A new series of Cd( ii ) metal–organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties

Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H 3 cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H 3 dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium( ii ) metal–o...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 47; no. 40; pp. 14327 - 14339
Main Authors Gu, Jin-Zhong, Cai, Yan, Wen, Min, Shi, Zi-Fa, Kirillov, Alexander M.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/C8DT02467G

Cover

Abstract Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H 3 cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H 3 dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium( ii ) metal–organic architectures. These were formulated as [Cd(μ-Hcpta)(phen)(py)] n ( 1 ), {[Cd 3 (μ 5 -cpta) 2 (phen) 3 ]·8H 2 O} n ( 2 ), {[Cd 3 (μ 5 -cpta) 2 (2,2′-bipy) 3 ]·6H 2 O} n ( 3 ), {[Cd(μ 3 -cpta)(Hbpa)]·2H 2 O} n ( 4 ), {[Cd 6 (μ 4 -cpta) 2 (μ 6 -cpta) 2 (H 2 biim) 2 (H 2 O) 6 ]·5H 2 O} n ( 5 ), [Cd 3 (μ 4 -cpta) 2 (μ-prz)(H 2 O) 4 ] n ( 6 ), {[Cd 3 (μ 4 -dbba) 2 (phen) 3 ]·H 2 O} n ( 7 ), and {[Cd 3 (μ 3 -dbba) 2 (2,2′-bipy) 3 (H 2 O) 3 ]·2H 2 O} n ( 8 ) on the basis of single-crystal X-ray diffraction, elemental analysis, FTIR, PXRD, and TGA data. Products 1–8 were assembled in the presence of N-donor crystallization mediators selected from pyridine (py), 1,10-phenanthroline (phen), 2,2′-bipyridine (2,2′-bipy), bis(4-pyridyl)amine (bpa), 2,2′-biimidazole (H 2 biim), or piperazine (prz). The nature of the crystallization mediator and/or the type of principal tricarboxylate building block have a significant effect on the structural diversity, dimensionality, and topology of the resulting cadmium-organic architectures. These span from 1D ( 1 , 8 ) and 2D ( 7 ) coordination polymers to 3D metal–organic frameworks ( 2–6 ) with intricate topologies ( 3,4,5T64 in 2 and 3 , utp (10 3 )-d in 4 , 3,4,4T9 in 6 ) that also include unprecedented types in 5 and 7 . Besides, MOF 6 features a 3D + 3D two-fold interpenetrated framework. Luminescent and photocatalytic properties of selected materials were investigated, showing that coordination polymer 7 is a promising photocatalyst for the UV-light-driven degradation of methylene blue as a model organic dye pollutant. Moreover, products 7 and 8 are the first examples of structurally characterized coordination compounds derived from H 3 dbba.
AbstractList Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H3cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H3dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium(ii) metal–organic architectures. These were formulated as [Cd(μ-Hcpta)(phen)(py)]n (1), {[Cd3(μ5-cpta)2(phen)3]·8H2O}n (2), {[Cd3(μ5-cpta)2(2,2′-bipy)3]·6H2O}n (3), {[Cd(μ3-cpta)(Hbpa)]·2H2O}n (4), {[Cd6(μ4-cpta)2(μ6-cpta)2(H2biim)2(H2O)6]·5H2O}n (5), [Cd3(μ4-cpta)2(μ-prz)(H2O)4]n (6), {[Cd3(μ4-dbba)2(phen)3]·H2O}n (7), and {[Cd3(μ3-dbba)2(2,2′-bipy)3(H2O)3]·2H2O}n (8) on the basis of single-crystal X-ray diffraction, elemental analysis, FTIR, PXRD, and TGA data. Products 1–8 were assembled in the presence of N-donor crystallization mediators selected from pyridine (py), 1,10-phenanthroline (phen), 2,2′-bipyridine (2,2′-bipy), bis(4-pyridyl)amine (bpa), 2,2′-biimidazole (H2biim), or piperazine (prz). The nature of the crystallization mediator and/or the type of principal tricarboxylate building block have a significant effect on the structural diversity, dimensionality, and topology of the resulting cadmium-organic architectures. These span from 1D (1, 8) and 2D (7) coordination polymers to 3D metal–organic frameworks (2–6) with intricate topologies (3,4,5T64 in 2 and 3, utp (103)-d in 4, 3,4,4T9 in 6) that also include unprecedented types in 5 and 7. Besides, MOF 6 features a 3D + 3D two-fold interpenetrated framework. Luminescent and photocatalytic properties of selected materials were investigated, showing that coordination polymer 7 is a promising photocatalyst for the UV-light-driven degradation of methylene blue as a model organic dye pollutant. Moreover, products 7 and 8 are the first examples of structurally characterized coordination compounds derived from H3dbba.
Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H3cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H3dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium(ii) metal-organic architectures. These were formulated as [Cd(μ-Hcpta)(phen)(py)]n (1), {[Cd3(μ5-cpta)2(phen)3]·8H2O}n (2), {[Cd3(μ5-cpta)2(2,2'-bipy)3]·6H2O}n (3), {[Cd(μ3-cpta)(Hbpa)]·2H2O}n (4), {[Cd6(μ4-cpta)2(μ6-cpta)2(H2biim)2(H2O)6]·5H2O}n (5), [Cd3(μ4-cpta)2(μ-prz)(H2O)4]n (6), {[Cd3(μ4-dbba)2(phen)3]·H2O}n (7), and {[Cd3(μ3-dbba)2(2,2'-bipy)3(H2O)3]·2H2O}n (8) on the basis of single-crystal X-ray diffraction, elemental analysis, FTIR, PXRD, and TGA data. Products 1-8 were assembled in the presence of N-donor crystallization mediators selected from pyridine (py), 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bipy), bis(4-pyridyl)amine (bpa), 2,2'-biimidazole (H2biim), or piperazine (prz). The nature of the crystallization mediator and/or the type of principal tricarboxylate building block have a significant effect on the structural diversity, dimensionality, and topology of the resulting cadmium-organic architectures. These span from 1D (1, 8) and 2D (7) coordination polymers to 3D metal-organic frameworks (2-6) with intricate topologies (3,4,5T64 in 2 and 3, utp (103)-d in 4, 3,4,4T9 in 6) that also include unprecedented types in 5 and 7. Besides, MOF 6 features a 3D + 3D two-fold interpenetrated framework. Luminescent and photocatalytic properties of selected materials were investigated, showing that coordination polymer 7 is a promising photocatalyst for the UV-light-driven degradation of methylene blue as a model organic dye pollutant. Moreover, products 7 and 8 are the first examples of structurally characterized coordination compounds derived from H3dbba.Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H3cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H3dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium(ii) metal-organic architectures. These were formulated as [Cd(μ-Hcpta)(phen)(py)]n (1), {[Cd3(μ5-cpta)2(phen)3]·8H2O}n (2), {[Cd3(μ5-cpta)2(2,2'-bipy)3]·6H2O}n (3), {[Cd(μ3-cpta)(Hbpa)]·2H2O}n (4), {[Cd6(μ4-cpta)2(μ6-cpta)2(H2biim)2(H2O)6]·5H2O}n (5), [Cd3(μ4-cpta)2(μ-prz)(H2O)4]n (6), {[Cd3(μ4-dbba)2(phen)3]·H2O}n (7), and {[Cd3(μ3-dbba)2(2,2'-bipy)3(H2O)3]·2H2O}n (8) on the basis of single-crystal X-ray diffraction, elemental analysis, FTIR, PXRD, and TGA data. Products 1-8 were assembled in the presence of N-donor crystallization mediators selected from pyridine (py), 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bipy), bis(4-pyridyl)amine (bpa), 2,2'-biimidazole (H2biim), or piperazine (prz). The nature of the crystallization mediator and/or the type of principal tricarboxylate building block have a significant effect on the structural diversity, dimensionality, and topology of the resulting cadmium-organic architectures. These span from 1D (1, 8) and 2D (7) coordination polymers to 3D metal-organic frameworks (2-6) with intricate topologies (3,4,5T64 in 2 and 3, utp (103)-d in 4, 3,4,4T9 in 6) that also include unprecedented types in 5 and 7. Besides, MOF 6 features a 3D + 3D two-fold interpenetrated framework. Luminescent and photocatalytic properties of selected materials were investigated, showing that coordination polymer 7 is a promising photocatalyst for the UV-light-driven degradation of methylene blue as a model organic dye pollutant. Moreover, products 7 and 8 are the first examples of structurally characterized coordination compounds derived from H3dbba.
Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H 3 cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H 3 dbba), were used as unexplored and highly versatile building blocks for the hydrothermal generation of a novel series of cadmium( ii ) metal–organic architectures. These were formulated as [Cd(μ-Hcpta)(phen)(py)] n ( 1 ), {[Cd 3 (μ 5 -cpta) 2 (phen) 3 ]·8H 2 O} n ( 2 ), {[Cd 3 (μ 5 -cpta) 2 (2,2′-bipy) 3 ]·6H 2 O} n ( 3 ), {[Cd(μ 3 -cpta)(Hbpa)]·2H 2 O} n ( 4 ), {[Cd 6 (μ 4 -cpta) 2 (μ 6 -cpta) 2 (H 2 biim) 2 (H 2 O) 6 ]·5H 2 O} n ( 5 ), [Cd 3 (μ 4 -cpta) 2 (μ-prz)(H 2 O) 4 ] n ( 6 ), {[Cd 3 (μ 4 -dbba) 2 (phen) 3 ]·H 2 O} n ( 7 ), and {[Cd 3 (μ 3 -dbba) 2 (2,2′-bipy) 3 (H 2 O) 3 ]·2H 2 O} n ( 8 ) on the basis of single-crystal X-ray diffraction, elemental analysis, FTIR, PXRD, and TGA data. Products 1–8 were assembled in the presence of N-donor crystallization mediators selected from pyridine (py), 1,10-phenanthroline (phen), 2,2′-bipyridine (2,2′-bipy), bis(4-pyridyl)amine (bpa), 2,2′-biimidazole (H 2 biim), or piperazine (prz). The nature of the crystallization mediator and/or the type of principal tricarboxylate building block have a significant effect on the structural diversity, dimensionality, and topology of the resulting cadmium-organic architectures. These span from 1D ( 1 , 8 ) and 2D ( 7 ) coordination polymers to 3D metal–organic frameworks ( 2–6 ) with intricate topologies ( 3,4,5T64 in 2 and 3 , utp (10 3 )-d in 4 , 3,4,4T9 in 6 ) that also include unprecedented types in 5 and 7 . Besides, MOF 6 features a 3D + 3D two-fold interpenetrated framework. Luminescent and photocatalytic properties of selected materials were investigated, showing that coordination polymer 7 is a promising photocatalyst for the UV-light-driven degradation of methylene blue as a model organic dye pollutant. Moreover, products 7 and 8 are the first examples of structurally characterized coordination compounds derived from H 3 dbba.
Author Wen, Min
Shi, Zi-Fa
Kirillov, Alexander M.
Cai, Yan
Gu, Jin-Zhong
Author_xml – sequence: 1
  givenname: Jin-Zhong
  surname: Gu
  fullname: Gu, Jin-Zhong
  organization: State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
– sequence: 2
  givenname: Yan
  surname: Cai
  fullname: Cai, Yan
  organization: State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
– sequence: 3
  givenname: Min
  surname: Wen
  fullname: Wen, Min
  organization: State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
– sequence: 4
  givenname: Zi-Fa
  orcidid: 0000-0001-9231-5963
  surname: Shi
  fullname: Shi, Zi-Fa
  organization: State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000
– sequence: 5
  givenname: Alexander M.
  orcidid: 0000-0002-2052-5280
  surname: Kirillov
  fullname: Kirillov, Alexander M.
  organization: Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30141824$$D View this record in MEDLINE/PubMed
BookMark eNptkU1uFDEQhS0URH5gwwGQJTYBpcF_092TXTRAQIrEJqwtt7t6xpHHbsruQO-4A9fhNJwET35Aili5JH_v1VO9Q7IXYgBCnnP2hjO5fLtq310yoerm_BE54KppqqWQau_vLOp9cpjSFWNCsIV4QvYl44q3Qh2QX2c0wDeaAB0kGge66o-pc_QV3UI2_vePnxHXJjhLDdqNy2DzhIXs0V1DoN1MUxwyhbwBrDp0_Rp6mtFZg138PnuTgabRWMB0StMcCpdcOqEp47SzMp6aUBRxjD6ui8zT68Ka7LzL88nN57iJOVpT4sy5BBkxjoC55H1KHg_GJ3h29x6RLx_eX64-Vhefzz-tzi4qK1ueqwWT0MmmHmrDuRysYqppl62obb0Qdc_EwE0vmJWy4WyhhlpCzTioxgol2iI5Ise3vmX11wlS1luXLHhvAsQpacGWUrKmuUFfPkCv4oShpNOCi9JS6WlHvbijpm4LvR7RbQ3O-r6XArBbwGJMCWHQ1uVylBgyGuc1Z3pXvf5XfZG8fiC5d_0P_AeePbDj
CitedBy_id crossref_primary_10_1016_j_molstruc_2021_131681
crossref_primary_10_1016_j_optmat_2023_113459
crossref_primary_10_1016_j_jssc_2022_122882
crossref_primary_10_1016_j_molstruc_2024_137703
crossref_primary_10_1016_j_jssc_2021_122085
crossref_primary_10_1016_j_molstruc_2023_136338
crossref_primary_10_1039_D3NJ01644G
crossref_primary_10_1007_s10876_022_02231_8
crossref_primary_10_1021_acs_cgd_0c01521
crossref_primary_10_1016_j_jssc_2021_122407
crossref_primary_10_1039_D0CY02275F
crossref_primary_10_3390_cryst10020084
crossref_primary_10_1016_j_molstruc_2022_133706
crossref_primary_10_1016_j_poly_2024_116936
crossref_primary_10_1107_S2053229621010639
crossref_primary_10_1016_j_poly_2021_115441
crossref_primary_10_1039_D3RA00004D
crossref_primary_10_1002_aoc_7597
crossref_primary_10_1016_j_seppur_2024_131111
crossref_primary_10_1007_s10876_022_02242_5
crossref_primary_10_1107_S2053229620007044
crossref_primary_10_3390_polym15071803
crossref_primary_10_1007_s10904_021_02150_7
crossref_primary_10_1039_D0NJ04478D
crossref_primary_10_1039_C9DT01736D
crossref_primary_10_1002_aoc_7609
crossref_primary_10_1016_j_jece_2024_113411
crossref_primary_10_1016_j_ica_2021_120457
crossref_primary_10_1016_j_molstruc_2021_131510
crossref_primary_10_1039_D1CE00498K
crossref_primary_10_1016_j_jssc_2021_122636
crossref_primary_10_1016_j_jssc_2023_124134
crossref_primary_10_1039_D0CY02355H
crossref_primary_10_1016_j_dyepig_2021_109285
crossref_primary_10_1007_s11224_024_02316_2
crossref_primary_10_1016_j_molstruc_2020_129538
crossref_primary_10_1166_sam_2022_4229
crossref_primary_10_1016_j_inoche_2021_108673
crossref_primary_10_1016_j_poly_2023_116305
crossref_primary_10_1021_acs_chemrev_0c01049
crossref_primary_10_1039_C9CE00825J
crossref_primary_10_1016_j_poly_2021_115571
crossref_primary_10_1002_zaac_202100299
crossref_primary_10_3390_molecules28031081
crossref_primary_10_1107_S2053229619008337
crossref_primary_10_1080_24701556_2022_2068583
crossref_primary_10_1039_D0RA02222E
crossref_primary_10_1039_D3NJ04709A
crossref_primary_10_1016_j_molstruc_2024_138417
crossref_primary_10_1016_j_dyepig_2020_109071
crossref_primary_10_1039_D3NJ03772J
crossref_primary_10_1016_j_jssc_2021_122664
crossref_primary_10_1016_j_molstruc_2021_131627
crossref_primary_10_1039_D0RA07159E
crossref_primary_10_1515_ncrs_2022_0351
crossref_primary_10_1016_j_jssc_2021_122820
crossref_primary_10_1039_D1CE01402A
crossref_primary_10_1039_D0QI01230K
crossref_primary_10_1039_C9DT01253B
crossref_primary_10_1021_acs_inorgchem_9b00242
crossref_primary_10_1016_j_inoche_2022_109533
crossref_primary_10_1002_zaac_201900007
crossref_primary_10_1016_j_poly_2022_116158
crossref_primary_10_1039_D2DT00299J
crossref_primary_10_1039_D2CE01281B
crossref_primary_10_1016_j_inoche_2021_108819
crossref_primary_10_1016_j_jssc_2022_122993
crossref_primary_10_1039_D1NJ01623G
crossref_primary_10_1007_s10876_021_02201_6
crossref_primary_10_1016_j_poly_2022_116192
