Low Complexity Algorithmic Trading by Feedforward Neural Networks
In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding sc...
Saved in:
| Published in | Computational economics Vol. 54; no. 1; pp. 267 - 279 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0927-7099 1572-9974 |
| DOI | 10.1007/s10614-017-9720-6 |
Cover
| Abstract | In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding schemes on the observed prices in order to obtain an efficient estimation of the forward conditional probability distribution performed by a feedforward neural network. Based on these estimations, a trading signal is launched if the probability of price change becomes significant which is measured by a quadratic criterion. The performance analysis of our method tested on historical time series (NASDAQ/NYSE stocks) has demonstrated that the algorithm is profitable. As far as high frequency trading is concerned, the algorithm lends itself to GPU implementation, which can considerably increase its performance when time frames become shorter and the computational time tends to be the critical aspect of the algorithm. |
|---|---|
| AbstractList | In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding schemes on the observed prices in order to obtain an efficient estimation of the forward conditional probability distribution performed by a feedforward neural network. Based on these estimations, a trading signal is launched if the probability of price change becomes significant which is measured by a quadratic criterion. The performance analysis of our method tested on historical time series (NASDAQ/NYSE stocks) has demonstrated that the algorithm is profitable. As far as high frequency trading is concerned, the algorithm lends itself to GPU implementation, which can considerably increase its performance when time frames become shorter and the computational time tends to be the critical aspect of the algorithm. |
| Author | Ceffer, A. Olah, A. Reguly, I. Levendovszky, J. |
| Author_xml | – sequence: 1 givenname: J. surname: Levendovszky fullname: Levendovszky, J. organization: Department of Networked Systems and Services, Budapest University of Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University – sequence: 2 givenname: I. surname: Reguly fullname: Reguly, I. email: reguly.istvan@itk.ppke.hu organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University – sequence: 3 givenname: A. surname: Olah fullname: Olah, A. organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University – sequence: 4 givenname: A. surname: Ceffer fullname: Ceffer, A. organization: Department of Networked Systems and Services, Budapest University of Technology |
| BookMark | eNp9kEFLwzAYhoNMcJv-AG8Fz9EvaZM0xzGcCkMv8xzSNJ2ZXTOTjLl_b0cFQdDTe3mf7_14JmjU-c4idE3glgCIu0iAkwIDEVgKCpifoTFhgmIpRTFCY5BUYAFSXqBJjBsAYITSMZot_SGb--2utZ8uHbNZu_bBpbetM9kq6Np166w6Zgtr68aHgw519mz3Qbd9pIMP7_ESnTe6jfbqO6fodXG_mj_i5cvD03y2xCYvScKF1bRgDVSFzLUWLJdNzklVM05EZTijhnGwDbcVGCi1aYjUlSihFDmBsqT5FN0Md3fBf-xtTGrj96HrJxWltC8RXrC-RYaWCT7GYBu1C26rw1ERUCdTajClelPqZErxnhG_GOOSTs53KWjX_kvSgYz9Sre24eenv6EvbLF93g |
| CitedBy_id | crossref_primary_10_1007_s10614_019_09960_5 crossref_primary_10_1016_j_ribaf_2024_102471 crossref_primary_10_1007_s10614_024_10760_9 |
| Cites_doi | 10.1016/0893-6080(89)90003-8 10.1016/0893-6080(89)90020-8 10.1080/14697688.2010.481634 10.1137/060670985 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2017 Computational Economics is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Computational Economics is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | AAYXX CITATION 8BJ FQK JBE JQ2 |
| DOI | 10.1007/s10614-017-9720-6 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Business |
| EISSN | 1572-9974 |
| EndPage | 279 |
| ExternalDocumentID | 10_1007_s10614_017_9720_6 |
| GrantInformation_xml | – fundername: Pazmany Peter Catholic University grantid: KAP15-062-1.1-ITK |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 3V. 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 6J9 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACYUM ACZOJ ADFRT ADHHG ADHIR ADIMF ADINQ ADIYS ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EOH ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IHE IJ- IKXTQ IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z81 Z83 Z86 Z88 Z8U Z8W Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8BJ FQK JBE JQ2 |
| ID | FETCH-LOGICAL-c381t-4ea245f0b493aa7539f361bd5617bc652c560ef6eb0c08acf19ab780873108823 |
| IEDL.DBID | U2A |
| ISSN | 0927-7099 |
| IngestDate | Fri Jul 25 23:36:04 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Wed Oct 01 02:42:32 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Algorithmic trading G12 – Asset Pricing Non-linear regression Neural networks Estimation G1 – General Financial Markets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c381t-4ea245f0b493aa7539f361bd5617bc652c560ef6eb0c08acf19ab780873108823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2223101645 |
| PQPubID | 36414 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2223101645 crossref_primary_10_1007_s10614_017_9720_6 crossref_citationtrail_10_1007_s10614_017_9720_6 springer_journals_10_1007_s10614_017_9720_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Computational economics |
| PublicationTitleAbbrev | Comput Econ |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | D’Aspremont (CR3) 2011; 11 Hornik, Stinchcombe, White (CR7) 1989; 2 Funahashi (CR5) 1989; 2 CR6 Banerjee, El Ghaoui, d’Aspremont (CR2) 2008; 9 Anagnostopoulos, Mamanis (CR1) 2011; 38 D’Aspremont, Banerjee, El Ghaoui (CR4) 2008; 30 O Banerjee (9720_CR2) 2008; 9 KI Funahashi (9720_CR5) 1989; 2 A D’Aspremont (9720_CR4) 2008; 30 K Hornik (9720_CR7) 1989; 2 9720_CR6 KP Anagnostopoulos (9720_CR1) 2011; 38 A D’Aspremont (9720_CR3) 2011; 11 |
| References_xml | – volume: 38 start-page: 14208 year: 2011 end-page: 14217 ident: CR1 article-title: The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms publication-title: Expert Systems with Applications – ident: CR6 – volume: 2 start-page: 183 year: 1989 end-page: 192 ident: CR5 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Networks doi: 10.1016/0893-6080(89)90003-8 – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR7 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 9 start-page: 485 year: 2008 end-page: 516 ident: CR2 article-title: Model selection through sparse maximum likelihood estimation publication-title: Journal of Machine Learning Research – volume: 11 start-page: 351 issue: 3 year: 2011 end-page: 364 ident: CR3 article-title: Identifying small mean-reverting portfolios publication-title: Quantitative Finance doi: 10.1080/14697688.2010.481634 – volume: 30 start-page: 56 issue: 1 year: 2008 end-page: 66 ident: CR4 article-title: First-order methods for sparce covariance selection publication-title: SIAM Journal on Matrix Analysis and its Applications doi: 10.1137/060670985 – volume: 2 start-page: 359 year: 1989 ident: 9720_CR7 publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 30 start-page: 56 issue: 1 year: 2008 ident: 9720_CR4 publication-title: SIAM Journal on Matrix Analysis and its Applications doi: 10.1137/060670985 – volume: 11 start-page: 351 issue: 3 year: 2011 ident: 9720_CR3 publication-title: Quantitative Finance doi: 10.1080/14697688.2010.481634 – volume: 38 start-page: 14208 year: 2011 ident: 9720_CR1 publication-title: Expert Systems with Applications – volume: 2 start-page: 183 year: 1989 ident: 9720_CR5 publication-title: Neural Networks doi: 10.1016/0893-6080(89)90003-8 – ident: 9720_CR6 – volume: 9 start-page: 485 year: 2008 ident: 9720_CR2 publication-title: Journal of Machine Learning Research |
| SSID | ssj0005122 |
| Score | 2.1924782 |
| Snippet | In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 267 |
| SubjectTerms | Algorithms Artificial neural networks Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Computing time Conditional probability Economic models Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Electronic trading systems Encoding Math Applications in Computer Science Neural networks Operations Research/Decision Theory Prices Probability distribution Program trading Time series |
| Title | Low Complexity Algorithmic Trading by Feedforward Neural Networks |
| URI | https://link.springer.com/article/10.1007/s10614-017-9720-6 https://www.proquest.com/docview/2223101645 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1572-9974 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: BENPR dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-9974 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: 8FG dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9974 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005122 issn: 0927-7099 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL1oC-pGtCpWa8nClRJIMq9kmUrT4iOIWKirkJlOdFFasRHp33snD6uigqtZzGQWdx7nTO6ZMwCnhPo8dXEEiBbKpkbmmgpObYcIwgSh3C98tm9iPhzRyzEbV_e4F7XavU5JFjv1p8tuCCW22VUDYc4869Bkxs0LJ_HIC1e6DrdMHQSesAXynzqV-VMXX8FoxTC_JUULrIl2YLsiiVZYjuourOlZCzZqjXoLNuvrxIs9CK_nb5ZZ1cbZMl9a4fRxjgf-J6y1EIgMNFlyaUWIUshPjUbWMoYc2H1cKsAX-zCK-vcXQ7t6F8FWiK-5TXXqUZY5kgYkTfG8EWSEu3KCVEhIxZmnkMbojGvpKMdPVeYGqRS-4wvkcsioyQE0ZvOZPgTLk8rLdKqZYh7lxJWaTWgWaIdoLkRG2-DUAUpUZRpu3q6YJiu7YxPTBGOamJgmvA1nH588l44ZfzXu1FFPqsWzSAxlMT8VKGvDeT0Sq-pfOzv6V-tj2ELyE5Syrw408pdXfYIEI5ddWPejQReaYdTrxaYcPFz1sez149u7bjHd3gHzeckw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1RTNQXP1AjiroHnzQj29q12-NiQFTgCRJ8WtbSqdGAkRmjv95btjolasJzu2a7_Tinu6enAKeEBixxsQeI4tKmWuaacEZth3Dic0JZMPPZ7vZYe0Cvh_6wOMc9NWp3k5KcrdTfDrshlNh6VQ253vMswwrF_YlXgZXo8vamWSo73Dx5EHrc5siATDLzt0Z-wlHJMefSojO0aW1C37xnLjJ5bLxmoiE_5iwcF_yQLdgo2KcV5cNlG5bUuAqrRvxehTVzTnm6A1Fn8mbp5UJbZmbvVvR0N3l5yO6x1EKE05hniXerhfCHxFeLby3t9IHN93Jp-XQXBq1m_6JtFxcu2BKBO7OpSjzqp46gIUkS3MiEKWGuGCHH4kIy35PIj1TKlHCkEyQydcNE8MAJOJJEpOpkDyrjyVjtg-UJ6aUqUb70PcqIK5Q_ommoHKIY5ymtgWPiHsvCjVxfivEUlz7KOkwxhinWYYpZDc6-HnnOrTj-q1w3nRkXs3Iaay6k_1ZQvwbnpm_K4j8bO1io9gmstfvdTty56t0cwjoyrDDXltWhkr28qiNkMZk4LkbtJ_mp408 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkQoLggKifHpgAkVNYsdOxgiICpSKgUrdoth1YKjSigSh_nvOTUIAARKzHQ_nj_ece_cMcEaZzxMHZ4BqoSxmZK6J4MyyqaCeoIz7S5_t-yHvj9jt2BtX75zmtdq9TkmWNQ3GpSkrevNJ2vtU-IawYpkTNhDm_rMKa8z4JOCCHrlho_FwyjRC4ApLIBeq05o_DfEVmBq2-S1BusSdaAs2K8JIwnKGt2FFZx1o13r1DqzXpcX5DoSD2RsxO9y4XBYLEk6fZnj5f8ZWgqBkYIrIBYkQsZCrGr0sMeYcOPywVIPnuzCKrh8v-1b1RoKlEGsLi-nEZV5qSxbQJMG7R5BS7sgJ0iIhFfdchZRGp1xLW9l-olInSKTwbV8gr0N2Tfeglc0yvQ_ElcpNdaI95bmMU0dqb8LSQNtUcyFS1gW7DlCsKgNx847FNG6sj01MY4xpbGIa8y6cf3wyL90z_up8VEc9rjZSHhv6Yn4wMK8LF_VMNM2_Dnbwr96n0H64iuLBzfDuEDaQEwWlGuwIWsXLqz5G3lHIk-Xaegfh7srI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Complexity+Algorithmic+Trading+by+Feedforward+Neural+Networks&rft.jtitle=Computational+economics&rft.au=Levendovszky%2C+J&rft.au=Reguly%2C+I&rft.au=Olah%2C+A&rft.au=Ceffer%2C+A&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=54&rft.issue=1&rft.spage=267&rft.epage=279&rft_id=info:doi/10.1007%2Fs10614-017-9720-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon |