Low Complexity Algorithmic Trading by Feedforward Neural Networks

In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding sc...

Full description

Saved in:
Bibliographic Details
Published inComputational economics Vol. 54; no. 1; pp. 267 - 279
Main Authors Levendovszky, J., Reguly, I., Olah, A., Ceffer, A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0927-7099
1572-9974
DOI10.1007/s10614-017-9720-6

Cover

Abstract In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding schemes on the observed prices in order to obtain an efficient estimation of the forward conditional probability distribution performed by a feedforward neural network. Based on these estimations, a trading signal is launched if the probability of price change becomes significant which is measured by a quadratic criterion. The performance analysis of our method tested on historical time series (NASDAQ/NYSE stocks) has demonstrated that the algorithm is profitable. As far as high frequency trading is concerned, the algorithm lends itself to GPU implementation, which can considerably increase its performance when time frames become shorter and the computational time tends to be the critical aspect of the algorithm.
AbstractList In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading actions are carried out after estimating the forward conditional probability distribution. The main idea is to introduce special encoding schemes on the observed prices in order to obtain an efficient estimation of the forward conditional probability distribution performed by a feedforward neural network. Based on these estimations, a trading signal is launched if the probability of price change becomes significant which is measured by a quadratic criterion. The performance analysis of our method tested on historical time series (NASDAQ/NYSE stocks) has demonstrated that the algorithm is profitable. As far as high frequency trading is concerned, the algorithm lends itself to GPU implementation, which can considerably increase its performance when time frames become shorter and the computational time tends to be the critical aspect of the algorithm.
Author Ceffer, A.
Olah, A.
Reguly, I.
Levendovszky, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Levendovszky
  fullname: Levendovszky, J.
  organization: Department of Networked Systems and Services, Budapest University of Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
– sequence: 2
  givenname: I.
  surname: Reguly
  fullname: Reguly, I.
  email: reguly.istvan@itk.ppke.hu
  organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
– sequence: 3
  givenname: A.
  surname: Olah
  fullname: Olah, A.
  organization: Faculty of Information Technology and Bionics, Pázmány Péter Catholic University
– sequence: 4
  givenname: A.
  surname: Ceffer
  fullname: Ceffer, A.
  organization: Department of Networked Systems and Services, Budapest University of Technology
BookMark eNp9kEFLwzAYhoNMcJv-AG8Fz9EvaZM0xzGcCkMv8xzSNJ2ZXTOTjLl_b0cFQdDTe3mf7_14JmjU-c4idE3glgCIu0iAkwIDEVgKCpifoTFhgmIpRTFCY5BUYAFSXqBJjBsAYITSMZot_SGb--2utZ8uHbNZu_bBpbetM9kq6Np166w6Zgtr68aHgw519mz3Qbd9pIMP7_ESnTe6jfbqO6fodXG_mj_i5cvD03y2xCYvScKF1bRgDVSFzLUWLJdNzklVM05EZTijhnGwDbcVGCi1aYjUlSihFDmBsqT5FN0Md3fBf-xtTGrj96HrJxWltC8RXrC-RYaWCT7GYBu1C26rw1ERUCdTajClelPqZErxnhG_GOOSTs53KWjX_kvSgYz9Sre24eenv6EvbLF93g
CitedBy_id crossref_primary_10_1007_s10614_019_09960_5
crossref_primary_10_1016_j_ribaf_2024_102471
crossref_primary_10_1007_s10614_024_10760_9
Cites_doi 10.1016/0893-6080(89)90003-8
10.1016/0893-6080(89)90020-8
10.1080/14697688.2010.481634
10.1137/060670985
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Computational Economics is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Computational Economics is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
8BJ
FQK
JBE
JQ2
DOI 10.1007/s10614-017-9720-6
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Business
EISSN 1572-9974
EndPage 279
ExternalDocumentID 10_1007_s10614_017_9720_6
GrantInformation_xml – fundername: Pazmany Peter Catholic University
  grantid: KAP15-062-1.1-ITK
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
6J9
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACYUM
ACZOJ
ADFRT
ADHHG
ADHIR
ADIMF
ADINQ
ADIYS
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EOH
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IHE
IJ-
IKXTQ
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c381t-4ea245f0b493aa7539f361bd5617bc652c560ef6eb0c08acf19ab780873108823
IEDL.DBID U2A
ISSN 0927-7099
IngestDate Fri Jul 25 23:36:04 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Wed Oct 01 02:42:32 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Algorithmic trading
G12 – Asset Pricing
Non-linear regression
Neural networks
Estimation
G1 – General Financial Markets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-4ea245f0b493aa7539f361bd5617bc652c560ef6eb0c08acf19ab780873108823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2223101645
PQPubID 36414
PageCount 13
ParticipantIDs proquest_journals_2223101645
crossref_primary_10_1007_s10614_017_9720_6
crossref_citationtrail_10_1007_s10614_017_9720_6
springer_journals_10_1007_s10614_017_9720_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Computational economics
PublicationTitleAbbrev Comput Econ
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References D’Aspremont (CR3) 2011; 11
Hornik, Stinchcombe, White (CR7) 1989; 2
Funahashi (CR5) 1989; 2
CR6
Banerjee, El Ghaoui, d’Aspremont (CR2) 2008; 9
Anagnostopoulos, Mamanis (CR1) 2011; 38
D’Aspremont, Banerjee, El Ghaoui (CR4) 2008; 30
O Banerjee (9720_CR2) 2008; 9
KI Funahashi (9720_CR5) 1989; 2
A D’Aspremont (9720_CR4) 2008; 30
K Hornik (9720_CR7) 1989; 2
9720_CR6
KP Anagnostopoulos (9720_CR1) 2011; 38
A D’Aspremont (9720_CR3) 2011; 11
References_xml – volume: 38
  start-page: 14208
  year: 2011
  end-page: 14217
  ident: CR1
  article-title: The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms
  publication-title: Expert Systems with Applications
– ident: CR6
– volume: 2
  start-page: 183
  year: 1989
  end-page: 192
  ident: CR5
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90003-8
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR7
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 9
  start-page: 485
  year: 2008
  end-page: 516
  ident: CR2
  article-title: Model selection through sparse maximum likelihood estimation
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 351
  issue: 3
  year: 2011
  end-page: 364
  ident: CR3
  article-title: Identifying small mean-reverting portfolios
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2010.481634
– volume: 30
  start-page: 56
  issue: 1
  year: 2008
  end-page: 66
  ident: CR4
  article-title: First-order methods for sparce covariance selection
  publication-title: SIAM Journal on Matrix Analysis and its Applications
  doi: 10.1137/060670985
– volume: 2
  start-page: 359
  year: 1989
  ident: 9720_CR7
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 30
  start-page: 56
  issue: 1
  year: 2008
  ident: 9720_CR4
  publication-title: SIAM Journal on Matrix Analysis and its Applications
  doi: 10.1137/060670985
– volume: 11
  start-page: 351
  issue: 3
  year: 2011
  ident: 9720_CR3
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2010.481634
– volume: 38
  start-page: 14208
  year: 2011
  ident: 9720_CR1
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 183
  year: 1989
  ident: 9720_CR5
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90003-8
– ident: 9720_CR6
– volume: 9
  start-page: 485
  year: 2008
  ident: 9720_CR2
  publication-title: Journal of Machine Learning Research
SSID ssj0005122
Score 2.1924782
Snippet In this paper, novel neural based algorithms are developed for electronic trading on financial time series. The proposed method is estimation based and trading...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Algorithms
Artificial neural networks
Behavioral/Experimental Economics
Computer Appl. in Social and Behavioral Sciences
Computing time
Conditional probability
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Electronic trading systems
Encoding
Math Applications in Computer Science
Neural networks
Operations Research/Decision Theory
Prices
Probability distribution
Program trading
Time series
Title Low Complexity Algorithmic Trading by Feedforward Neural Networks
URI https://link.springer.com/article/10.1007/s10614-017-9720-6
https://www.proquest.com/docview/2223101645
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-9974
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: 8FG
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9974
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005122
  issn: 0927-7099
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL1oC-pGtCpWa8nClRJIMq9kmUrT4iOIWKirkJlOdFFasRHp33snD6uigqtZzGQWdx7nTO6ZMwCnhPo8dXEEiBbKpkbmmgpObYcIwgSh3C98tm9iPhzRyzEbV_e4F7XavU5JFjv1p8tuCCW22VUDYc4869Bkxs0LJ_HIC1e6DrdMHQSesAXynzqV-VMXX8FoxTC_JUULrIl2YLsiiVZYjuourOlZCzZqjXoLNuvrxIs9CK_nb5ZZ1cbZMl9a4fRxjgf-J6y1EIgMNFlyaUWIUshPjUbWMoYc2H1cKsAX-zCK-vcXQ7t6F8FWiK-5TXXqUZY5kgYkTfG8EWSEu3KCVEhIxZmnkMbojGvpKMdPVeYGqRS-4wvkcsioyQE0ZvOZPgTLk8rLdKqZYh7lxJWaTWgWaIdoLkRG2-DUAUpUZRpu3q6YJiu7YxPTBGOamJgmvA1nH588l44ZfzXu1FFPqsWzSAxlMT8VKGvDeT0Sq-pfOzv6V-tj2ELyE5Syrw408pdXfYIEI5ddWPejQReaYdTrxaYcPFz1sez149u7bjHd3gHzeckw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1RTNQXP1AjiroHnzQj29q12-NiQFTgCRJ8WtbSqdGAkRmjv95btjolasJzu2a7_Tinu6enAKeEBixxsQeI4tKmWuaacEZth3Dic0JZMPPZ7vZYe0Cvh_6wOMc9NWp3k5KcrdTfDrshlNh6VQ253vMswwrF_YlXgZXo8vamWSo73Dx5EHrc5siATDLzt0Z-wlHJMefSojO0aW1C37xnLjJ5bLxmoiE_5iwcF_yQLdgo2KcV5cNlG5bUuAqrRvxehTVzTnm6A1Fn8mbp5UJbZmbvVvR0N3l5yO6x1EKE05hniXerhfCHxFeLby3t9IHN93Jp-XQXBq1m_6JtFxcu2BKBO7OpSjzqp46gIUkS3MiEKWGuGCHH4kIy35PIj1TKlHCkEyQydcNE8MAJOJJEpOpkDyrjyVjtg-UJ6aUqUb70PcqIK5Q_ommoHKIY5ymtgWPiHsvCjVxfivEUlz7KOkwxhinWYYpZDc6-HnnOrTj-q1w3nRkXs3Iaay6k_1ZQvwbnpm_K4j8bO1io9gmstfvdTty56t0cwjoyrDDXltWhkr28qiNkMZk4LkbtJ_mp408
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkQoLggKifHpgAkVNYsdOxgiICpSKgUrdoth1YKjSigSh_nvOTUIAARKzHQ_nj_ece_cMcEaZzxMHZ4BqoSxmZK6J4MyyqaCeoIz7S5_t-yHvj9jt2BtX75zmtdq9TkmWNQ3GpSkrevNJ2vtU-IawYpkTNhDm_rMKa8z4JOCCHrlho_FwyjRC4ApLIBeq05o_DfEVmBq2-S1BusSdaAs2K8JIwnKGt2FFZx1o13r1DqzXpcX5DoSD2RsxO9y4XBYLEk6fZnj5f8ZWgqBkYIrIBYkQsZCrGr0sMeYcOPywVIPnuzCKrh8v-1b1RoKlEGsLi-nEZV5qSxbQJMG7R5BS7sgJ0iIhFfdchZRGp1xLW9l-olInSKTwbV8gr0N2Tfeglc0yvQ_ElcpNdaI95bmMU0dqb8LSQNtUcyFS1gW7DlCsKgNx847FNG6sj01MY4xpbGIa8y6cf3wyL90z_up8VEc9rjZSHhv6Yn4wMK8LF_VMNM2_Dnbwr96n0H64iuLBzfDuEDaQEwWlGuwIWsXLqz5G3lHIk-Xaegfh7srI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Complexity+Algorithmic+Trading+by+Feedforward+Neural+Networks&rft.jtitle=Computational+economics&rft.au=Levendovszky%2C+J&rft.au=Reguly%2C+I&rft.au=Olah%2C+A&rft.au=Ceffer%2C+A&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=54&rft.issue=1&rft.spage=267&rft.epage=279&rft_id=info:doi/10.1007%2Fs10614-017-9720-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon