NEDA: a low-power high-performance DCT architecture

Conventional distributed arithmetic (DA) is popular in application-specific integrated circuit (ASIC) design, and it features on-chip ROM to achieve high speed and regularity. In this paper, a new DA architecture called NEDA is proposed, aimed at reducing the cost metrics of power and area while mai...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 54; no. 3; pp. 955 - 964
Main Authors Shams, A.M., Chidanandan, A., Pan, W., Bayoumi, M.A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2005.862755

Cover

More Information
Summary:Conventional distributed arithmetic (DA) is popular in application-specific integrated circuit (ASIC) design, and it features on-chip ROM to achieve high speed and regularity. In this paper, a new DA architecture called NEDA is proposed, aimed at reducing the cost metrics of power and area while maintaining high speed and accuracy in digital signal processing (DSP) applications. Mathematical analysis proves that DA can implement inner product of vectors in the form of two's complement numbers using only additions, followed by a small number of shifts at the final stage. Comparative studies show that NEDA outperforms widely used approaches such as multiply/accumulate (MAC) and DA in many aspects. Being a high-speed architecture free of ROM, multiplication, and subtraction, NEDA can also expose the redundancy existing in the adder array consisting of entries of 0 and 1. A hardware compression scheme is introduced to generate a butterfly structure with minimum number of additions. NEDA-based architectures for 8 /spl times/ 8 discrete cosine transform (DCT) core are presented as an example. Savings exceeding 88% are achieved, when the compression scheme is applied along with NEDA. Finite word-length simulations demonstrate the viability and excellent performance of NEDA.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.862755