Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease

Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiol...

Full description

Saved in:
Bibliographic Details
Published inBioscience reports Vol. 35; no. 6
Main Authors Gonsalves, Caryn S., Li, Chen, Malik, Punam, Tahara, Stanley M., Kalra, Vijay K.
Format Journal Article
LanguageEnglish
Published England Portland Press Ltd 01.12.2015
Subjects
Online AccessGet full text
ISSN0144-8463
1573-4935
DOI10.1042/BSR20150190

Cover

Abstract Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3′-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre-miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a/miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a/miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a/miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD.
AbstractList Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3'-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre-miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a/miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a/miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a/miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD.
miR-301a /miR- 454 , which targets the 3′-UTR of ET-1 and PAI-1, are located in the intron of the SKA2 gene. These miRNAs are transcriptionally regulated by PPAR-α. Fenofibrate, a PPAR-α agonist increases levels of miR-301a /miR- 454 , with potential for amelioration of pulmonary hypertension. Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3′-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre- miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a / miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a / miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a / miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD.
Author Li, Chen
Gonsalves, Caryn S.
Kalra, Vijay K.
Malik, Punam
Tahara, Stanley M.
Author_xml – sequence: 1
  givenname: Caryn S.
  surname: Gonsalves
  fullname: Gonsalves, Caryn S.
  organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A
– sequence: 2
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A
– sequence: 3
  givenname: Punam
  surname: Malik
  fullname: Malik, Punam
  organization: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, U.S.A
– sequence: 4
  givenname: Stanley M.
  surname: Tahara
  fullname: Tahara, Stanley M.
  organization: Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A
– sequence: 5
  givenname: Vijay K.
  surname: Kalra
  fullname: Kalra, Vijay K.
  organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26460070$$D View this record in MEDLINE/PubMed
BookMark eNptkUtPlDEUhhsCkWF0xd50byq9fZfZmIxEkUAC4bL-0mlPZ6qd9ktbCP4sd_wKf5OdQQkaV-f2nLc5fQ_QbogBEDpk9D2jkh99vL7ilDWUzegOmrCmE0TORLOLJpRJSXrZin10kPNXSmkdyFdon7eypbSjE_R4CSk-uBzXgMcUvbOQVImJKF3cvSpgcAIN46b18wdZg3HbZkkqZJ3cWFwMOFq8dldEUKawCmZbyEZu87ICl_Aq5oKXEABfn8151Vze-SqUMQQTK-JdIGzLX85PawYPY4KcN-Iu4Oz0Nw9Yg_fYuAwqw2u0Z5XP8OZ3nKLbz59ujr-Q84uT0-P5OdGiZ4W0naama5g2ii84SCF4s5BCtlJZy2nfqgWDxjLTqhltuOU901abzlglOO-VmKIPT7rj3aJeryHU0_0wJrdW6fsQlRv-ngS3GpbxfpBtx0X97yl6-1LgefOPBxV49wToFHNOYJ8RRoeNw8MLhyvN_qG1K2rjQn3d-f_u_AIeFawD
CitedBy_id crossref_primary_10_1007_s00204_018_2335_4
crossref_primary_10_1016_j_cyto_2022_156048
crossref_primary_10_1007_s00277_021_04665_y
crossref_primary_10_1515_med_2022_0461
crossref_primary_10_1177_15353702231157940
crossref_primary_10_3390_jcm9092920
crossref_primary_10_1016_j_omtn_2022_12_019
crossref_primary_10_3389_fimmu_2020_561917
crossref_primary_10_3389_fnins_2022_917489
crossref_primary_10_1016_j_yexmp_2019_104355
crossref_primary_10_1042_BSR20170682
crossref_primary_10_1172_jci_insight_91327
crossref_primary_10_1007_s00277_020_04390_y
crossref_primary_10_1016_j_ppedcard_2022_101602
Cites_doi 10.1378/chest.09-3057
10.1161/ATVBAHA.108.179689
10.1038/nm1202-799
10.3324/haematol.11763
10.1074/jbc.M110.101691
10.1182/blood-2007-12-130567
10.1182/blood-2009-04-217950
10.1080/10739680490278600
10.1126/science.278.5339.876
10.1038/srep05150
10.1182/blood-2009-09-244830
10.1182/blood.V92.7.2594
10.1056/NEJMoa035477
10.1016/S0021-9258(18)54461-6
10.1093/nar/gkn920
10.1016/j.bbrc.2010.05.037
10.1182/blood-2002-11-3422
10.4049/jimmunol.177.10.7211
10.1182/blood.V91.11.4216
10.1016/j.ygeno.2010.10.005
10.1006/bbrc.1998.8543
10.1182/blood-2008-07-169821
10.1182/blood-2010-04-282095
10.1182/blood.V99.6.2077
10.4049/jimmunol.175.6.4049
10.1093/nar/gks821
10.1182/blood-2006-06-029173
10.1172/JCI115367
10.1182/blood-2010-02-268193
10.1172/JCI33308
10.1007/s00282-997-0229-7
10.1002/(SICI)1097-4652(199606)167:3<469::AID-JCP11>3.0.CO;2-#
10.1042/BJ20101585
10.1074/jbc.M114.600775
ContentType Journal Article
Copyright 2015 Authors.
2015 Authors 2015
Copyright_xml – notice: 2015 Authors.
– notice: 2015 Authors 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1042/BSR20150190
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Transcriptional regulation of miR-301a and miR-454
EISSN 1573-4935
ExternalDocumentID PMC4672349
26460070
10_1042_BSR20150190
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30-DK048522
– fundername: NHLBI NIH HHS
  grantid: R01 HL111372
– fundername: NHLBI NIH HHS
  grantid: R01-HL111372
GroupedDBID ---
.86
0R~
23N
4.4
5GY
5RE
5VS
6J9
78A
7X7
88E
88I
8FI
8FJ
8G5
AAYXX
ABJNI
ABUWG
ACGFS
ACIWK
ACPRK
ADBBV
ADIMF
ADRAZ
AEGXH
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGNMA
BHPHI
CCPQU
CITATION
CS3
DIK
DL5
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMOBN
EPAXT
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
HZ~
I09
IZQ
KDC
KQ8
LAK
M1P
M2O
M2P
M48
M4Y
M7P
MV1
NU0
O9-
OK1
OVD
PATMY
PHGZM
PHGZT
PSQYO
PYCSY
QOK
QOS
R4E
RHI
RNS
RPM
RPO
RPX
RRX
SBL
SDH
SDM
SOJ
SV3
TR2
TSK
U2A
UKHRP
VC2
~EX
AABGO
CGR
CUY
CVF
ECM
EIF
NPM
5PM
PJZUB
PPXIY
PQGLB
ID FETCH-LOGICAL-c381t-67c0d751cda2b2e43325b43464aff2086ab1e5f1d6a9052f281cfcd7dfa3228a3
IEDL.DBID M48
ISSN 0144-8463
IngestDate Thu Aug 21 18:16:57 EDT 2025
Thu Apr 03 07:07:06 EDT 2025
Tue Jul 01 02:33:40 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords endothelin-1 (ET-1)
spindle and kinetochore-associated protein-2 (SKA2)
plasminogen activator inhibitor-1 (PAI-1)
sickle cell disease (SCD)
micro ribonucleic acid (miRNA)
peroxisome proliferator-activated receptor-α (PPAR-α)
Language English
License 2015 Authors.
This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-67c0d751cda2b2e43325b43464aff2086ab1e5f1d6a9052f281cfcd7dfa3228a3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1042/BSR20150190
PMID 26460070
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4672349
pubmed_primary_26460070
crossref_primary_10_1042_BSR20150190
crossref_citationtrail_10_1042_BSR20150190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioscience reports
PublicationTitleAlternate Biosci Rep
PublicationYear 2015
Publisher Portland Press Ltd
Publisher_xml – name: Portland Press Ltd
References Nsiri (2021111618204948200_B15) 1997; 39
Gladwin (2021111618204948200_B3) 2004; 350
Keeton (2021111618204948200_B18) 1991; 266
Kim (2021111618204948200_B26) 2006; 177
Schanen (2021111618204948200_B29) 2011; 97
Lee (2021111618204948200_B32) 2009; 37
Kourembanas (2021111618204948200_B12) 1991; 88
Rybicki (2021111618204948200_B10) 1998; 92
Patel (2021111618204948200_B28) 2009; 113
Hillery (2021111618204948200_B17) 2004; 11
Ataga (2021111618204948200_B16) 2008; 93
Machado (2021111618204948200_B2) 2010; 137
Brittain (2021111618204948200_B22) 2010; 115
Lalloyer (2021111618204948200_B34) 2010; 30
Hu (2021111618204948200_B11) 1998; 245
Perelman (2021111618204948200_B21) 2003; 102
Gladwin (2021111618204948200_B1) 2010; 116
Reiter (2021111618204948200_B9) 2002; 8
Xiao (2021111618204948200_B30) 2013; 41
Cao (2021111618204948200_B33) 2010; 396
Patel (2021111618204948200_B23) 2010; 285
Guo (2021111618204948200_B31) 2014; 4
Hsu (2021111618204948200_B4) 2007; 109
Phelan (2021111618204948200_B7) 1996; 167
Bunn (2021111618204948200_B5) 2010; 116
Sabaa (2021111618204948200_B13) 2008; 118
Patel (2021111618204948200_B24) 2011; 434
Li (2021111618204948200_B25) 2014; 289
Key (2021111618204948200_B14) 1998; 91
Fink (2021111618204948200_B19) 2002; 99
Arndt (2021111618204948200_B20) 2005; 175
Patel (2021111618204948200_B8) 2008; 112
Sundaram (2021111618204948200_B6) 2010; 116
Pászty (2021111618204948200_B27) 1997; 278
References_xml – volume: 137
  start-page: 30S
  year: 2010
  ident: 2021111618204948200_B2
  article-title: Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective
  publication-title: Chest
  doi: 10.1378/chest.09-3057
– volume: 30
  start-page: 894
  year: 2010
  ident: 2021111618204948200_B34
  article-title: Fibrates, glitazones, and peroxisome proliferator-activated receptors
  publication-title: Atertio. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.179689
– volume: 8
  start-page: 1383
  year: 2002
  ident: 2021111618204948200_B9
  article-title: Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease
  publication-title: Nat. Med.
  doi: 10.1038/nm1202-799
– volume: 93
  start-page: 20
  year: 2008
  ident: 2021111618204948200_B16
  article-title: Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension
  publication-title: Hematologica
  doi: 10.3324/haematol.11763
– volume: 285
  start-page: 16713
  year: 2010
  ident: 2021111618204948200_B23
  article-title: Placenta growth factor (PlGF), a novel inducer of plasminogen activator inhibitor-1 (PAI-1) in sickle cell disease (SCD)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.101691
– volume: 112
  start-page: 856
  year: 2008
  ident: 2021111618204948200_B8
  article-title: Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha
  publication-title: Blood
  doi: 10.1182/blood-2007-12-130567
– volume: 115
  start-page: 2014
  year: 2010
  ident: 2021111618204948200_B22
  article-title: Placenta growth factor in sickle cell disease: association with hemolysis and inflammation
  publication-title: Blood
  doi: 10.1182/blood-2009-04-217950
– volume: 11
  start-page: 195
  year: 2004
  ident: 2021111618204948200_B17
  article-title: Pathophysiology of stroke in sickle cell disease
  publication-title: Microcirculation
  doi: 10.1080/10739680490278600
– volume: 278
  start-page: 876
  year: 1997
  ident: 2021111618204948200_B27
  article-title: Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease
  publication-title: Science
  doi: 10.1126/science.278.5339.876
– volume: 4
  start-page: 5150
  year: 2014
  ident: 2021111618204948200_B31
  article-title: Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues
  publication-title: Sci. Rep.
  doi: 10.1038/srep05150
– volume: 116
  start-page: 109
  year: 2010
  ident: 2021111618204948200_B6
  article-title: High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension
  publication-title: Blood
  doi: 10.1182/blood-2009-09-244830
– volume: 92
  start-page: 2594
  year: 1998
  ident: 2021111618204948200_B10
  article-title: Increased levels of endothelin-1 in plasma of sickle cell anemia patients
  publication-title: Blood
  doi: 10.1182/blood.V92.7.2594
– volume: 350
  start-page: 886
  year: 2004
  ident: 2021111618204948200_B3
  article-title: Pulmonary hypertension as a risk factor for death in patients with sickle cell disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa035477
– volume: 266
  start-page: 23048
  year: 1991
  ident: 2021111618204948200_B18
  article-title: Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54461-6
– volume: 37
  start-page: 123
  year: 2009
  ident: 2021111618204948200_B32
  article-title: Twist-1 regulates the miR-199a/214 cluster during development
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn920
– volume: 396
  start-page: 978
  year: 2010
  ident: 2021111618204948200_B33
  article-title: Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.05.037
– volume: 102
  start-page: 1506
  year: 2003
  ident: 2021111618204948200_B21
  article-title: Placenta growth factor activates monocytes and correlates with sickle cell disease severity
  publication-title: Blood
  doi: 10.1182/blood-2002-11-3422
– volume: 177
  start-page: 7211
  year: 2006
  ident: 2021111618204948200_B26
  article-title: A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.10.7211
– volume: 91
  start-page: 4216
  year: 1998
  ident: 2021111618204948200_B14
  article-title: Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease
  publication-title: Blood
  doi: 10.1182/blood.V91.11.4216
– volume: 97
  start-page: 1
  year: 2011
  ident: 2021111618204948200_B29
  article-title: Transcriptional regulation of mammalian miRNA genes
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2010.10.005
– volume: 245
  start-page: 894
  year: 1998
  ident: 2021111618204948200_B11
  article-title: Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1998.8543
– volume: 113
  start-page: 1129
  year: 2009
  ident: 2021111618204948200_B28
  article-title: Placenta growth factor induces 5-lipoxygenase-activating protein to increase leukotriene formation in sickle cell disease
  publication-title: Blood
  doi: 10.1182/blood-2008-07-169821
– volume: 116
  start-page: 852
  year: 2010
  ident: 2021111618204948200_B1
  article-title: Pulmonary hypertension and NO in sickle cell
  publication-title: Blood
  doi: 10.1182/blood-2010-04-282095
– volume: 99
  start-page: 2077
  year: 2002
  ident: 2021111618204948200_B19
  article-title: Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1
  publication-title: Blood
  doi: 10.1182/blood.V99.6.2077
– volume: 175
  start-page: 4049
  year: 2005
  ident: 2021111618204948200_B20
  article-title: Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator inhibitor-1 through a JNK-mediated pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.6.4049
– volume: 41
  start-page: e5
  year: 2013
  ident: 2021111618204948200_B30
  article-title: Deciphering the transcriptional regulation of microRNA genes in humans with ACTLocater
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks821
– volume: 109
  start-page: 3088
  year: 2007
  ident: 2021111618204948200_B4
  article-title: Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability
  publication-title: Blood
  doi: 10.1182/blood-2006-06-029173
– volume: 88
  start-page: 1054
  year: 1991
  ident: 2021111618204948200_B12
  article-title: Hypoxia induces endothelin gene expression and secretion in cultured human endothelium
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115367
– volume: 116
  start-page: 687
  year: 2010
  ident: 2021111618204948200_B5
  article-title: Pulmonary hypertension and nitric oxide depletion in sickle cell disease
  publication-title: Blood
  doi: 10.1182/blood-2010-02-268193
– volume: 118
  start-page: 1924
  year: 2008
  ident: 2021111618204948200_B13
  article-title: Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI33308
– volume: 39
  start-page: 229
  year: 1997
  ident: 2021111618204948200_B15
  article-title: Fibrinolytic response to venous occlusion in patients with homozygous sickle cell disease
  publication-title: Hematol. Cell. Ther.
  doi: 10.1007/s00282-997-0229-7
– volume: 167
  start-page: 469
  year: 1996
  ident: 2021111618204948200_B7
  article-title: Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(199606)167:3<469::AID-JCP11>3.0.CO;2-#
– volume: 434
  start-page: 473
  year: 2011
  ident: 2021111618204948200_B24
  article-title: Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placenta growth factor in human pulmonary endothelial cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101585
– volume: 289
  start-page: 36031
  year: 2014
  ident: 2021111618204948200_B25
  article-title: Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.600775
SSID ssj0004934
Score 2.1818466
Snippet Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our...
miR-301a /miR- 454 , which targets the 3′-UTR of ET-1 and PAI-1, are located in the intron of the SKA2 gene. These miRNAs are transcriptionally regulated by...
SourceID pubmedcentral
pubmed
crossref
SourceType Open Access Repository
Index Database
Enrichment Source
SubjectTerms Anemia, Sickle Cell - complications
Anemia, Sickle Cell - drug therapy
Anemia, Sickle Cell - genetics
Anemia, Sickle Cell - pathology
Animals
Cell Line
Chromosomal Proteins, Non-Histone - biosynthesis
Chromosomal Proteins, Non-Histone - genetics
Endothelin-1 - biosynthesis
Endothelin-1 - genetics
Fenofibrate - administration & dosage
Gene Expression Regulation - drug effects
Humans
Hypertension, Pulmonary - complications
Hypertension, Pulmonary - drug therapy
Hypertension, Pulmonary - genetics
Hypertension, Pulmonary - pathology
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Mice
MicroRNAs - biosynthesis
MicroRNAs - genetics
Original Paper
Original Papers
Placenta Growth Factor
Plasminogen Activator Inhibitor 1 - biosynthesis
Plasminogen Activator Inhibitor 1 - genetics
PPAR alpha - antagonists & inhibitors
PPAR alpha - genetics
PPAR alpha - metabolism
Pregnancy Proteins - genetics
Pregnancy Proteins - metabolism
Promoter Regions, Genetic
Title Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease
URI https://www.ncbi.nlm.nih.gov/pubmed/26460070
https://pubmed.ncbi.nlm.nih.gov/PMC4672349
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVgguCMorPKo99IS0YK93_TgglFatCogqSonUW7TehxqROiEJKP1ZvfVX9Dd1Zm1HCeqJ29qetSzP7M6MZuf7APZV5IWxNuGFFZLL2OOoiEouEy3y3Kq0DBX8H6fpyUB-O1fnW9CScTY_cH5vakd8UoPZ-OPy99UXXPCf6wql-HRw1heUuKNvewA7oVBEZ_jkGmx4kdQg31JydLhJ06j3z2QCBk4lAbZHG15q5Zo2j02u-aHjp_CkCSBZt9b4M9hy1S48rCklr3bh0WHL4PYcbnpuNlmO5pNLx6bEzuNdKKpzamb4i0GmZbjfuSndur3moYmEbi7If7W7CZt4djnqc1yimunKhgupZBiHMgOjRhGGhujY2feuwHcGens3Z66y1OCFkSyPg3yv-xVHbtmcvq3YqGJoJr_GjlEFgTXlohcwOD76eXjCG6YGbtDjL3iamchmKjZWi1I4wkRTpUxkKrX3ArMmXcZO-dimuoiU8CKPjTc2s17jhpLr5CVsV5PKvQaWZJhxomEpbxxlYzpPcyesLzEuiaRJO_Ch1czQNDDmxKYxHoZyuhTDNY12YH8lPK3RO-4Xe1VrdiXU2kEHsg2drwQIlXvzSTW6COjc6HlEIos3_z3zLTymD6vPzLyD7cXsj3uPkc-i3IOdg6PTXn8vWPcdnd8FpQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxisome+proliferator-activated+receptor-%CE%B1-mediated+transcription+of+miR-301a+and+miR-454+and+their+host+gene+SKA2+regulates+endothelin-1+and+PAI-1+expression+in+sickle+cell+disease&rft.jtitle=Bioscience+reports&rft.au=Gonsalves%2C+Caryn%C2%A0S.&rft.au=Li%2C+Chen&rft.au=Malik%2C+Punam&rft.au=Tahara%2C+Stanley%C2%A0M.&rft.date=2015-12-01&rft.pub=Portland+Press+Ltd&rft.issn=0144-8463&rft.eissn=1573-4935&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1042%2FBSR20150190&rft_id=info%3Apmid%2F26460070&rft.externalDocID=PMC4672349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8463&client=summon