 ident: 10.1016/j.epsr.2017.10.010_bib0135 article-title: An expert system for transformer fault diagnosis using dissolved gas analysis publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.180341 – volume: 399 start-page: 132 year: 2011 ident: 10.1016/j.epsr.2017.10.010_bib0355 article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.041 – volume: 2 start-page: 33 year: 2014 ident: 10.1016/j.epsr.2017.10.010_bib0435 article-title: Application of new mass transfer formulae for computation of evapotranspiration publication-title: J. Appl. Water Eng. Res. doi: 10.1080/23249676.2014.923790 – volume: 5 start-page: 193 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0315 article-title: Traffic forecasting using least squares support vector machines publication-title: Transportmetrica doi: 10.1080/18128600902823216 – volume: 18 start-page: 1257 year: 2003 ident: 10.1016/j.epsr.2017.10.010_bib0180 article-title: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2003.817736 – volume: 23 start-page: 91 year: 2016 ident: 10.1016/j.epsr.2017.10.010_bib0405 article-title: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms publication-title: Meteorol. Appl. doi: 10.1002/met.1533 – volume: 75 start-page: 29 year: 2005 ident: 10.1016/j.epsr.2017.10.010_bib0120 article-title: A neural network-based scheme for fault diagnosis of power transformers publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2004.11.013 – volume: 36 start-page: 1371 year: 2009 ident: 10.1016/j.epsr.2017.10.010_bib0155 article-title: Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.11.019 – volume: 13 start-page: 946 year: 1998 ident: 10.1016/j.epsr.2017.10.010_bib0170 article-title: Intelligent decision support for diagnosis of incipient transformer faults using self-organizing polynomial networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.708845 – start-page: 218 year: 1996 ident: 10.1016/j.epsr.2017.10.010_bib0030 article-title: An evolutionary computation based fuzzy fault diagnosis system for a power transformer – volume: 11 start-page: 1836 year: 1996 ident: 10.1016/j.epsr.2017.10.010_bib0090 article-title: An artificial neural network approach to transformer fault diagnosis publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.544265 – volume: 22 start-page: 930 year: 2007 ident: 10.1016/j.epsr.2017.10.010_bib0125 article-title: Artificial immune network classification algorithm for fault diagnosis of power transformer publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2007.893182 – volume: 27 start-page: 1093 year: 2000 ident: 10.1016/j.epsr.2017.10.010_bib0250 article-title: Forecasting exchange rates using general regression neural networks publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(99)00144-6 – start-page: 313 year: 2002 ident: 10.1016/j.epsr.2017.10.010_bib0145 article-title: Dissolved gas analysis using expert system – volume: 52 start-page: 1354 year: 2011 ident: 10.1016/j.epsr.2017.10.010_bib0335 article-title: A novel application of wavelet based SVM to transient phenomena identification of power transformers publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.09.033 – start-page: 2231 year: 2002 ident: 10.1016/j.epsr.2017.10.010_bib0150 article-title: Study on the fault diagnosis of transformer based on the grey relational analysis – start-page: 1881 year: 2001 ident: 10.1016/j.epsr.2017.10.010_bib0175 article-title: Application of self-organising map algorithm for analysis and interpretation of dissolved gases in power transformers |
| SSID | ssj0006975 |
| Score | 2.5463638 |
| Snippet | •An approach combing wavelet technique with least squares support vector machine is proposed.•A mutation operation with certain probability is applied to the... Finding out the transformer incipient faults and their development trend has always been a central issue for electric power companies. In this paper, a novel... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 196 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation Back propagation networks Basis functions Correlation coefficients Dissolved gases Electric power Electric utilities Error analysis Forecasting Least squares support vector machine Natural gas Neural networks Oil-immersed power transformers Optimization algorithms Particle swarm optimization Radial basis function Regression analysis Studies Support vector machines Transformers Wavelet analysis Wavelet technique |
| Title | A novel model based on wavelet LS-SVM integrated improved PSO algorithm for forecasting of dissolved gas contents in power transformers |
| URI | https://dx.doi.org/10.1016/j.epsr.2017.10.010 https://www.proquest.com/docview/2050603133 |
| Volume | 155 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AKRWK dateStart: 19770901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzuoENhSZOHDdjVVGVV0EqILYojh0oKklFA2ys_G3u8igPIQaGSIlztiKf47tLvvuOsf2A-9rztWspHhOptoksFYnAilyhHNFWMi5Iks4Hfv_aO7kVtw3WrXNhCFZZ7f3lnl7s1lVLq5rN1mQ0ag1tFxebDNAEY0jueJRo7nmSqhgcvn3CPPygINslYYukq8SZEuNlJlPiBHXkISG8KIv2d-P0Y5subE9vmS1VTiN0yudaYQ2TrrLFL1SCa-y9A2n2YsZQlLYBMk4ashReI6oskcPZ0BrenMOMHULDqPicgCeXwwuIxnfZ0yi_fwR0YukwcTQlRDRkCdA_-2xMonfRFAjcTugLHAsmVGMN8tr5RVdynV33jq66fasqsmDFaKxzS6LDEHDt-spIg9EewVHtJKHAKIiJ0M3jmjjJXBHbPOKOiiXnbfRrEiU1gVM32FyapWaTQeJorm0cKiCKGttXiRAicTW5OJ6QyRZz6tkN44qBnAphjMMaavYQkkZC0gi1oUa22MGsz6Tk3_hTWtRKC7-tohANxJ_9dmsNh9U7PMX7RL7oYhC__c9hd9gCXrVLkPcum8ufns0e-jC5ahaLtMnmO8en_cEHugjwLA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3N7Ch0MSJ42ZECFSgBaQCYovi2IGiklRtgI2Vv81dHryEGBgiRfbZinzOPZLP3zG2G3Bfe752LcVjItU2kaUiEViRK5QjWkrGBUlS99xvX3unt-J2gh3WZ2EIVlnZ_tKmF9a6amlWq9kc9vvNnu3iZpMBumBMyR1PTLIpT3BJGdj-6yfOww8Ktl2Stki8OjlTgrzMcEykoI7cJ4gXHaP93Tv9sNOF8zmeZ3NV1AgH5YMtsAmTLrLZL1yCS-ztANLs2QygqG0D5J00ZCm8RFRaIodOz-rddOGDHkJDv_iegDeXvQuIBnfZqJ_fPwJGsXSZOBoTJBqyBOinfTYg0btoDIRuJ_gFzgVDKrIGeR39Yiy5zK6Pj64O21ZVZcGK0VvnlsSIIeDa9ZWRBtM9wqPaSUKZURATo5vHNZGSuSK2ecQdFUvOWxjYJEpqQqeusEaapWaVQeJorm2cKiCOGttXiRAicTXFOJ6QyRpz6tUN44qCnCphDMIaa_YQkkZC0gi1oUbW2N7HmGFJwPGntKiVFn7bRiF6iD_HbdYaDquXeIz9xL7oYha__s9pd9h0-6rbCTsn52cbbAZ7WiXie5M18tGT2cKAJlfbxYZ9B09-8cE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+model+based+on+wavelet+LS-SVM+integrated+improved+PSO+algorithm+for+forecasting+of+dissolved+gas+contents+in+power+transformers&rft.jtitle=Electric+power+systems+research&rft.au=Zheng%2C+Hanbo&rft.au=Zhang%2C+Yiyi&rft.au=Liu%2C+Jiefeng&rft.au=Wei%2C+Hua&rft.date=2018-02-01&rft.issn=0378-7796&rft.volume=155&rft.spage=196&rft.epage=205&rft_id=info:doi/10.1016%2Fj.epsr.2017.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2017_10_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |