The Averaged, Overdetermined, and Generalized LMS Algorithm

This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 55; no. 12; pp. 5593 - 5603
Main Authors Alameda-Hernandez, E., Blanco, D., Ruiz, D.P., Carrion, M.C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2007.899375

Cover

Abstract This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two families, like the LMS algorithm and the RLS algorithm, have a natural position within the proposed formal framework. The proposed formal framework also includes - among others - the LMS/overdetermined recursive instrumental variable (ORIV) algorithm and the generalized LMS (GLMS) algorithm, which is an instrumental variable (IV) enable LMS algorithm. Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV. The proposed AOGLMS algorithm overcomes - as we analytically show here - the limitations of GLMS and possesses a much lower computational burden than LMS/ORIV, being in this way a better alternative to both algorithms. Simulations verify the analysis.
AbstractList Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV.
This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two families, like the LMS algorithm and the RLS algorithm, have a natural position within the proposed formal framework. The proposed formal framework also includes - among others - the LMS/overdetermined recursive instrumental variable (ORIV) algorithm and the generalized LMS (GLMS) algorithm, which is an instrumental variable (IV) enable LMS algorithm. Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV. The proposed AOGLMS algorithm overcomes - as we analytically show here - the limitations of GLMS and possesses a much lower computational burden than LMS/ORIV, being in this way a better alternative to both algorithms. Simulations verify the analysis.
Author Ruiz, D.P.
Carrion, M.C.
Blanco, D.
Alameda-Hernandez, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Alameda-Hernandez
  fullname: Alameda-Hernandez, E.
  organization: Granada Univ., Granada
– sequence: 2
  givenname: D.
  surname: Blanco
  fullname: Blanco, D.
  organization: Granada Univ., Granada
– sequence: 3
  givenname: D.P.
  surname: Ruiz
  fullname: Ruiz, D.P.
  organization: Granada Univ., Granada
– sequence: 4
  givenname: M.C.
  surname: Carrion
  fullname: Carrion, M.C.
  organization: Granada Univ., Granada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19886274$$DView record in Pascal Francis
BookMark eNp9kctLJDEQxoOMsL7Oe_DSLKx7scekk3RS7GmQ9QEjCo6wtxDT1TMZetJu0iPoX2-GkRU8eKoq6vfVg2-fjEIfkJDvjI4Zo3A2u78bV5SqsQbgSu6QPQaClVSoepRzKnkptfr7jeyntKSUCQH1Hvk9W2AxecZo59icFrc5a3DAuPJhU9vQFJcYcrvzr9gU05v7YtLN--iHxeqQ7La2S3j0Hg_Iw8Wf2flVOb29vD6fTEvHNRtKoTitUDH6qGu0oJiiotXgWD7HNiAt0PoRlFM2t6mlUlYcWnDa1SBsxfkB-bWd-xT7f2tMg1n55LDrbMB-nYzW-WENQmTy5EuSCxBaKsjgj0_gsl_HkL8wuhaSA1MqQz_fIZuc7dpog_PJPEW_svHFMNC6rtRm69mWc7FPKWL7gVCz8cZkb8zGG7P1JivkJ4Xzgx18H4ZoffeF7nir84j4f4vgEiSr-Rs0j5n7
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSMC_2023_3285945
crossref_primary_10_1016_j_apm_2016_02_004
crossref_primary_10_1109_TIE_2016_2532278
crossref_primary_10_1007_s00034_023_02441_z
crossref_primary_10_1109_TPEL_2020_3017000
Cites_doi 10.1109/29.17529
10.1049/iet-cta:20060260
10.1109/78.533721
10.1109/ICC.1992.267990
10.1016/0165-1684(94)90129-5
10.1109/9.284904
10.1109/29.21704
10.1007/978-3-642-75894-2
10.1109/TAC.1984.1103531
10.1002/(SICI)1099-1115(199603)10:2/3<267::AID-ACS350>3.0.CO;2-4
10.1109/5.75086
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2007.899375
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Applied Sciences
EISSN 1941-0476
EndPage 5603
ExternalDocumentID 2335835821
19886274
10_1109_TSP_2007_899375
4359516
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c381t-47302e710b86ea971704f89c1587ad95a906b97c7a6ea0a055239f9c8c694a233
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 00:22:16 EDT 2025
Wed Oct 01 17:19:04 EDT 2025
Sun Jun 29 15:46:37 EDT 2025
Mon Jul 21 09:12:03 EDT 2025
Wed Oct 01 01:57:58 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Tue Aug 26 16:46:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Instrumental variable
recursive algorithms
stochastic gradient
least squares
orthogonality conditions
Adaptive algorithm
Adaptive filtering
Stochastic method
Orthogonality
Recursive algorithm
Simulation
Least squares method
Recursive method
Least mean squares methods
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-47302e710b86ea971704f89c1587ad95a906b97c7a6ea0a055239f9c8c694a233
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 864539177
PQPubID 23500
PageCount 11
ParticipantIDs ieee_primary_4359516
crossref_primary_10_1109_TSP_2007_899375
pascalfrancis_primary_19886274
proquest_miscellaneous_889378944
proquest_miscellaneous_34948579
proquest_journals_864539177
crossref_citationtrail_10_1109_TSP_2007_899375
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-01
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref16
ref8
ref7
ref9
ljung (ref3) 1983
ref6
haykin (ref1) 1996
widrow (ref4) 1985
widrow (ref5) 1960
nikias (ref13) 1993
References_xml – ident: ref11
  doi: 10.1109/29.17529
– ident: ref12
  doi: 10.1049/iet-cta:20060260
– year: 1996
  ident: ref1
  publication-title: Adaptive Filter Theory
– ident: ref6
  doi: 10.1109/78.533721
– ident: ref7
  doi: 10.1109/ICC.1992.267990
– ident: ref16
  doi: 10.1016/0165-1684(94)90129-5
– year: 1983
  ident: ref3
  publication-title: Theory and Practice of Recursive Identification
– ident: ref10
  doi: 10.1109/9.284904
– year: 1993
  ident: ref13
  publication-title: Higher-Order Spectra Analysis A Nonlinear Signal Processing Framework
– year: 1985
  ident: ref4
  publication-title: Adaptive Signal Processing
– ident: ref15
  doi: 10.1109/29.21704
– ident: ref2
  doi: 10.1007/978-3-642-75894-2
– start-page: 96
  year: 1960
  ident: ref5
  article-title: adaptive switching circuits
  publication-title: Proc IRE WESCON Conv Rec
– ident: ref9
  doi: 10.1109/TAC.1984.1103531
– ident: ref8
  doi: 10.1002/(SICI)1099-1115(199603)10:2/3<267::AID-ACS350>3.0.CO;2-4
– ident: ref14
  doi: 10.1109/5.75086
SSID ssj0014496
Score 1.9280465
Snippet This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the...
Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically,...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5593
SubjectTerms Adaptive algorithm
Adaptive algorithms
Adaptive filters
Algorithms
Applied sciences
Derivation
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Exact sciences and technology
Exports
Information, signal and communications theory
Instrumental variable
Instruments
International trade
least squares
Least squares approximation
Least squares method
Least squares methods
Mathematical analysis
orthogonality conditions
Recursive
recursive algorithms
Resonance light scattering
Signal and communications theory
Signal processing algorithms
Signal, noise
Statistics
stochastic gradient
Stochastic processes
Studies
Telecommunications and information theory
Title The Averaged, Overdetermined, and Generalized LMS Algorithm
URI https://ieeexplore.ieee.org/document/4359516
https://www.proquest.com/docview/864539177
https://www.proquest.com/docview/34948579
https://www.proquest.com/docview/889378944
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CiKURwYGBlLSxPFDTBWiQogCEiB1ixzHgYqSojZd-us5O2l4S2yOcrGce9h39vk7gCMZctnWFGOTUFCPUJWgzbHIkywL0KGTQaDMfkfvhl4-kqt-1F-Ak_oujNbaJp_plmnas_x0pKZmq-yUmFukbboIi4zT8q5WfWJAiK3Fhe5C6EWc9SsYn7YvTh_u70qsQm4W4-jLCmRLqpiESDlBnmRlMYsf87JdbLpr0JsPs8wxeWlNi6SlZt8QHP_7H-uwWnmdbqdUkw1Y0PkmrHzCItyEZeN2lqjNDThD7XE7qOU426Qn7i220ipvxjzLPHUrvOrBTKfude_e7QyfRuNB8fy6BY_di4fzS68qs-ApXK4Lj6CRBxo9jYRTLQXGdz7JuFBtZKNMRSSFTxPBFJP42pd-hLGryITiigoigzDchqV8lOsdcAPCM19nGOShV0lSij2mRCOp9HnGdOhAa876WFUY5KYUxjC2sYgvYpSVqYzJ4lJWDhzXH7yV8Bt_kzYMp2uyiskOHHyR7Uc3gnNTeMiB5lzYcWW_k5hTEoUYyTIHDuu3aHjmNEXmejSdxKEF1mHCAfcPCm58QS4I2f19aE1YtjvFNjlmD5aK8VTvo4tTJAdWt98BKJf1mQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Reig90BZaNdBCDhw4kCWbjF_qaYVAC90FJBZpb5HjOC0qzVZs9sKv79jJpqWA1JujTCxnHvaMPf4GYE-nUvctp9gkVTxCbnKyOcEiLcqEHDqdJMbtd4zP-fAaz6ZsugIH3V0Ya61PPrM91_Rn-cXMLNxW2SG6W6R9_gJeMkRkzW2t7swA0VfjIochjZgU0xbIpx-rw8nVZYNWKN1yzB6sQb6oikuJ1HPiStmUs3g0M_vl5uQNjJcDbbJMfvQWdd4z9_9gOP7vn7yF9dbvDAeNoryDFVttwOu_0Ag3YM05ng1u8yZ8If0JB6TnNN8UB-EFtYo2c8Y966oIW8Tqm3tbhKPxVTi4_Ta7u6m__3wP1yfHk6Nh1BZaiAwt2HWEZOaJJV8jl9xqRRFejKVUpk9s1IViWsU8V8IITa9jHTOKXlWpjDRcoU7S9AOsVrPKfoQwQVnGtqQwj_xKLDj1WKAlUh3LUtg0gN6S9ZlpUchdMYzbzEcjscpIVq42psgaWQWw333wqwHgeJ5003G6I2uZHMDOA9n-6UZJ6UoPBbC9FHbWWvA8kxxZSrGsCGC3e0um585TdGVni3mWemgdoQIIn6GQzhuUCnHr6aHtwqvhZDzKRqfnX7dhze8b-1SZT7Ba3y3sZ3J46nzH6_lvKD_45g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Averaged%2C+Overdetermined%2C+and+Generalized+LMS+Algorithm&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Alameda-Hernandez%2C+E.&rft.au=Blanco%2C+D.&rft.au=Ruiz%2C+D.P.&rft.au=Carrion%2C+M.C.&rft.date=2007-12-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=55&rft.issue=12&rft.spage=5593&rft.epage=5603&rft_id=info:doi/10.1109%2FTSP.2007.899375&rft.externalDocID=4359516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon