The Averaged, Overdetermined, and Generalized LMS Algorithm
This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two f...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 55; no. 12; pp. 5593 - 5603 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.12.2007
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476  | 
| DOI | 10.1109/TSP.2007.899375 | 
Cover
| Abstract | This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two families, like the LMS algorithm and the RLS algorithm, have a natural position within the proposed formal framework. The proposed formal framework also includes - among others - the LMS/overdetermined recursive instrumental variable (ORIV) algorithm and the generalized LMS (GLMS) algorithm, which is an instrumental variable (IV) enable LMS algorithm. Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV. The proposed AOGLMS algorithm overcomes - as we analytically show here - the limitations of GLMS and possesses a much lower computational burden than LMS/ORIV, being in this way a better alternative to both algorithms. Simulations verify the analysis. | 
    
|---|---|
| AbstractList | Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV. This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the least-mean square (LMS) family and the recursive least squares (RLS) family. Existing and well-known algorithms, belonging to any of these two families, like the LMS algorithm and the RLS algorithm, have a natural position within the proposed formal framework. The proposed formal framework also includes - among others - the LMS/overdetermined recursive instrumental variable (ORIV) algorithm and the generalized LMS (GLMS) algorithm, which is an instrumental variable (IV) enable LMS algorithm. Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically, the ORIV algorithm is exported to the LMS family, resulting in the derivation of the averaged, overdetermined, and generalized LMS (AOGLMS) algorithm, an overdetermined LMS algorithm able to work with an IV. The proposed AOGLMS algorithm overcomes - as we analytically show here - the limitations of GLMS and possesses a much lower computational burden than LMS/ORIV, being in this way a better alternative to both algorithms. Simulations verify the analysis.  | 
    
| Author | Ruiz, D.P. Carrion, M.C. Blanco, D. Alameda-Hernandez, E.  | 
    
| Author_xml | – sequence: 1 givenname: E. surname: Alameda-Hernandez fullname: Alameda-Hernandez, E. organization: Granada Univ., Granada – sequence: 2 givenname: D. surname: Blanco fullname: Blanco, D. organization: Granada Univ., Granada – sequence: 3 givenname: D.P. surname: Ruiz fullname: Ruiz, D.P. organization: Granada Univ., Granada – sequence: 4 givenname: M.C. surname: Carrion fullname: Carrion, M.C. organization: Granada Univ., Granada  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19886274$$DView record in Pascal Francis | 
    
| BookMark | eNp9kctLJDEQxoOMsL7Oe_DSLKx7scekk3RS7GmQ9QEjCo6wtxDT1TMZetJu0iPoX2-GkRU8eKoq6vfVg2-fjEIfkJDvjI4Zo3A2u78bV5SqsQbgSu6QPQaClVSoepRzKnkptfr7jeyntKSUCQH1Hvk9W2AxecZo59icFrc5a3DAuPJhU9vQFJcYcrvzr9gU05v7YtLN--iHxeqQ7La2S3j0Hg_Iw8Wf2flVOb29vD6fTEvHNRtKoTitUDH6qGu0oJiiotXgWD7HNiAt0PoRlFM2t6mlUlYcWnDa1SBsxfkB-bWd-xT7f2tMg1n55LDrbMB-nYzW-WENQmTy5EuSCxBaKsjgj0_gsl_HkL8wuhaSA1MqQz_fIZuc7dpog_PJPEW_svHFMNC6rtRm69mWc7FPKWL7gVCz8cZkb8zGG7P1JivkJ4Xzgx18H4ZoffeF7nir84j4f4vgEiSr-Rs0j5n7 | 
    
| CODEN | ITPRED | 
    
| CitedBy_id | crossref_primary_10_1109_TSMC_2023_3285945 crossref_primary_10_1016_j_apm_2016_02_004 crossref_primary_10_1109_TIE_2016_2532278 crossref_primary_10_1007_s00034_023_02441_z crossref_primary_10_1109_TPEL_2020_3017000  | 
    
| Cites_doi | 10.1109/29.17529 10.1049/iet-cta:20060260 10.1109/78.533721 10.1109/ICC.1992.267990 10.1016/0165-1684(94)90129-5 10.1109/9.284904 10.1109/29.21704 10.1007/978-3-642-75894-2 10.1109/TAC.1984.1103531 10.1002/(SICI)1099-1115(199603)10:2/3<267::AID-ACS350>3.0.CO;2-4 10.1109/5.75086  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007  | 
    
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| DOI | 10.1109/TSP.2007.899375 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Statistics Applied Sciences  | 
    
| EISSN | 1941-0476 | 
    
| EndPage | 5603 | 
    
| ExternalDocumentID | 2335835821 19886274 10_1109_TSP_2007_899375 4359516  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| ID | FETCH-LOGICAL-c381t-47302e710b86ea971704f89c1587ad95a906b97c7a6ea0a055239f9c8c694a233 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1053-587X | 
    
| IngestDate | Sun Sep 28 00:22:16 EDT 2025 Wed Oct 01 17:19:04 EDT 2025 Sun Jun 29 15:46:37 EDT 2025 Mon Jul 21 09:12:03 EDT 2025 Wed Oct 01 01:57:58 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Tue Aug 26 16:46:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | Instrumental variable recursive algorithms stochastic gradient least squares orthogonality conditions Adaptive algorithm Adaptive filtering Stochastic method Orthogonality Recursive algorithm Simulation Least squares method Recursive method Least mean squares methods  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c381t-47302e710b86ea971704f89c1587ad95a906b97c7a6ea0a055239f9c8c694a233 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23  | 
    
| PQID | 864539177 | 
    
| PQPubID | 23500 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_4359516 crossref_primary_10_1109_TSP_2007_899375 pascalfrancis_primary_19886274 proquest_miscellaneous_889378944 proquest_miscellaneous_34948579 proquest_journals_864539177 crossref_citationtrail_10_1109_TSP_2007_899375  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2007-12-01 | 
    
| PublicationDateYYYYMMDD | 2007-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY – name: New York  | 
    
| PublicationTitle | IEEE transactions on signal processing | 
    
| PublicationTitleAbbrev | TSP | 
    
| PublicationYear | 2007 | 
    
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref15 ref14 ref11 ref10 ref2 ref16 ref8 ref7 ref9 ljung (ref3) 1983 ref6 haykin (ref1) 1996 widrow (ref4) 1985 widrow (ref5) 1960 nikias (ref13) 1993  | 
    
| References_xml | – ident: ref11 doi: 10.1109/29.17529 – ident: ref12 doi: 10.1049/iet-cta:20060260 – year: 1996 ident: ref1 publication-title: Adaptive Filter Theory – ident: ref6 doi: 10.1109/78.533721 – ident: ref7 doi: 10.1109/ICC.1992.267990 – ident: ref16 doi: 10.1016/0165-1684(94)90129-5 – year: 1983 ident: ref3 publication-title: Theory and Practice of Recursive Identification – ident: ref10 doi: 10.1109/9.284904 – year: 1993 ident: ref13 publication-title: Higher-Order Spectra Analysis A Nonlinear Signal Processing Framework – year: 1985 ident: ref4 publication-title: Adaptive Signal Processing – ident: ref15 doi: 10.1109/29.21704 – ident: ref2 doi: 10.1007/978-3-642-75894-2 – start-page: 96 year: 1960 ident: ref5 article-title: adaptive switching circuits publication-title: Proc IRE WESCON Conv Rec – ident: ref9 doi: 10.1109/TAC.1984.1103531 – ident: ref8 doi: 10.1002/(SICI)1099-1115(199603)10:2/3<267::AID-ACS350>3.0.CO;2-4 – ident: ref14 doi: 10.1109/5.75086  | 
    
| SSID | ssj0014496 | 
    
| Score | 1.9280465 | 
    
| Snippet | This paper provides and exploits one possible formal framework in which to compare and contrast the two most important families of adaptive algorithms: the... Furthermore, this formal framework allows a straightforward derivation of new algorithms, with enhanced properties respect to the existing ones: specifically,...  | 
    
| SourceID | proquest pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 5593 | 
    
| SubjectTerms | Adaptive algorithm Adaptive algorithms Adaptive filters Algorithms Applied sciences Derivation Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Exact sciences and technology Exports Information, signal and communications theory Instrumental variable Instruments International trade least squares Least squares approximation Least squares method Least squares methods Mathematical analysis orthogonality conditions Recursive recursive algorithms Resonance light scattering Signal and communications theory Signal processing algorithms Signal, noise Statistics stochastic gradient Stochastic processes Studies Telecommunications and information theory  | 
    
| Title | The Averaged, Overdetermined, and Generalized LMS Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/4359516 https://www.proquest.com/docview/864539177 https://www.proquest.com/docview/34948579 https://www.proquest.com/docview/889378944  | 
    
| Volume | 55 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CiKURwYGBlLSxPFDTBWiQogCEiB1ixzHgYqSojZd-us5O2l4S2yOcrGce9h39vk7gCMZctnWFGOTUFCPUJWgzbHIkywL0KGTQaDMfkfvhl4-kqt-1F-Ak_oujNbaJp_plmnas_x0pKZmq-yUmFukbboIi4zT8q5WfWJAiK3Fhe5C6EWc9SsYn7YvTh_u70qsQm4W4-jLCmRLqpiESDlBnmRlMYsf87JdbLpr0JsPs8wxeWlNi6SlZt8QHP_7H-uwWnmdbqdUkw1Y0PkmrHzCItyEZeN2lqjNDThD7XE7qOU426Qn7i220ipvxjzLPHUrvOrBTKfude_e7QyfRuNB8fy6BY_di4fzS68qs-ApXK4Lj6CRBxo9jYRTLQXGdz7JuFBtZKNMRSSFTxPBFJP42pd-hLGryITiigoigzDchqV8lOsdcAPCM19nGOShV0lSij2mRCOp9HnGdOhAa876WFUY5KYUxjC2sYgvYpSVqYzJ4lJWDhzXH7yV8Bt_kzYMp2uyiskOHHyR7Uc3gnNTeMiB5lzYcWW_k5hTEoUYyTIHDuu3aHjmNEXmejSdxKEF1mHCAfcPCm58QS4I2f19aE1YtjvFNjlmD5aK8VTvo4tTJAdWt98BKJf1mQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Reig90BZaNdBCDhw4kCWbjF_qaYVAC90FJBZpb5HjOC0qzVZs9sKv79jJpqWA1JujTCxnHvaMPf4GYE-nUvctp9gkVTxCbnKyOcEiLcqEHDqdJMbtd4zP-fAaz6ZsugIH3V0Ya61PPrM91_Rn-cXMLNxW2SG6W6R9_gJeMkRkzW2t7swA0VfjIochjZgU0xbIpx-rw8nVZYNWKN1yzB6sQb6oikuJ1HPiStmUs3g0M_vl5uQNjJcDbbJMfvQWdd4z9_9gOP7vn7yF9dbvDAeNoryDFVttwOu_0Ag3YM05ng1u8yZ8If0JB6TnNN8UB-EFtYo2c8Y966oIW8Tqm3tbhKPxVTi4_Ta7u6m__3wP1yfHk6Nh1BZaiAwt2HWEZOaJJV8jl9xqRRFejKVUpk9s1IViWsU8V8IITa9jHTOKXlWpjDRcoU7S9AOsVrPKfoQwQVnGtqQwj_xKLDj1WKAlUh3LUtg0gN6S9ZlpUchdMYzbzEcjscpIVq42psgaWQWw333wqwHgeJ5003G6I2uZHMDOA9n-6UZJ6UoPBbC9FHbWWvA8kxxZSrGsCGC3e0um585TdGVni3mWemgdoQIIn6GQzhuUCnHr6aHtwqvhZDzKRqfnX7dhze8b-1SZT7Ba3y3sZ3J46nzH6_lvKD_45g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Averaged%2C+Overdetermined%2C+and+Generalized+LMS+Algorithm&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Alameda-Hernandez%2C+E.&rft.au=Blanco%2C+D.&rft.au=Ruiz%2C+D.P.&rft.au=Carrion%2C+M.C.&rft.date=2007-12-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=55&rft.issue=12&rft.spage=5593&rft.epage=5603&rft_id=info:doi/10.1109%2FTSP.2007.899375&rft.externalDocID=4359516 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |