Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease
Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiol...
Saved in:
Published in | Bioscience reports Vol. 35; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Portland Press Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8463 1573-4935 |
DOI | 10.1042/BSR20150190 |
Cover
Abstract | Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3′-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre-miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a/miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a/miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a/miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD. |
---|---|
AbstractList | Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3'-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre-miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a/miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a/miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a/miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD. miR-301a /miR- 454 , which targets the 3′-UTR of ET-1 and PAI-1, are located in the intron of the SKA2 gene. These miRNAs are transcriptionally regulated by PPAR-α. Fenofibrate, a PPAR-α agonist increases levels of miR-301a /miR- 454 , with potential for amelioration of pulmonary hypertension. Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3′-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre- miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a / miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a / miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a / miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD. |
Author | Li, Chen Gonsalves, Caryn S. Kalra, Vijay K. Malik, Punam Tahara, Stanley M. |
Author_xml | – sequence: 1 givenname: Caryn S. surname: Gonsalves fullname: Gonsalves, Caryn S. organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A – sequence: 2 givenname: Chen surname: Li fullname: Li, Chen organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A – sequence: 3 givenname: Punam surname: Malik fullname: Malik, Punam organization: Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, U.S.A – sequence: 4 givenname: Stanley M. surname: Tahara fullname: Tahara, Stanley M. organization: Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A – sequence: 5 givenname: Vijay K. surname: Kalra fullname: Kalra, Vijay K. organization: Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26460070$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtPlDEUhhsCkWF0xd50byq9fZfZmIxEkUAC4bL-0mlPZ6qd9ktbCP4sd_wKf5OdQQkaV-f2nLc5fQ_QbogBEDpk9D2jkh99vL7ilDWUzegOmrCmE0TORLOLJpRJSXrZin10kPNXSmkdyFdon7eypbSjE_R4CSk-uBzXgMcUvbOQVImJKF3cvSpgcAIN46b18wdZg3HbZkkqZJ3cWFwMOFq8dldEUKawCmZbyEZu87ICl_Aq5oKXEABfn8151Vze-SqUMQQTK-JdIGzLX85PawYPY4KcN-Iu4Oz0Nw9Yg_fYuAwqw2u0Z5XP8OZ3nKLbz59ujr-Q84uT0-P5OdGiZ4W0naama5g2ii84SCF4s5BCtlJZy2nfqgWDxjLTqhltuOU901abzlglOO-VmKIPT7rj3aJeryHU0_0wJrdW6fsQlRv-ngS3GpbxfpBtx0X97yl6-1LgefOPBxV49wToFHNOYJ8RRoeNw8MLhyvN_qG1K2rjQn3d-f_u_AIeFawD |
CitedBy_id | crossref_primary_10_1007_s00204_018_2335_4 crossref_primary_10_1016_j_cyto_2022_156048 crossref_primary_10_1007_s00277_021_04665_y crossref_primary_10_1515_med_2022_0461 crossref_primary_10_1177_15353702231157940 crossref_primary_10_3390_jcm9092920 crossref_primary_10_1016_j_omtn_2022_12_019 crossref_primary_10_3389_fimmu_2020_561917 crossref_primary_10_3389_fnins_2022_917489 crossref_primary_10_1016_j_yexmp_2019_104355 crossref_primary_10_1042_BSR20170682 crossref_primary_10_1172_jci_insight_91327 crossref_primary_10_1007_s00277_020_04390_y crossref_primary_10_1016_j_ppedcard_2022_101602 |
Cites_doi | 10.1378/chest.09-3057 10.1161/ATVBAHA.108.179689 10.1038/nm1202-799 10.3324/haematol.11763 10.1074/jbc.M110.101691 10.1182/blood-2007-12-130567 10.1182/blood-2009-04-217950 10.1080/10739680490278600 10.1126/science.278.5339.876 10.1038/srep05150 10.1182/blood-2009-09-244830 10.1182/blood.V92.7.2594 10.1056/NEJMoa035477 10.1016/S0021-9258(18)54461-6 10.1093/nar/gkn920 10.1016/j.bbrc.2010.05.037 10.1182/blood-2002-11-3422 10.4049/jimmunol.177.10.7211 10.1182/blood.V91.11.4216 10.1016/j.ygeno.2010.10.005 10.1006/bbrc.1998.8543 10.1182/blood-2008-07-169821 10.1182/blood-2010-04-282095 10.1182/blood.V99.6.2077 10.4049/jimmunol.175.6.4049 10.1093/nar/gks821 10.1182/blood-2006-06-029173 10.1172/JCI115367 10.1182/blood-2010-02-268193 10.1172/JCI33308 10.1007/s00282-997-0229-7 10.1002/(SICI)1097-4652(199606)167:3<469::AID-JCP11>3.0.CO;2-# 10.1042/BJ20101585 10.1074/jbc.M114.600775 |
ContentType | Journal Article |
Copyright | 2015 Authors. 2015 Authors 2015 |
Copyright_xml | – notice: 2015 Authors. – notice: 2015 Authors 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1042/BSR20150190 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Transcriptional regulation of miR-301a and miR-454 |
EISSN | 1573-4935 |
ExternalDocumentID | PMC4672349 26460070 10_1042_BSR20150190 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30-DK048522 – fundername: NHLBI NIH HHS grantid: R01 HL111372 – fundername: NHLBI NIH HHS grantid: R01-HL111372 |
GroupedDBID | --- .86 0R~ 23N 4.4 5GY 5RE 5VS 6J9 78A 7X7 88E 88I 8FI 8FJ 8G5 AAYXX ABJNI ABUWG ACGFS ACIWK ACPRK ADBBV ADIMF ADRAZ AEGXH AENEX AEUYN AFBBN AFKRA AFRAH AHBYD ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS AZQEC BAWUL BBNVY BCNDV BENPR BGNMA BHPHI CCPQU CITATION CS3 DIK DL5 DU5 DWQXO E3Z EBD EBS EJD EMOBN EPAXT F5P FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE HZ~ I09 IZQ KDC KQ8 LAK M1P M2O M2P M48 M4Y M7P MV1 NU0 O9- OK1 OVD PATMY PHGZM PHGZT PSQYO PYCSY QOK QOS R4E RHI RNS RPM RPO RPX RRX SBL SDH SDM SOJ SV3 TR2 TSK U2A UKHRP VC2 ~EX AABGO CGR CUY CVF ECM EIF NPM 5PM PJZUB PPXIY PQGLB |
ID | FETCH-LOGICAL-c381t-67c0d751cda2b2e43325b43464aff2086ab1e5f1d6a9052f281cfcd7dfa3228a3 |
IEDL.DBID | M48 |
ISSN | 0144-8463 |
IngestDate | Thu Aug 21 18:16:57 EDT 2025 Thu Apr 03 07:07:06 EDT 2025 Tue Jul 01 02:33:40 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | endothelin-1 (ET-1) spindle and kinetochore-associated protein-2 (SKA2) plasminogen activator inhibitor-1 (PAI-1) sickle cell disease (SCD) micro ribonucleic acid (miRNA) peroxisome proliferator-activated receptor-α (PPAR-α) |
Language | English |
License | 2015 Authors. This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-67c0d751cda2b2e43325b43464aff2086ab1e5f1d6a9052f281cfcd7dfa3228a3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1042/BSR20150190 |
PMID | 26460070 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4672349 pubmed_primary_26460070 crossref_primary_10_1042_BSR20150190 crossref_citationtrail_10_1042_BSR20150190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioscience reports |
PublicationTitleAlternate | Biosci Rep |
PublicationYear | 2015 |
Publisher | Portland Press Ltd |
Publisher_xml | – name: Portland Press Ltd |
References | Nsiri (2021111618204948200_B15) 1997; 39 Gladwin (2021111618204948200_B3) 2004; 350 Keeton (2021111618204948200_B18) 1991; 266 Kim (2021111618204948200_B26) 2006; 177 Schanen (2021111618204948200_B29) 2011; 97 Lee (2021111618204948200_B32) 2009; 37 Kourembanas (2021111618204948200_B12) 1991; 88 Rybicki (2021111618204948200_B10) 1998; 92 Patel (2021111618204948200_B28) 2009; 113 Hillery (2021111618204948200_B17) 2004; 11 Ataga (2021111618204948200_B16) 2008; 93 Machado (2021111618204948200_B2) 2010; 137 Brittain (2021111618204948200_B22) 2010; 115 Lalloyer (2021111618204948200_B34) 2010; 30 Hu (2021111618204948200_B11) 1998; 245 Perelman (2021111618204948200_B21) 2003; 102 Gladwin (2021111618204948200_B1) 2010; 116 Reiter (2021111618204948200_B9) 2002; 8 Xiao (2021111618204948200_B30) 2013; 41 Cao (2021111618204948200_B33) 2010; 396 Patel (2021111618204948200_B23) 2010; 285 Guo (2021111618204948200_B31) 2014; 4 Hsu (2021111618204948200_B4) 2007; 109 Phelan (2021111618204948200_B7) 1996; 167 Bunn (2021111618204948200_B5) 2010; 116 Sabaa (2021111618204948200_B13) 2008; 118 Patel (2021111618204948200_B24) 2011; 434 Li (2021111618204948200_B25) 2014; 289 Key (2021111618204948200_B14) 1998; 91 Fink (2021111618204948200_B19) 2002; 99 Arndt (2021111618204948200_B20) 2005; 175 Patel (2021111618204948200_B8) 2008; 112 Sundaram (2021111618204948200_B6) 2010; 116 Pászty (2021111618204948200_B27) 1997; 278 |
References_xml | – volume: 137 start-page: 30S year: 2010 ident: 2021111618204948200_B2 article-title: Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective publication-title: Chest doi: 10.1378/chest.09-3057 – volume: 30 start-page: 894 year: 2010 ident: 2021111618204948200_B34 article-title: Fibrates, glitazones, and peroxisome proliferator-activated receptors publication-title: Atertio. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.179689 – volume: 8 start-page: 1383 year: 2002 ident: 2021111618204948200_B9 article-title: Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease publication-title: Nat. Med. doi: 10.1038/nm1202-799 – volume: 93 start-page: 20 year: 2008 ident: 2021111618204948200_B16 article-title: Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension publication-title: Hematologica doi: 10.3324/haematol.11763 – volume: 285 start-page: 16713 year: 2010 ident: 2021111618204948200_B23 article-title: Placenta growth factor (PlGF), a novel inducer of plasminogen activator inhibitor-1 (PAI-1) in sickle cell disease (SCD) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.101691 – volume: 112 start-page: 856 year: 2008 ident: 2021111618204948200_B8 article-title: Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha publication-title: Blood doi: 10.1182/blood-2007-12-130567 – volume: 115 start-page: 2014 year: 2010 ident: 2021111618204948200_B22 article-title: Placenta growth factor in sickle cell disease: association with hemolysis and inflammation publication-title: Blood doi: 10.1182/blood-2009-04-217950 – volume: 11 start-page: 195 year: 2004 ident: 2021111618204948200_B17 article-title: Pathophysiology of stroke in sickle cell disease publication-title: Microcirculation doi: 10.1080/10739680490278600 – volume: 278 start-page: 876 year: 1997 ident: 2021111618204948200_B27 article-title: Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease publication-title: Science doi: 10.1126/science.278.5339.876 – volume: 4 start-page: 5150 year: 2014 ident: 2021111618204948200_B31 article-title: Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues publication-title: Sci. Rep. doi: 10.1038/srep05150 – volume: 116 start-page: 109 year: 2010 ident: 2021111618204948200_B6 article-title: High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension publication-title: Blood doi: 10.1182/blood-2009-09-244830 – volume: 92 start-page: 2594 year: 1998 ident: 2021111618204948200_B10 article-title: Increased levels of endothelin-1 in plasma of sickle cell anemia patients publication-title: Blood doi: 10.1182/blood.V92.7.2594 – volume: 350 start-page: 886 year: 2004 ident: 2021111618204948200_B3 article-title: Pulmonary hypertension as a risk factor for death in patients with sickle cell disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa035477 – volume: 266 start-page: 23048 year: 1991 ident: 2021111618204948200_B18 article-title: Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54461-6 – volume: 37 start-page: 123 year: 2009 ident: 2021111618204948200_B32 article-title: Twist-1 regulates the miR-199a/214 cluster during development publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn920 – volume: 396 start-page: 978 year: 2010 ident: 2021111618204948200_B33 article-title: Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.05.037 – volume: 102 start-page: 1506 year: 2003 ident: 2021111618204948200_B21 article-title: Placenta growth factor activates monocytes and correlates with sickle cell disease severity publication-title: Blood doi: 10.1182/blood-2002-11-3422 – volume: 177 start-page: 7211 year: 2006 ident: 2021111618204948200_B26 article-title: A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells publication-title: J. Immunol. doi: 10.4049/jimmunol.177.10.7211 – volume: 91 start-page: 4216 year: 1998 ident: 2021111618204948200_B14 article-title: Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease publication-title: Blood doi: 10.1182/blood.V91.11.4216 – volume: 97 start-page: 1 year: 2011 ident: 2021111618204948200_B29 article-title: Transcriptional regulation of mammalian miRNA genes publication-title: Genomics doi: 10.1016/j.ygeno.2010.10.005 – volume: 245 start-page: 894 year: 1998 ident: 2021111618204948200_B11 article-title: Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1998.8543 – volume: 113 start-page: 1129 year: 2009 ident: 2021111618204948200_B28 article-title: Placenta growth factor induces 5-lipoxygenase-activating protein to increase leukotriene formation in sickle cell disease publication-title: Blood doi: 10.1182/blood-2008-07-169821 – volume: 116 start-page: 852 year: 2010 ident: 2021111618204948200_B1 article-title: Pulmonary hypertension and NO in sickle cell publication-title: Blood doi: 10.1182/blood-2010-04-282095 – volume: 99 start-page: 2077 year: 2002 ident: 2021111618204948200_B19 article-title: Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1 publication-title: Blood doi: 10.1182/blood.V99.6.2077 – volume: 175 start-page: 4049 year: 2005 ident: 2021111618204948200_B20 article-title: Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator inhibitor-1 through a JNK-mediated pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.175.6.4049 – volume: 41 start-page: e5 year: 2013 ident: 2021111618204948200_B30 article-title: Deciphering the transcriptional regulation of microRNA genes in humans with ACTLocater publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks821 – volume: 109 start-page: 3088 year: 2007 ident: 2021111618204948200_B4 article-title: Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability publication-title: Blood doi: 10.1182/blood-2006-06-029173 – volume: 88 start-page: 1054 year: 1991 ident: 2021111618204948200_B12 article-title: Hypoxia induces endothelin gene expression and secretion in cultured human endothelium publication-title: J. Clin. Invest. doi: 10.1172/JCI115367 – volume: 116 start-page: 687 year: 2010 ident: 2021111618204948200_B5 article-title: Pulmonary hypertension and nitric oxide depletion in sickle cell disease publication-title: Blood doi: 10.1182/blood-2010-02-268193 – volume: 118 start-page: 1924 year: 2008 ident: 2021111618204948200_B13 article-title: Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease publication-title: J. Clin. Invest. doi: 10.1172/JCI33308 – volume: 39 start-page: 229 year: 1997 ident: 2021111618204948200_B15 article-title: Fibrinolytic response to venous occlusion in patients with homozygous sickle cell disease publication-title: Hematol. Cell. Ther. doi: 10.1007/s00282-997-0229-7 – volume: 167 start-page: 469 year: 1996 ident: 2021111618204948200_B7 article-title: Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(199606)167:3<469::AID-JCP11>3.0.CO;2-# – volume: 434 start-page: 473 year: 2011 ident: 2021111618204948200_B24 article-title: Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placenta growth factor in human pulmonary endothelial cells publication-title: Biochem. J. doi: 10.1042/BJ20101585 – volume: 289 start-page: 36031 year: 2014 ident: 2021111618204948200_B25 article-title: Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.600775 |
SSID | ssj0004934 |
Score | 2.1818466 |
Snippet | Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our... miR-301a /miR- 454 , which targets the 3′-UTR of ET-1 and PAI-1, are located in the intron of the SKA2 gene. These miRNAs are transcriptionally regulated by... |
SourceID | pubmedcentral pubmed crossref |
SourceType | Open Access Repository Index Database Enrichment Source |
SubjectTerms | Anemia, Sickle Cell - complications Anemia, Sickle Cell - drug therapy Anemia, Sickle Cell - genetics Anemia, Sickle Cell - pathology Animals Cell Line Chromosomal Proteins, Non-Histone - biosynthesis Chromosomal Proteins, Non-Histone - genetics Endothelin-1 - biosynthesis Endothelin-1 - genetics Fenofibrate - administration & dosage Gene Expression Regulation - drug effects Humans Hypertension, Pulmonary - complications Hypertension, Pulmonary - drug therapy Hypertension, Pulmonary - genetics Hypertension, Pulmonary - pathology Hypoxia-Inducible Factor 1, alpha Subunit - genetics Mice MicroRNAs - biosynthesis MicroRNAs - genetics Original Paper Original Papers Placenta Growth Factor Plasminogen Activator Inhibitor 1 - biosynthesis Plasminogen Activator Inhibitor 1 - genetics PPAR alpha - antagonists & inhibitors PPAR alpha - genetics PPAR alpha - metabolism Pregnancy Proteins - genetics Pregnancy Proteins - metabolism Promoter Regions, Genetic |
Title | Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26460070 https://pubmed.ncbi.nlm.nih.gov/PMC4672349 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVgguCMorPKo99IS0YK93_TgglFatCogqSonUW7TehxqROiEJKP1ZvfVX9Dd1Zm1HCeqJ29qetSzP7M6MZuf7APZV5IWxNuGFFZLL2OOoiEouEy3y3Kq0DBX8H6fpyUB-O1fnW9CScTY_cH5vakd8UoPZ-OPy99UXXPCf6wql-HRw1heUuKNvewA7oVBEZ_jkGmx4kdQg31JydLhJ06j3z2QCBk4lAbZHG15q5Zo2j02u-aHjp_CkCSBZt9b4M9hy1S48rCklr3bh0WHL4PYcbnpuNlmO5pNLx6bEzuNdKKpzamb4i0GmZbjfuSndur3moYmEbi7If7W7CZt4djnqc1yimunKhgupZBiHMgOjRhGGhujY2feuwHcGens3Z66y1OCFkSyPg3yv-xVHbtmcvq3YqGJoJr_GjlEFgTXlohcwOD76eXjCG6YGbtDjL3iamchmKjZWi1I4wkRTpUxkKrX3ArMmXcZO-dimuoiU8CKPjTc2s17jhpLr5CVsV5PKvQaWZJhxomEpbxxlYzpPcyesLzEuiaRJO_Ch1czQNDDmxKYxHoZyuhTDNY12YH8lPK3RO-4Xe1VrdiXU2kEHsg2drwQIlXvzSTW6COjc6HlEIos3_z3zLTymD6vPzLyD7cXsj3uPkc-i3IOdg6PTXn8vWPcdnd8FpQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxisome+proliferator-activated+receptor-%CE%B1-mediated+transcription+of+miR-301a+and+miR-454+and+their+host+gene+SKA2+regulates+endothelin-1+and+PAI-1+expression+in+sickle+cell+disease&rft.jtitle=Bioscience+reports&rft.au=Gonsalves%2C+Caryn%C2%A0S.&rft.au=Li%2C+Chen&rft.au=Malik%2C+Punam&rft.au=Tahara%2C+Stanley%C2%A0M.&rft.date=2015-12-01&rft.pub=Portland+Press+Ltd&rft.issn=0144-8463&rft.eissn=1573-4935&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1042%2FBSR20150190&rft_id=info%3Apmid%2F26460070&rft.externalDocID=PMC4672349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8463&client=summon |