crossref_primary_10_1039_D0CE01054E
crossref_primary_10_1039_D0NJ03628E
crossref_primary_10_1016_j_poly_2019_114296
crossref_primary_10_1016_j_ica_2021_120512
crossref_primary_10_1016_j_poly_2020_114804
crossref_primary_10_1016_j_molstruc_2022_133814
crossref_primary_10_1002_aoc_7426
crossref_primary_10_3390_cryst9040199
crossref_primary_10_1021_acs_cgd_1c00152
crossref_primary_10_1039_D1RA03737D
crossref_primary_10_1021_acs_cgd_1c00077
crossref_primary_10_1016_j_jssc_2021_122535
crossref_primary_10_1016_j_molstruc_2024_139672
crossref_primary_10_3390_molecules28217318
crossref_primary_10_1515_znb_2022_0103
crossref_primary_10_1002_zaac_202100037
crossref_primary_10_1039_D2CE00722C
crossref_primary_10_1016_j_jphotochem_2020_112961
crossref_primary_10_1016_j_molstruc_2024_138586
crossref_primary_10_1039_D4TC03372H
Cites_doi 10.1016/j.molstruc.2016.10.033
10.1021/acs.cgd.6b00093
10.1039/c1cc10935a
10.1039/C4EE01299B
10.1351/PAC-REC-12-11-20
10.1016/j.jlumin.2018.03.041
10.1039/C7DT04057A
10.1002/anie.200460758
10.1021/acs.inorgchem.5b00048
10.1039/C7CE01920C
10.1039/C7DT01742A
10.1039/C6DT01393G
10.1039/C5RA13582F
10.1021/ja0567337
10.1021/cg500498k
10.1016/j.poly.2009.05.008
10.1039/C5CE00411J
10.1039/c3ce41518j
10.1021/cg060778h
10.1021/cr200101d
10.1021/ic201571n
10.1039/C1CC16268C
10.1107/S0108767389011189
10.1021/cg300442b
10.1021/acs.inorgchem.8b00272
10.1039/C7DT04113F
10.1039/b802258p
10.1021/acs.inorgchem.6b01416
10.1016/j.poly.2015.01.042
10.1039/C7CE00219J
10.1107/S2053229614024929
10.1039/b802426j
10.3390/cryst8020083
10.1021/es703037x
10.1039/b807080f
10.1021/jp0622381
10.1021/cg500286v
10.1021/acs.cgd.6b00735
10.1016/j.ccr.2015.08.005
10.1021/acs.cgd.6b01558
10.1016/j.ica.2017.08.054
10.1021/ic400743h
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C8DT02467G
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 14339
ExternalDocumentID 30141824
10_1039_C8DT02467G
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
29F
2WC
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UPT
VH6
WH7
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c381t-503eb376f6a113fc404789826c6526d02f1ad20c3371054f63e601e47c2428113
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 02:02:49 EDT 2025
Mon Jun 30 04:31:54 EDT 2025
Thu Apr 03 07:04:59 EDT 2025
Tue Jul 01 03:01:21 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-503eb376f6a113fc404789826c6526d02f1ad20c3371054f63e601e47c2428113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9231-5963
0000-0002-2052-5280
PMID 30141824
PQID 2120242461
PQPubID 2047498
PageCount 13
ParticipantIDs proquest_miscellaneous_2093307711
proquest_journals_2120242461
pubmed_primary_30141824
crossref_citationtrail_10_1039_C8DT02467G
crossref_primary_10_1039_C8DT02467G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lu (C8DT02467G-(cit25)/*[position()=1]) 2008; 8
Blatov (C8DT02467G-(cit28b)/*[position()=1]) 2014; 14
Li (C8DT02467G-(cit3)/*[position()=1]) 2009; 38
Kostakis (C8DT02467G-(cit13)/*[position()=1]) 2009; 28
Van de Sluis (C8DT02467G-(cit27)/*[position()=1]) 1990; 46
Mahata (C8DT02467G-(cit31)/*[position()=1]) 2006; 110
Gu (C8DT02467G-(cit22a)/*[position()=1]) 2016; 16
Wang (C8DT02467G-(cit36)/*[position()=1]) 2015; 90
Zhang (C8DT02467G-(cit38)/*[position()=1]) 2017; 1130
Kaur (C8DT02467G-(cit10)/*[position()=1]) 2018; 47
Liu (C8DT02467G-(cit21)/*[position()=1]) 2017; 17
Wei (C8DT02467G-(cit15a)/*[position()=1]) 2014; 14
Wang (C8DT02467G-(cit14)/*[position()=1]) 2004; 43
Etaiw (C8DT02467G-(cit30)/*[position()=1]) 2018; 199
Gu (C8DT02467G-(cit15b)/*[position()=1]) 2012; 12
Wu (C8DT02467G-(cit8)/*[position()=1]) 2016; 16
Gu (C8DT02467G-(cit20)/*[position()=1]) 2017; 46
Wang (C8DT02467G-(cit9)/*[position()=1]) 2018; 57
Sun (C8DT02467G-(cit34)/*[position()=1]) 2013; 15
Gu (C8DT02467G-(cit22c)/*[position()=1]) 2018; 8
Lee (C8DT02467G-(cit4)/*[position()=1]) 2009; 38
Gu (C8DT02467G-(cit19)/*[position()=1]) 2017; 19
Lv (C8DT02467G-(cit35)/*[position()=1]) 2012; 48
Cui (C8DT02467G-(cit5)/*[position()=1]) 2012; 112
Liu (C8DT02467G-(cit6)/*[position()=1]) 2016; 55
Zhang (C8DT02467G-(cit37)/*[position()=1]) 2008; 42
Dias (C8DT02467G-(cit16b)/*[position()=1]) 2015; 54
Pettinari (C8DT02467G-(cit12)/*[position()=1]) 2016; 307
Blatov (C8DT02467G-(cit28a)/*[position()=1]) 2006; 7
Lu (C8DT02467G-(cit1)/*[position()=1]) 2006; 128
Spek (C8DT02467G-(cit26)/*[position()=1]) 2015; 71
Gupta (C8DT02467G-(cit16a)/*[position()=1]) 2013; 52
Gu (C8DT02467G-(cit22b)/*[position()=1]) 2015; 5
Xiao (C8DT02467G-(cit18)/*[position()=1]) 2011; 50
Ning (C8DT02467G-(cit23)/*[position()=1]) 2016; 45
Wang (C8DT02467G-(cit33)/*[position()=1]) 2015; 17
Gu (C8DT02467G-(cit24)/*[position()=1]) 2018; 469
Yan (C8DT02467G-(cit7)/*[position()=1]) 2018; 20
Li (C8DT02467G-(cit17)/*[position()=1]) 2011; 47
Wang (C8DT02467G-(cit2)/*[position()=1]) 2009; 38
Ji (C8DT02467G-(cit11)/*[position()=1]) 2018; 47
Batten (C8DT02467G-(cit29)/*[position()=2]) 2013; 85
Wang (C8DT02467G-(cit32)/*[position()=1]) 2014; 7
References_xml – volume: 1130
  start-page: 223
  year: 2017
  ident: C8DT02467G-(cit38)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2016.10.033
– volume: 7
  start-page: 4
  year: 2006
  ident: C8DT02467G-(cit28a)/*[position()=1]
  publication-title: IUCr CompComm. Newsletter
– volume: 16
  start-page: 2309
  year: 2016
  ident: C8DT02467G-(cit8)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00093
– volume: 47
  start-page: 5958
  year: 2011
  ident: C8DT02467G-(cit17)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10935a
– volume: 7
  start-page: 2831
  year: 2014
  ident: C8DT02467G-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01299B
– volume: 85
  start-page: 1715
  year: 2013
  ident: C8DT02467G-(cit29)/*[position()=2]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-REC-12-11-20
– volume: 199
  start-page: 232
  year: 2018
  ident: C8DT02467G-(cit30)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.03.041
– volume: 47
  start-page: 1488
  year: 2018
  ident: C8DT02467G-(cit10)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04057A
– volume: 43
  start-page: 5036
  year: 2004
  ident: C8DT02467G-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460758
– volume: 54
  start-page: 5204
  year: 2015
  ident: C8DT02467G-(cit16b)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00048
– volume: 20
  start-page: 477
  year: 2018
  ident: C8DT02467G-(cit7)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01920C
– volume: 46
  start-page: 10908
  year: 2017
  ident: C8DT02467G-(cit20)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01742A
– volume: 45
  start-page: 12800
  year: 2016
  ident: C8DT02467G-(cit23)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01393G
– volume: 5
  start-page: 78889
  year: 2015
  ident: C8DT02467G-(cit22b)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13582F
– volume: 128
  start-page: 34
  year: 2006
  ident: C8DT02467G-(cit1)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0567337
– volume: 14
  start-page: 3576
  year: 2014
  ident: C8DT02467G-(cit28b)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg500498k
– volume: 28
  start-page: 3227
  year: 2009
  ident: C8DT02467G-(cit13)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.05.008
– volume: 17
  start-page: 4179
  year: 2015
  ident: C8DT02467G-(cit33)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00411J
– volume: 15
  start-page: 10584
  year: 2013
  ident: C8DT02467G-(cit34)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41518j
– volume: 8
  start-page: 192
  year: 2008
  ident: C8DT02467G-(cit25)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg060778h
– volume: 112
  start-page: 1126
  year: 2012
  ident: C8DT02467G-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 50
  start-page: 11032
  year: 2011
  ident: C8DT02467G-(cit18)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201571n
– volume: 48
  start-page: 669
  year: 2012
  ident: C8DT02467G-(cit35)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C1CC16268C
– volume: 46
  start-page: 194
  year: 1990
  ident: C8DT02467G-(cit27)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Found. Crystallogr.
  doi: 10.1107/S0108767389011189
– volume: 12
  start-page: 3312
  year: 2012
  ident: C8DT02467G-(cit15b)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300442b
– volume: 57
  start-page: 5232
  year: 2018
  ident: C8DT02467G-(cit9)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00272
– volume: 47
  start-page: 700
  year: 2018
  ident: C8DT02467G-(cit11)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04113F
– volume: 38
  start-page: 1315
  year: 2009
  ident: C8DT02467G-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802258p
– volume: 55
  start-page: 8871
  year: 2016
  ident: C8DT02467G-(cit6)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01416
– volume: 90
  start-page: 58
  year: 2015
  ident: C8DT02467G-(cit36)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2015.01.042
– volume: 19
  start-page: 2570
  year: 2017
  ident: C8DT02467G-(cit19)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00219J
– volume: 71
  start-page: 9
  year: 2015
  ident: C8DT02467G-(cit26)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024929
– volume: 38
  start-page: 1477
  year: 2009
  ident: C8DT02467G-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802426j
– volume: 8
  start-page: 83
  year: 2018
  ident: C8DT02467G-(cit22c)/*[position()=1]
  publication-title: Crystals
  doi: 10.3390/cryst8020083
– volume: 42
  start-page: 3803
  year: 2008
  ident: C8DT02467G-(cit37)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703037x
– volume: 38
  start-page: 1450
  year: 2009
  ident: C8DT02467G-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 110
  start-page: 13759
  year: 2006
  ident: C8DT02467G-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0622381
– volume: 14
  start-page: 3002
  year: 2014
  ident: C8DT02467G-(cit15a)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg500286v
– volume: 16
  start-page: 4658
  year: 2016
  ident: C8DT02467G-(cit22a)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00735
– volume: 307
  start-page: 1
  year: 2016
  ident: C8DT02467G-(cit12)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.08.005
– volume: 17
  start-page: 1574
  year: 2017
  ident: C8DT02467G-(cit21)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01558
– volume: 469
  start-page: 98
  year: 2018
  ident: C8DT02467G-(cit24)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2017.08.054
– volume: 52
  start-page: 8601
  year: 2013
  ident: C8DT02467G-(cit16a)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic400743h
SSID ssj0022052
Score 2.5510635
Snippet Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H 3 cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid (H 3...
Two multifunctional, ether-bridged tricarboxylic acids, 2-(4-carboxylphenoxy)terephthalic acid (H3cpta) and 2-(3,5-dicarboxylatobenzyloxy)benzoic acid...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 14327
SubjectTerms Absorption spectra
Benzoic acid
Cadmium
Catalysis
Coordination compounds
Coordination polymers
Crystallization
Crystallography
Emission analysis
Materials selection
Metal-organic frameworks
Methylene blue
Photocatalysis
Photodegradation
Porosity
Reflectance
Single crystals
Terephthalic acid
Topology
Ultraviolet radiation
X-ray diffraction
Title A new series of Cd( ii ) metal–organic architectures driven by soft ether-bridged tricarboxylate spacers: synthesis, structural and topological versatility, and photocatalytic properties
URI https://www.ncbi.nlm.nih.gov/pubmed/30141824
https://www.proquest.com/docview/2120242461
https://www.proquest.com/docview/2093307711
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVIJeEG8CBS2CA5Xr4ufa4RalhYKAC6kovUTeh6ml1I7ykAh_iws_j5ndtR2LVgIuUeRdx3bm8-43s7PfEPIiT3nCgfm6mceUG8Ek4A4yoVyZK0_GCWdSi1V__MSOT6L3p_Hp1tbPjayl1ZIfiB-X7iv5H6vCMbAr7pL9B8s2PwoH4DvYFz7BwvD5VzYeYkFwBy9lpGNHcANpUaCnf6GAVbumZpNwNpcLFo6c4xCHxHMBg7Cjt_y6ZueWdFCxP5vz6vt6CjTUgQFHYFmIcIjiBtBzYUQJjO6s1uzQOZim1oK2OCZ6wA1Obb0BrURwXi0rHSlao0DsDFcA5ss6f9Fy48MMK1xj0Yq6gvlCByyyUotatHHLjtpF_YiirlzXZBStNEKL0j07r-z8rBdbdP7C1_at-KLsBoLmyGdd6dg5K1w7g9mwiB3DlRnEI1yWDkyQ9I8pwgtRYVWkcgn0hCXfNjvBQ80uNFjQ0wTXK2qnySZ5sW66RraDhLGgR7aHR-N3Hxo_P_DioFbCDQev2kvtkOv1yV0adIVvoznO-Ba5aZ0TOjRIu022VHmH3BjV_-xd8mtIAXHUII5WOR3Jl0WxRztoox20UYM2ytcU0UY7aKNdtFGLtte0wdo-bZFGAUp0A2l0A2n7urGLM9ri7B45eXM0Hh27tvaHK4BDLt3YCxWHyS9nme-HuYhQRWoAvrBgccCkF-R-JgNPhCFQ5DjKWaiY56soETDcpHDKfdIrq1I9JDRK_RDcIi6ZpyKpvFTwFJwKnkueyTjL-2SvNsVEWGF8rM8ynegEjXAwGaWHY23Bt33yvOk7M3Iwl_barS06sa_EYgIcEflwxPw-edY0g_1whS4rVbWCPjq-mCQ-9HlgkNBcpkbOoytbHpMdfBNMgHCX9MA86glQ5iV_aiH6G4N1zLg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+series+of+Cd%28ii%29+metal-organic+architectures+driven+by+soft+ether-bridged+tricarboxylate+spacers%3A+synthesis%2C+structural+and+topological+versatility%2C+and+photocatalytic+properties&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Gu%2C+Jin-Zhong&rft.au=Cai%2C+Yan&rft.au=Wen%2C+Min&rft.au=Shi%2C+Zi-Fa&rft.date=2018&rft.eissn=1477-9234&rft_id=info:doi/10.1039%2Fc8dt02467g&rft_id=info%3Apmid%2F30141824&rft.externalDocID=30141824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon