Dynamics of honey bee colony death and its implications for Varroa destructor mite transmission using observation hives
Organisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony decline and death in “hopelessly queenless” honey bee colonies ( Apis mellifera ). In addition, we tracked the parasitic mite, Varroa destructor ,...
Saved in:
Published in | Apidologie Vol. 54; no. 1; p. 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Paris
Springer Paris
01.02.2023
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0044-8435 1297-9678 |
DOI | 10.1007/s13592-023-00991-4 |
Cover
Abstract | Organisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony decline and death in “hopelessly queenless” honey bee colonies (
Apis mellifera
). In addition, we tracked the parasitic mite,
Varroa destructor
, to understand how mite populations change during colony decline, and the implications of colony decline on mite transmission. To address these knowledge gaps, we established four hopelessly queenless colonies in observation hives and tracked their bee and mite populations until death. Hopelessly queenless colonies persisted for 2–3 months (86 ± 19 days), with a long-tailed survival distribution (50% of bees dead by day 25; 95% by day 74). In two of the four colonies, the mites outlived the bees by up to 48 h; in one colony the bees outlived the mites by 13 days; in one colony the bees and mites died simultaneously. Though we did not observe robbing in our study, colonies with fewer than 200 bees still harbored mites that could have infested robber bees. All colonies attempted to rear worker-laid drones, though survival rates for the drones were low (3.0 ± 2.1% of worker-laid drone brood were estimated to reach adulthood). Colonies did, however, maintain adult drones until colony death, despite the experiment running from September through December (past the date of typical drone eviction). This work shows that declining colonies are a viable mechanism for horizontal mite transfer in both managed and wild colonies, with potential implications for the evolution of mite virulence. |
---|---|
AbstractList | AbstractOrganisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony decline and death in “hopelessly queenless” honey bee colonies (Apis mellifera). In addition, we tracked the parasitic mite, Varroa destructor, to understand how mite populations change during colony decline, and the implications of colony decline on mite transmission. To address these knowledge gaps, we established four hopelessly queenless colonies in observation hives and tracked their bee and mite populations until death. Hopelessly queenless colonies persisted for 2–3 months (86 ± 19 days), with a long-tailed survival distribution (50% of bees dead by day 25; 95% by day 74). In two of the four colonies, the mites outlived the bees by up to 48 h; in one colony the bees outlived the mites by 13 days; in one colony the bees and mites died simultaneously. Though we did not observe robbing in our study, colonies with fewer than 200 bees still harbored mites that could have infested robber bees. All colonies attempted to rear worker-laid drones, though survival rates for the drones were low (3.0 ± 2.1% of worker-laid drone brood were estimated to reach adulthood). Colonies did, however, maintain adult drones until colony death, despite the experiment running from September through December (past the date of typical drone eviction). This work shows that declining colonies are a viable mechanism for horizontal mite transfer in both managed and wild colonies, with potential implications for the evolution of mite virulence. Organisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony decline and death in “hopelessly queenless” honey bee colonies ( Apis mellifera ). In addition, we tracked the parasitic mite, Varroa destructor , to understand how mite populations change during colony decline, and the implications of colony decline on mite transmission. To address these knowledge gaps, we established four hopelessly queenless colonies in observation hives and tracked their bee and mite populations until death. Hopelessly queenless colonies persisted for 2–3 months (86 ± 19 days), with a long-tailed survival distribution (50% of bees dead by day 25; 95% by day 74). In two of the four colonies, the mites outlived the bees by up to 48 h; in one colony the bees outlived the mites by 13 days; in one colony the bees and mites died simultaneously. Though we did not observe robbing in our study, colonies with fewer than 200 bees still harbored mites that could have infested robber bees. All colonies attempted to rear worker-laid drones, though survival rates for the drones were low (3.0 ± 2.1% of worker-laid drone brood were estimated to reach adulthood). Colonies did, however, maintain adult drones until colony death, despite the experiment running from September through December (past the date of typical drone eviction). This work shows that declining colonies are a viable mechanism for horizontal mite transfer in both managed and wild colonies, with potential implications for the evolution of mite virulence. Organisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony decline and death in “hopelessly queenless” honey bee colonies (Apis mellifera). In addition, we tracked the parasitic mite, Varroa destructor, to understand how mite populations change during colony decline, and the implications of colony decline on mite transmission. To address these knowledge gaps, we established four hopelessly queenless colonies in observation hives and tracked their bee and mite populations until death. Hopelessly queenless colonies persisted for 2–3 months (86 ± 19 days), with a long-tailed survival distribution (50% of bees dead by day 25; 95% by day 74). In two of the four colonies, the mites outlived the bees by up to 48 h; in one colony the bees outlived the mites by 13 days; in one colony the bees and mites died simultaneously. Though we did not observe robbing in our study, colonies with fewer than 200 bees still harbored mites that could have infested robber bees. All colonies attempted to rear worker-laid drones, though survival rates for the drones were low (3.0 ± 2.1% of worker-laid drone brood were estimated to reach adulthood). Colonies did, however, maintain adult drones until colony death, despite the experiment running from September through December (past the date of typical drone eviction). This work shows that declining colonies are a viable mechanism for horizontal mite transfer in both managed and wild colonies, with potential implications for the evolution of mite virulence. |
ArticleNumber | 13 |
Author | Peck, David T. Smith, Michael L. |
Author_xml | – sequence: 1 givenname: Michael L. orcidid: 0000-0002-3454-962X surname: Smith fullname: Smith, Michael L. email: mls0154@auburn.edu organization: Department of Biological Sciences, Auburn University, Department of Collective Behavior, Max Planck Institute of Animal Behavior – sequence: 2 givenname: David T. surname: Peck fullname: Peck, David T. organization: Department of Neurobiology and Behavior, Cornell University |
BackLink | https://hal.science/hal-04464771$$DView record in HAL |
BookMark | eNp9kU9v1DAQxS1UJLaFL8DJEhc4pIz_JI6PVaG00kq9FK6W4zhdV4m9eJJF--3rbRBIHDiNNPq9p3nzzslZTNET8p7BJQNQn5GJWvMKuKgAtGaVfEU2jGtV6Ua1Z2QDIGXVSlG_IeeITwCMt7XckF9fjtFOwSFNA90V0yPtvKcujSkeae_tvKM29jTMSMO0H4Ozc0gR6ZAy_WFzTrZQOOfFzWUzhdnTOduIU0AsIF0wxEeaOvT58CKlu3Dw-Ja8HuyI_t3veUG-33x9uL6ttvff7q6vtpUTLZsr7qywrtHMCg6-B81BQ1-XNM4714CQnWK25rYTreS-70XTtVrKum5aGHohLsin1XdnR7PPYbL5aJIN5vZqa0678pdGKsUOrLAfV3af08-lhDIlhPPjaKNPCxrBaqGEZPJk--Ef9CktOZYkhivVQKNUezLkK-VyQsx--HMBA3Pqzay9mdKbeenNyCISqwgLHB99_mv9H9UzJfCdFA |
Cites_doi | 10.1016/j.cub.2013.06.045 10.1146/annurev-ento-010715-023731 10.1007/s13592-011-0029-5 10.3896/IBRA.1.50.2.05 10.1111/j.1749-6632.1987.tb40616.x 10.1038/ncomms8991 10.1086/590501 10.1051/apido:19960407 10.1016/0003-3472(75)90143-8 10.1007/s13592-019-00728-2 10.1007/s00040-016-0499-6 10.1051/apido/2009076 10.1007/s13592-017-0519-1 10.1007/s00040-019-00720-0 10.1007/s002650050589 10.1603/EC13381 10.1098/rspb.2016.2149 10.1038/s41586-020-2649-2 10.1080/00218839.1966.11100147 10.1007/PL00001764 10.1016/j.jip.2009.06.012 10.1016/j.pt.2020.04.004 10.1126/science.aac9976 10.1111/j.2041-210X.2010.00063.x 10.1016/j.cub.2015.09.064 10.1080/00218839.1977.11099883 10.1038/s41592-019-0686-2 10.1051/apido:19870204 10.1080/00218839.2002.11101062 10.1111/evo.13628 10.1016/S0891-5520(03)00099-0 10.1515/9781400857876 10.1242/jeb.150342 10.1007/s13592-015-0412-8 10.1080/01647950308684342 10.1080/00218839.2015.1106777 10.1007/BF02337278 10.1007/BF00300050 10.1051/apido:2006065 10.1007/BF00171100 10.1007/s13592-020-00803-z 10.1080/00218839.1995.11100904 10.1007/s00040-012-0239-5 10.1007/s00040-015-0434-2 10.1007/s00114-014-1215-x 10.1080/00218839.1966.11100142 10.1007/BF00299895 10.1051/apido:2006055 10.1016/j.jip.2009.07.016 10.1007/s13592-015-0361-2 10.1007/s00040-016-0463-5 10.1051/apido:2001122 10.1051/apido:2007040 10.1007/s000400050076 10.1126/science.1220941 10.1111/j.1365-2311.1987.tb00997.x 10.1007/PL00001762 10.1371/journal.pone.0218392 10.1007/s13592-011-0054-4 10.1515/9780691189383 10.1016/S0950-5601(57)80038-0 10.1139/z85-077 10.1007/BF01242715 10.1016/j.pt.2003.12.005 10.1016/j.desal.2010.03.003 10.5962/bhl.title.119672 10.1007/s00114-013-1025-6 10.1007/BF02223477 10.1007/BF02510939 10.3896/IBRA.1.52.1.09 10.1017/S0021859600035103 10.1371/journal.pone.0167798 10.18637/jss.v067.i01 10.1371/journal.pone.0150362 |
ContentType | Journal Article |
Copyright | INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1007/s13592-023-00991-4 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Agriculture |
EISSN | 1297-9678 |
EndPage | 13 |
ExternalDocumentID | oai_HAL_hal_04464771v1 10_1007_s13592_023_00991_4 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1144153; 1144153; NSF DDIG 1600775 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --K -EM 06D 0R~ 0VY 199 1B1 203 23M 29~ 2JN 2KG 2KM 2LR 2VQ 2WC 30V 4.4 406 408 5GY 67N 8UJ 96X AAAVM AABHQ AACDK AAFWJ AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAOTM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA C1A CS3 CSCUP DDRTE DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE GGCAI GGRSB GI~ GJIRD GNWQR GQ7 H13 HF~ HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9I O9J OK1 P2P PT4 R9I RED ROL RPZ RSV S1Z S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7U ZMTXR ZOVNA ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c381t-2ca3ac691a320ed092090d5004cecc6034b71a52ab3842edd36b894455680fd33 |
IEDL.DBID | U2A |
ISSN | 0044-8435 |
IngestDate | Fri Sep 12 12:56:16 EDT 2025 Fri Sep 05 06:55:31 EDT 2025 Thu Sep 18 00:02:55 EDT 2025 Tue Jul 01 02:53:24 EDT 2025 Fri Feb 21 02:42:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | colony death Sociometry colony decline Apis mellifera Varroa destructor |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-2ca3ac691a320ed092090d5004cecc6034b71a52ab3842edd36b894455680fd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3454-962X |
OpenAccessLink | https://hal.science/hal-04464771 |
PQID | 2776067781 |
PQPubID | 2043686 |
PageCount | 1 |
ParticipantIDs | hal_primary_oai_HAL_hal_04464771v1 proquest_miscellaneous_3153734143 proquest_journals_2776067781 crossref_primary_10_1007_s13592_023_00991_4 springer_journals_10_1007_s13592_023_00991_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris – name: Heidelberg |
PublicationSubtitle | A journal of the French National Institute for Agriculture, Food and Environment (INRAE) and Deutscher Imkerbund E.V. (D.I.B.) |
PublicationTitle | Apidologie |
PublicationTitleAbbrev | Apidologie |
PublicationYear | 2023 |
Publisher | Springer Paris Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Paris – name: Springer Nature B.V – name: Springer Verlag |
References | Nazzi, Le Conte (CR55) 2016; 61 Smith, Ostwald, Seeley (CR78) 2016; 63 Visscher (CR90) 1989; 25 Smith (CR81) 2018; 72 Loope (CR43) 2015; 25 Ratnieks (CR66) 1990; 26 Mattila, Harris, Otis (CR49) 2001; 48 Pfeiffer, Crailsheim (CR62) 1998; 45 CR76 Cook, Durzi, Breed (CR6) 2016; 63 CR72 Fukuda, Sekiguchi (CR23) 1966; 16 Utaipanon, Holmes, Oldroyd (CR88) 2019; 66 Seeley, Smith (CR77) 2015; 46 Ibrahim, Reuter, Spivak (CR30) 2007; 38 Spivak (CR83) 1996; 27 Hansen (CR26) 1987 CR2 Farrar (CR11) 1937; 54 Mikheyev, Tin, Arora, Seeley (CR51) 2015; 6 CR4 Seeley (CR73) 2017; 48 Seeley, Griffin (CR75) 2011; 42 CR5 CR8 Peck, Seeley (CR59) 2019; 14 Smith, Koenig, Peters (CR82) 2017; 220 Lindauer (CR39) 1961 Ewald (CR9) 1987; 503 Frey, Schnell, Rosenkranz (CR19) 2011; 50 Guzman, Rinderer, Beaman (CR25) 1993; 17 Rangel, Seeley (CR65) 2012; 59 Toufailia, Scandian, Ratnieks (CR84) 2015; 54 CR44 Tschinkel (CR87) 2011; 14 Jay (CR32) 1966; 5 CR42 Wilfert, Long, Leggett, Schmid-Hempel, Butlin, Martin, Boots (CR91) 2016; 6273 Free, Williams (CR17) 1975; 23 Frey, Rosenkranz (CR18) 2014; 107 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel (CR60) 2011; 12 Harris, Millman, Walt, Gommers, Virtanen, Cournapeau, Wieser (CR27) 2020; 585 Kietzman, Visscher (CR34) 2021; 52 Lee, Winston (CR36) 1985; 63 Smith, Loope (CR79) 2016; 63 Free (CR16) 1957; 1 Martin, Medina (CR48) 2004; 20 Macedo, Wu, Ellis (CR45) 2002; 41 Smith, Ostwald, Loftus, Seeley (CR80) 2014; 101 Le Conte, De Vaublanc, Crauser, Jeanne, Rousselle, Bécard (CR35) 2007; 38 Free (CR14) 1954; 7 Traynor, Mondet, de Miranda, Techer, Kowallik, Oddie, Chantawannakul, McAfee (CR85) 2020; 36 Seeley (CR69) 1985 Ewald (CR10) 2004; 18 Dainat, Dietemann, Imdorf, Charrière (CR7) 2020; 51 CR15 Jay (CR33) 1966; 5 CR58 Naeger, Peso, Even, Barron, Robinson (CR54) 2013; 23 Martin (CR46) 1995; 34 CR56 Martin, Highfield, Brettell, Villalobos, Budge, Powell, Nikaido, Schroeder (CR47) 2012; 6086 Lee, Winston (CR37) 1987; 12 Frisch (CR21) 1950; 1 Hollingsworth, Anderson, Fraser (CR28) 2008; 198 CR50 Imdorf, Buehlmann, Gerig, Kilchenmann, Wille (CR31) 1987; 18 Pratt (CR63) 1999; 46 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski (CR89) 2020; 17 Tschinkel (CR86) 1991; 38 Locke, Fries (CR41) 2011; 42 Benaets, Geystelen, Cardoen, Smet, Graaf, Schoofs, Larmuseau, Brettell, Martin, Wenseleers (CR3) 2017 Seeley (CR70) 2010 Pettis, Ochoa, Orr (CR61) 2003; 29 Seeley (CR71) 2007; 38 Fries, Camazine (CR20) 2001; 32 Guzmán-Novoa, Eccles, Calvete, McGowan, Kelly, Correa-Benítez (CR24) 2010; 41 CR29 Page, Erickson (CR57) 1988; 23 Winston (CR92) 1987 CR67 CR22 Fauci (CR12) 1993; 6 Locke (CR40) 2016; 47 CR64 Ali, Taha (CR1) 2012; 3 Rosenkranz, Aumeier, Ziegelmann (CR68) 2010; 103 Miller, Ratnieks (CR52) 2001; 48 Seeley (CR74) 2019 Fell, Ambrose, Burgett, Dejong, Morse, Seeley (CR13) 1977; 16 Lewis, Butler, Gilbert (CR38) 2011; 2 Miranda, Genersch (CR53) 2010; 103 991_CR67 SJ Martin (991_CR46) 1995; 34 L Wilfert (991_CR91) 2016; 6273 991_CR22 991_CR64 E Frey (991_CR18) 2014; 107 SJ Martin (991_CR47) 2012; 6086 TD Seeley (991_CR69) 1985 DG Miller III (991_CR52) 2001; 48 E Guzmán-Novoa (991_CR24) 2010; 41 PW Ewald (991_CR10) 2004; 18 Y Le Conte (991_CR35) 2007; 38 PW Ewald (991_CR9) 1987; 503 991_CR4 JR Miranda (991_CR53) 2010; 103 PC Lee (991_CR37) 1987; 12 991_CR2 KS Traynor (991_CR85) 2020; 36 SC Jay (991_CR32) 1966; 5 P Rosenkranz (991_CR68) 2010; 103 ML Smith (991_CR82) 2017; 220 991_CR8 RE Page Jr (991_CR57) 1988; 23 KJ Pfeiffer (991_CR62) 1998; 45 TD Seeley (991_CR75) 2011; 42 991_CR5 991_CR58 991_CR15 TD Seeley (991_CR70) 2010 K Benaets (991_CR3) 2017 H Fukuda (991_CR23) 1966; 16 J Rangel (991_CR65) 2012; 59 991_CR76 M Spivak (991_CR83) 1996; 27 PK Visscher (991_CR90) 1989; 25 991_CR72 P Utaipanon (991_CR88) 2019; 66 CL Farrar (991_CR11) 1937; 54 AS Mikheyev (991_CR51) 2015; 6 CR Harris (991_CR27) 2020; 585 SC Jay (991_CR33) 1966; 5 PM Kietzman (991_CR34) 2021; 52 TD Seeley (991_CR71) 2007; 38 JB Free (991_CR17) 1975; 23 WR Tschinkel (991_CR87) 2011; 14 PC Lee (991_CR36) 1985; 63 JS Pettis (991_CR61) 2003; 29 991_CR29 ML Smith (991_CR78) 2016; 63 E Frey (991_CR19) 2011; 50 AS Fauci (991_CR12) 1993; 6 H Hansen (991_CR26) 1987 F Lewis (991_CR38) 2011; 2 WR Tschinkel (991_CR86) 1991; 38 991_CR44 991_CR42 A Imdorf (991_CR31) 1987; 18 ML Winston (991_CR92) 1987 B Dainat (991_CR7) 2020; 51 CN Cook (991_CR6) 2016; 63 F Nazzi (991_CR55) 2016; 61 TD Hollingsworth (991_CR28) 2008; 198 P Virtanen (991_CR89) 2020; 17 Kv Frisch (991_CR21) 1950; 1 MA Ali (991_CR1) 2012; 3 SC Pratt (991_CR63) 1999; 46 HR Mattila (991_CR49) 2001; 48 FLW Ratnieks (991_CR66) 1990; 26 B Locke (991_CR40) 2016; 47 HA Toufailia (991_CR84) 2015; 54 SJ Martin (991_CR48) 2004; 20 991_CR56 ML Smith (991_CR79) 2016; 63 DT Peck (991_CR59) 2019; 14 TD Seeley (991_CR77) 2015; 46 991_CR50 LI Guzman (991_CR25) 1993; 17 JB Free (991_CR16) 1957; 1 F Pedregosa (991_CR60) 2011; 12 ML Smith (991_CR80) 2014; 101 PA Macedo (991_CR45) 2002; 41 ML Smith (991_CR81) 2018; 72 TD Seeley (991_CR73) 2017; 48 A Ibrahim (991_CR30) 2007; 38 B Locke (991_CR41) 2011; 42 I Fries (991_CR20) 2001; 32 TD Seeley (991_CR74) 2019 RD Fell (991_CR13) 1977; 16 JB Free (991_CR14) 1954; 7 M Lindauer (991_CR39) 1961 KJ Loope (991_CR43) 2015; 25 NL Naeger (991_CR54) 2013; 23 |
References_xml | – ident: CR22 – volume: 23 start-page: 1574 issue: 16 year: 2013 end-page: 1578 ident: CR54 article-title: Altruistic behavior by egg-laying worker honeybees publication-title: Curr Biol doi: 10.1016/j.cub.2013.06.045 – volume: 61 start-page: 417 year: 2016 end-page: 432 ident: CR55 article-title: Ecology of , the major ectoparasite of the Western honey bee, publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-010715-023731 – volume: 42 start-page: 533 issue: 4 year: 2011 end-page: 542 ident: CR41 article-title: Characteristics of honey bee colonies ( ) in Sweden surviving infestation publication-title: Apidologie doi: 10.1007/s13592-011-0029-5 – volume: 50 start-page: 138 issue: 2 year: 2011 end-page: 144 ident: CR19 article-title: Invasion of mites into mite-free honey bee colonies under the controlled conditions of a military training area publication-title: J Apic Res doi: 10.3896/IBRA.1.50.2.05 – ident: CR4 – volume: 503 start-page: 295 issue: 1 year: 1987 end-page: 306 ident: CR9 article-title: Transmission modes and evolution of the parasitism-mutualism continuum publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1987.tb40616.x – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: CR51 article-title: Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite publication-title: Nat Commun doi: 10.1038/ncomms8991 – volume: 198 start-page: 687 issue: 5 year: 2008 end-page: 693 ident: CR28 article-title: HIV-1 transmission, by stage of infection publication-title: J Infect Dis doi: 10.1086/590501 – volume: 27 start-page: 245 year: 1996 end-page: 260 ident: CR83 article-title: Honey bee hygienic behavior and defense against publication-title: Apidologie doi: 10.1051/apido:19960407 – volume: 23 start-page: 650 year: 1975 end-page: 675 ident: CR17 article-title: Factors determining the rearing and rejection of drones by the honeybee colony publication-title: Anim Behav doi: 10.1016/0003-3472(75)90143-8 – ident: CR29 – volume: 51 start-page: 422 issue: 3 year: 2020 end-page: 427 ident: CR7 article-title: A scientific note on the ‘Liebefeld Method’ to estimate honey bee colony strength: its history, use, and translation publication-title: Apidologie doi: 10.1007/s13592-019-00728-2 – ident: CR8 – ident: CR58 – volume: 63 start-page: 553 issue: 4 year: 2016 end-page: 563 ident: CR78 article-title: Honey bee sociometry: tracking honey bee colonies and their nest contents from colony founding until death publication-title: Insectes Soc doi: 10.1007/s00040-016-0499-6 – volume: 41 start-page: 443 issue: 4 year: 2010 end-page: 450 ident: CR24 article-title: is the main culprit for the death and reduced populations of overwintered honey bee ( ) colonies in Ontario, Canada publication-title: Apidologie doi: 10.1051/apido/2009076 – ident: CR42 – volume: 48 start-page: 743 issue: 6 year: 2017 end-page: 754 ident: CR73 article-title: Life-history traits of wild honey bee colonies living in forests around Ithaca, NY, USA publication-title: Apidologie doi: 10.1007/s13592-017-0519-1 – volume: 66 start-page: 593 issue: 4 year: 2019 end-page: 99 ident: CR88 article-title: Queenless colonies contribute to the male breeding population at honey bee drone congregation areas publication-title: Insectes Soc doi: 10.1007/s00040-019-00720-0 – volume: 46 start-page: 30 issue: 1 year: 1999 end-page: 42 ident: CR63 article-title: Optimal timing of comb construction by honeybee ( ) colonies: a dynamic programming model and experimental tests publication-title: Behav Ecol Sociobiol doi: 10.1007/s002650050589 – volume: 14 start-page: 49 year: 2011 end-page: 54 ident: CR87 article-title: Back to basics: sociometry and sociogenesis of ant societies (Hymenoptera: Formicidae) publication-title: Myrmecological News – volume: 107 start-page: 508 issue: 2 year: 2014 end-page: 515 ident: CR18 article-title: Autumn invasion rates of (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations publication-title: J Econ Entomol doi: 10.1603/EC13381 – year: 2017 ident: CR3 article-title: Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival publication-title: Proc R Soc B doi: 10.1098/rspb.2016.2149 – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR27 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 5 start-page: 137 issue: 3 year: 1966 end-page: 148 ident: CR32 article-title: Drifting of honeybees in commercial apiaries III: effect of apiary layout publication-title: J Apic Res doi: 10.1080/00218839.1966.11100147 – volume: 48 start-page: 88 issue: 2 year: 2001 end-page: 93 ident: CR49 article-title: Timing of production of winter bees in honey bee ( ) colonies publication-title: Insectes Soc doi: 10.1007/PL00001764 – ident: CR67 – ident: CR15 – ident: CR50 – volume: 103 start-page: S48 year: 2010 end-page: 61 ident: CR53 article-title: Deformed wing virus publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2009.06.012 – volume: 36 start-page: 592 issue: 7 year: 2020 end-page: 606 ident: CR85 article-title: : a complex parasite, crippling honey bees worldwide publication-title: Trends Parasitol doi: 10.1016/j.pt.2020.04.004 – volume: 6273 start-page: 594 year: 2016 end-page: 597 ident: CR91 article-title: Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites publication-title: Science doi: 10.1126/science.aac9976 – volume: 2 start-page: 155 issue: 2 year: 2011 end-page: 62 ident: CR38 article-title: A unified approach to model selection using the likelihood ratio test publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2010.00063.x – volume: 25 start-page: 2976 issue: 22 year: 2015 end-page: 2979 ident: CR43 article-title: Queen killing is linked to high worker-worker relatedness in a social wasp publication-title: Curr Biol doi: 10.1016/j.cub.2015.09.064 – volume: 16 start-page: 170 issue: 4 year: 1977 end-page: 173 ident: CR13 article-title: Seasonal cycle of swarming in honeybees publication-title: J Apic Res doi: 10.1080/00218839.1977.11099883 – ident: CR5 – volume: 1 start-page: 157 year: 1950 ident: CR21 article-title: Bees: their vision, chemical senses, and language publication-title: Oxford University Press – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: CR89 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 18 start-page: 137 issue: 2 year: 1987 end-page: 146 ident: CR31 article-title: Überprüfung Der Schätzmethode Zur Ermittlung Der Brutfläche Und Der Anzahl Arbeiterinnen in Freifliegenden Bienenvölkern publication-title: Apidologie doi: 10.1051/apido:19870204 – volume: 41 start-page: 3 issue: 1–2 year: 2002 end-page: 7 ident: CR45 article-title: Using inert dusts to detect and assess Varroa infestations in honey bee colonies publication-title: J Apic Res doi: 10.1080/00218839.2002.11101062 – ident: CR64 – volume: 72 start-page: 2810 issue: 12 year: 2018 end-page: 2817 ident: CR81 article-title: Queenless honey bees build infrastructure for direct reproduction until their new queen proves her worth publication-title: Evolution doi: 10.1111/evo.13628 – volume: 3 start-page: 1 issue: 6 year: 2012 end-page: 8 ident: CR1 article-title: Bee-eating birds (Coraciiformes: Meropidae) reduce virgin honey bee queen survival during mating flights and foraging activity of honey bees ( L.) publication-title: Int J Sci Eng Res – volume: 16 start-page: 206 issue: 5 year: 1966 end-page: 12 ident: CR23 article-title: Seasonal change of the honeybee worker longevity in Sapporo, North Japan, with notes on some factors affecting the life-span publication-title: Jpn J Ecol – volume: 18 start-page: 1 issue: 1 year: 2004 end-page: 15 ident: CR10 article-title: Evolution of virulence publication-title: Infect Dis Clin North Am doi: 10.1016/S0891-5520(03)00099-0 – volume: 7 start-page: 233 issue: 2/3 year: 1954 end-page: 240 ident: CR14 article-title: The behaviour of robber honeybees publication-title: Behaviour – year: 1985 ident: CR69 publication-title: Honeybee ecology: a study of adaptation in social life doi: 10.1515/9781400857876 – ident: CR72 – volume: 220 start-page: 1597 issue: 9 year: 2017 end-page: 1605 ident: CR82 article-title: The cues of colony size: how honey bees sense that their colony is large enough to begin to invest in reproduction publication-title: J Exp Biol doi: 10.1242/jeb.150342 – ident: CR2 – volume: 47 start-page: 467 issue: 3 year: 2016 end-page: 482 ident: CR40 article-title: Natural Varroa mite-surviving honeybee populations publication-title: Apidologie doi: 10.1007/s13592-015-0412-8 – volume: 29 start-page: 291 issue: 3 year: 2003 end-page: 292 ident: CR61 article-title: Interception of a live Varroa mite on imported cut flowers in the United States publication-title: Int J Acarology doi: 10.1080/01647950308684342 – volume: 54 start-page: 108 issue: 2 year: 2015 end-page: 120 ident: CR84 article-title: Towards integrated control of Varroa: 2) comparing application methods and doses of oxalic acid on the mortality of phoretic mites and their honey bee hosts publication-title: J Apic Res doi: 10.1080/00218839.2015.1106777 – volume: 17 start-page: 283 issue: 4 year: 1993 end-page: 290 ident: CR25 article-title: Survival of Oud. (Acari: Varroidae) away from its living host L publication-title: Exp Appl Acarol doi: 10.1007/BF02337278 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR60 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 25 start-page: 247 issue: 4 year: 1989 end-page: 254 ident: CR90 article-title: A quantitative study of worker reproduction in honey bee colonies publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00300050 – volume: 54 start-page: 945 issue: 12 year: 1937 end-page: 954 ident: CR11 article-title: The influence of colony populations on honey production publication-title: J Agric Res – volume: 38 start-page: 67 issue: 1 year: 2007 end-page: 76 ident: CR30 article-title: Field trial of honey bee colonies bred for mechanisms of resistance against publication-title: Apidologie doi: 10.1051/apido:2006065 – ident: CR56 – volume: 26 start-page: 343 issue: 5 year: 1990 end-page: 348 ident: CR66 article-title: The evolution of polyandry by queens in social hymenoptera: the significance of the timing of removal of diploid males publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00171100 – volume: 52 start-page: 133 issue: 1 year: 2021 end-page: 140 ident: CR34 article-title: The influence of available comb storage space on the performance of honey bee communication signals that regulate foraging publication-title: Apidologie doi: 10.1007/s13592-020-00803-z – volume: 34 start-page: 187 issue: 4 year: 1995 end-page: 196 ident: CR46 article-title: Reproduction of in cells of containing one or more mother mites and the distribution of these cells publication-title: J Apic Res doi: 10.1080/00218839.1995.11100904 – volume: 59 start-page: 453 issue: 4 year: 2012 end-page: 462 ident: CR65 article-title: Colony fissioning in honey bees: size and significance of the swarm fraction publication-title: Insectes Soc doi: 10.1007/s00040-012-0239-5 – volume: 63 start-page: 61 issue: 1 year: 2016 end-page: 65 ident: CR79 article-title: Caught in an evolutionary trap: worker honey bees that have drifted into foreign colonies do not invest in ovary activation publication-title: Insectes Soc doi: 10.1007/s00040-015-0434-2 – volume: 101 start-page: 783 issue: 10 year: 2014 end-page: 790 ident: CR80 article-title: A critical number of workers in a honeybee colony triggers investment in reproduction publication-title: Naturwissenschaften doi: 10.1007/s00114-014-1215-x – year: 2010 ident: CR70 publication-title: Honeybee democracy – volume: 5 start-page: 103 issue: 2 year: 1966 end-page: 112 ident: CR33 article-title: Drifting of honeybees in commercial apiaries II: effect of various factors when hives are arranged in rows publication-title: J Apic Res doi: 10.1080/00218839.1966.11100142 – ident: CR44 – volume: 23 start-page: 117 year: 1988 end-page: 26 ident: CR57 article-title: Reproduction by worker honey bees ( L.) publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00299895 – volume: 38 start-page: 19 year: 2007 end-page: 29 ident: CR71 article-title: Honey bees of the Arnot Forest: a population of feral colonies persisting with in the Northeastern United States publication-title: Apidologie doi: 10.1051/apido:2006055 – year: 1987 ident: CR92 publication-title: Biology of the honey bee – volume: 103 start-page: S96 year: 2010 end-page: 119 ident: CR68 article-title: Biology and control of publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2009.07.016 – volume: 46 start-page: 716 issue: 6 year: 2015 end-page: 727 ident: CR77 article-title: Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor publication-title: Apidologie doi: 10.1007/s13592-015-0361-2 – volume: 6 start-page: 655 issue: 6 year: 1993 end-page: 662 ident: CR12 article-title: Immunopathogenesis of HIV infection publication-title: J Acquir Immune Defic Syndr – year: 1961 ident: CR39 publication-title: Communication among social bees – volume: 63 start-page: 271 issue: 2 year: 2016 end-page: 278 ident: CR6 article-title: Larvae influence thermoregulatory fanning behavior in honeybees ( L.) publication-title: Insectes Soc doi: 10.1007/s00040-016-0463-5 – volume: 32 start-page: 199 year: 2001 end-page: 214 ident: CR20 article-title: Implications of horizontal and vertical pathogen transmission for honey bee epidemiology publication-title: Apidologie doi: 10.1051/apido:2001122 – year: 1987 ident: CR26 publication-title: Honey Bee Brood Diseases – volume: 38 start-page: 566 issue: 6 year: 2007 end-page: 72 ident: CR35 article-title: Honey bee colonies that have survived Varroa destructor publication-title: Apidologie doi: 10.1051/apido:2007040 – volume: 45 start-page: 151 issue: 2 year: 1998 end-page: 167 ident: CR62 article-title: Drifting of honeybees publication-title: Insectes Soc doi: 10.1007/s000400050076 – volume: 6086 start-page: 1304 year: 2012 end-page: 1306 ident: CR47 article-title: Global honey bee viral landscape altered by a parasitic mite publication-title: Science doi: 10.1126/science.1220941 – volume: 12 start-page: 187 issue: 2 year: 1987 end-page: 195 ident: CR37 article-title: Effects of reproductive timing and colony size on the survival, offspring colony size and drone production in the honey bee ( ) publication-title: Ecological Entomology doi: 10.1111/j.1365-2311.1987.tb00997.x – volume: 48 start-page: 178 year: 2001 end-page: 84 ident: CR52 article-title: The timing of worker reproduction and breakdown of policing behaviour in queenless honey bee ( L.) societies publication-title: Insect Soc doi: 10.1007/PL00001762 – volume: 14 start-page: 1 issue: 6 year: 2019 end-page: 14 ident: CR59 article-title: Mite bombs or robber lures? The roles of drifting and robbing in transmission from collapsing honey bee colonies to their neighbors publication-title: PLoS ONE doi: 10.1371/journal.pone.0218392 – volume: 42 start-page: 526 issue: 4 year: 2011 end-page: 532 ident: CR75 article-title: Small-cell comb does not control Varroa mites in colonies of honeybees of European origin publication-title: Apidologie doi: 10.1007/s13592-011-0054-4 – ident: CR76 – year: 2019 ident: CR74 publication-title: The lives of bees: the untold story of the honey bee in the wild doi: 10.1515/9780691189383 – volume: 1 start-page: 14 year: 1957 end-page: 18 ident: CR16 article-title: The food of adult drone honeybees ( ) publication-title: Br J Anim Behav doi: 10.1016/S0950-5601(57)80038-0 – volume: 63 start-page: 524 issue: 3 year: 1985 end-page: 527 ident: CR36 article-title: The effect of swarm size and date of issue on comb construction in newly founded colonies of honeybees ( L.) publication-title: Can J Zool doi: 10.1139/z85-077 – volume: 38 start-page: 77 issue: 1 year: 1991 end-page: 82 ident: CR86 article-title: Insect sociometry, a field in search of data publication-title: Insectes Soc doi: 10.1007/BF01242715 – volume: 20 start-page: 112 issue: 3 year: 2004 end-page: 114 ident: CR48 article-title: Africanized honeybees have unique tolerance to Varroa mites publication-title: Trends Parasitol doi: 10.1016/j.pt.2003.12.005 – volume: 107 start-page: 508 issue: 2 year: 2014 ident: 991_CR18 publication-title: J Econ Entomol doi: 10.1603/EC13381 – volume: 101 start-page: 783 issue: 10 year: 2014 ident: 991_CR80 publication-title: Naturwissenschaften doi: 10.1007/s00114-014-1215-x – volume: 198 start-page: 687 issue: 5 year: 2008 ident: 991_CR28 publication-title: J Infect Dis doi: 10.1086/590501 – volume: 59 start-page: 453 issue: 4 year: 2012 ident: 991_CR65 publication-title: Insectes Soc doi: 10.1007/s00040-012-0239-5 – volume: 26 start-page: 343 issue: 5 year: 1990 ident: 991_CR66 publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00171100 – volume: 27 start-page: 245 year: 1996 ident: 991_CR83 publication-title: Apidologie doi: 10.1051/apido:19960407 – volume: 23 start-page: 650 year: 1975 ident: 991_CR17 publication-title: Anim Behav doi: 10.1016/0003-3472(75)90143-8 – volume: 48 start-page: 178 year: 2001 ident: 991_CR52 publication-title: Insect Soc doi: 10.1007/PL00001762 – volume: 47 start-page: 467 issue: 3 year: 2016 ident: 991_CR40 publication-title: Apidologie doi: 10.1007/s13592-015-0412-8 – ident: 991_CR29 – ident: 991_CR5 – volume: 18 start-page: 137 issue: 2 year: 1987 ident: 991_CR31 publication-title: Apidologie doi: 10.1051/apido:19870204 – ident: 991_CR64 – volume: 38 start-page: 77 issue: 1 year: 1991 ident: 991_CR86 publication-title: Insectes Soc doi: 10.1007/BF01242715 – volume: 54 start-page: 108 issue: 2 year: 2015 ident: 991_CR84 publication-title: J Apic Res doi: 10.1080/00218839.2015.1106777 – ident: 991_CR72 doi: 10.1016/j.desal.2010.03.003 – volume: 25 start-page: 247 issue: 4 year: 1989 ident: 991_CR90 publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00300050 – volume-title: The lives of bees: the untold story of the honey bee in the wild year: 2019 ident: 991_CR74 doi: 10.1515/9780691189383 – volume: 38 start-page: 566 issue: 6 year: 2007 ident: 991_CR35 publication-title: Apidologie doi: 10.1051/apido:2007040 – volume: 220 start-page: 1597 issue: 9 year: 2017 ident: 991_CR82 publication-title: J Exp Biol doi: 10.1242/jeb.150342 – volume-title: Honey Bee Brood Diseases year: 1987 ident: 991_CR26 – volume: 6086 start-page: 1304 year: 2012 ident: 991_CR47 publication-title: Science doi: 10.1126/science.1220941 – ident: 991_CR50 – volume: 48 start-page: 88 issue: 2 year: 2001 ident: 991_CR49 publication-title: Insectes Soc doi: 10.1007/PL00001764 – volume: 34 start-page: 187 issue: 4 year: 1995 ident: 991_CR46 publication-title: J Apic Res doi: 10.1080/00218839.1995.11100904 – ident: 991_CR4 doi: 10.5962/bhl.title.119672 – volume: 20 start-page: 112 issue: 3 year: 2004 ident: 991_CR48 publication-title: Trends Parasitol doi: 10.1016/j.pt.2003.12.005 – volume: 63 start-page: 553 issue: 4 year: 2016 ident: 991_CR78 publication-title: Insectes Soc doi: 10.1007/s00040-016-0499-6 – volume: 63 start-page: 524 issue: 3 year: 1985 ident: 991_CR36 publication-title: Can J Zool doi: 10.1139/z85-077 – volume-title: Honeybee ecology: a study of adaptation in social life year: 1985 ident: 991_CR69 doi: 10.1515/9781400857876 – volume: 61 start-page: 417 year: 2016 ident: 991_CR55 publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-010715-023731 – volume: 46 start-page: 30 issue: 1 year: 1999 ident: 991_CR63 publication-title: Behav Ecol Sociobiol doi: 10.1007/s002650050589 – volume: 63 start-page: 61 issue: 1 year: 2016 ident: 991_CR79 publication-title: Insectes Soc doi: 10.1007/s00040-015-0434-2 – volume: 12 start-page: 187 issue: 2 year: 1987 ident: 991_CR37 publication-title: Ecological Entomology doi: 10.1111/j.1365-2311.1987.tb00997.x – volume: 41 start-page: 3 issue: 1–2 year: 2002 ident: 991_CR45 publication-title: J Apic Res doi: 10.1080/00218839.2002.11101062 – volume: 51 start-page: 422 issue: 3 year: 2020 ident: 991_CR7 publication-title: Apidologie doi: 10.1007/s13592-019-00728-2 – volume: 16 start-page: 170 issue: 4 year: 1977 ident: 991_CR13 publication-title: J Apic Res doi: 10.1080/00218839.1977.11099883 – volume: 585 start-page: 357 year: 2020 ident: 991_CR27 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 50 start-page: 138 issue: 2 year: 2011 ident: 991_CR19 publication-title: J Apic Res doi: 10.3896/IBRA.1.50.2.05 – volume: 25 start-page: 2976 issue: 22 year: 2015 ident: 991_CR43 publication-title: Curr Biol doi: 10.1016/j.cub.2015.09.064 – volume: 7 start-page: 233 issue: 2/3 year: 1954 ident: 991_CR14 publication-title: Behaviour – volume: 14 start-page: 1 issue: 6 year: 2019 ident: 991_CR59 publication-title: PLoS ONE doi: 10.1371/journal.pone.0218392 – volume: 3 start-page: 1 issue: 6 year: 2012 ident: 991_CR1 publication-title: Int J Sci Eng Res – volume: 32 start-page: 199 year: 2001 ident: 991_CR20 publication-title: Apidologie doi: 10.1051/apido:2001122 – year: 2017 ident: 991_CR3 publication-title: Proc R Soc B doi: 10.1098/rspb.2016.2149 – volume: 38 start-page: 67 issue: 1 year: 2007 ident: 991_CR30 publication-title: Apidologie doi: 10.1051/apido:2006065 – volume: 5 start-page: 103 issue: 2 year: 1966 ident: 991_CR33 publication-title: J Apic Res doi: 10.1080/00218839.1966.11100142 – volume: 36 start-page: 592 issue: 7 year: 2020 ident: 991_CR85 publication-title: Trends Parasitol doi: 10.1016/j.pt.2020.04.004 – ident: 991_CR44 doi: 10.1007/s00114-013-1025-6 – ident: 991_CR76 doi: 10.1007/BF02223477 – volume: 45 start-page: 151 issue: 2 year: 1998 ident: 991_CR62 publication-title: Insectes Soc doi: 10.1007/s000400050076 – volume: 6273 start-page: 594 year: 2016 ident: 991_CR91 publication-title: Science doi: 10.1126/science.aac9976 – ident: 991_CR22 doi: 10.1007/BF02510939 – volume: 2 start-page: 155 issue: 2 year: 2011 ident: 991_CR38 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2010.00063.x – volume: 5 start-page: 137 issue: 3 year: 1966 ident: 991_CR32 publication-title: J Apic Res doi: 10.1080/00218839.1966.11100147 – volume: 42 start-page: 533 issue: 4 year: 2011 ident: 991_CR41 publication-title: Apidologie doi: 10.1007/s13592-011-0029-5 – ident: 991_CR56 – volume-title: Honeybee democracy year: 2010 ident: 991_CR70 – volume-title: Biology of the honey bee year: 1987 ident: 991_CR92 – volume: 14 start-page: 49 year: 2011 ident: 991_CR87 publication-title: Myrmecological News – volume: 103 start-page: S48 year: 2010 ident: 991_CR53 publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2009.06.012 – ident: 991_CR8 doi: 10.3896/IBRA.1.52.1.09 – ident: 991_CR15 doi: 10.1017/S0021859600035103 – volume: 52 start-page: 133 issue: 1 year: 2021 ident: 991_CR34 publication-title: Apidologie doi: 10.1007/s13592-020-00803-z – volume: 6 start-page: 1 year: 2015 ident: 991_CR51 publication-title: Nat Commun doi: 10.1038/ncomms8991 – volume: 48 start-page: 743 issue: 6 year: 2017 ident: 991_CR73 publication-title: Apidologie doi: 10.1007/s13592-017-0519-1 – volume: 6 start-page: 655 issue: 6 year: 1993 ident: 991_CR12 publication-title: J Acquir Immune Defic Syndr – volume: 23 start-page: 1574 issue: 16 year: 2013 ident: 991_CR54 publication-title: Curr Biol doi: 10.1016/j.cub.2013.06.045 – volume: 17 start-page: 283 issue: 4 year: 1993 ident: 991_CR25 publication-title: Exp Appl Acarol doi: 10.1007/BF02337278 – volume: 72 start-page: 2810 issue: 12 year: 2018 ident: 991_CR81 publication-title: Evolution doi: 10.1111/evo.13628 – volume-title: Communication among social bees year: 1961 ident: 991_CR39 – volume: 46 start-page: 716 issue: 6 year: 2015 ident: 991_CR77 publication-title: Apidologie doi: 10.1007/s13592-015-0361-2 – ident: 991_CR58 doi: 10.1371/journal.pone.0167798 – volume: 103 start-page: S96 year: 2010 ident: 991_CR68 publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2009.07.016 – volume: 18 start-page: 1 issue: 1 year: 2004 ident: 991_CR10 publication-title: Infect Dis Clin North Am doi: 10.1016/S0891-5520(03)00099-0 – volume: 1 start-page: 14 year: 1957 ident: 991_CR16 publication-title: Br J Anim Behav doi: 10.1016/S0950-5601(57)80038-0 – ident: 991_CR2 doi: 10.18637/jss.v067.i01 – volume: 63 start-page: 271 issue: 2 year: 2016 ident: 991_CR6 publication-title: Insectes Soc doi: 10.1007/s00040-016-0463-5 – volume: 23 start-page: 117 year: 1988 ident: 991_CR57 publication-title: Behav Ecol Sociobiol doi: 10.1007/BF00299895 – volume: 12 start-page: 2825 year: 2011 ident: 991_CR60 publication-title: J Mach Learn Res – volume: 29 start-page: 291 issue: 3 year: 2003 ident: 991_CR61 publication-title: Int J Acarology doi: 10.1080/01647950308684342 – ident: 991_CR67 – volume: 38 start-page: 19 year: 2007 ident: 991_CR71 publication-title: Apidologie doi: 10.1051/apido:2006055 – volume: 1 start-page: 157 year: 1950 ident: 991_CR21 publication-title: Oxford University Press – volume: 16 start-page: 206 issue: 5 year: 1966 ident: 991_CR23 publication-title: Jpn J Ecol – volume: 66 start-page: 593 issue: 4 year: 2019 ident: 991_CR88 publication-title: Insectes Soc doi: 10.1007/s00040-019-00720-0 – volume: 42 start-page: 526 issue: 4 year: 2011 ident: 991_CR75 publication-title: Apidologie doi: 10.1007/s13592-011-0054-4 – ident: 991_CR42 doi: 10.1371/journal.pone.0150362 – volume: 17 start-page: 261 year: 2020 ident: 991_CR89 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 503 start-page: 295 issue: 1 year: 1987 ident: 991_CR9 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1987.tb40616.x – volume: 54 start-page: 945 issue: 12 year: 1937 ident: 991_CR11 publication-title: J Agric Res – volume: 41 start-page: 443 issue: 4 year: 2010 ident: 991_CR24 publication-title: Apidologie doi: 10.1051/apido/2009076 |
SSID | ssj0012854 |
Score | 2.3415956 |
Snippet | Organisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of colony... AbstractOrganisms live within cycles of birth, growth, and reproduction, but life cycles also include decline and death. Here, we focus on the process of... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 13 |
SubjectTerms | adulthood adults Apis mellifera Bees Biomedical and Life Sciences Colonies Death decline Disease transmission Drones Entomology evolution Honey honey bee colonies honey bees Life cycles Life Sciences Mites Mortality Original Article parasitic mites Populations Queenless reproduction Sociometry Survival Varroa destructor Virulence Workers (insect caste) |
Title | Dynamics of honey bee colony death and its implications for Varroa destructor mite transmission using observation hives |
URI | https://link.springer.com/article/10.1007/s13592-023-00991-4 https://www.proquest.com/docview/2776067781 https://www.proquest.com/docview/3153734143 https://hal.science/hal-04464771 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhwQKWAutBWBnGDSIkfiX1MH8uK14lFhYtlJ07bS4LIAuq_Z8ZJdlsEB06RHMtK_E08XzwznwFeauF1aHieeE1HmNXKJUa5KjGe2LM2QcRTSz58zBdL-fZcnY9FYf2U7T6FJONKvSl2E4oyJblIiNbgn88W7CjSk0IrXvJyHTugmsAhriwTjWxgLJX5-xi33NHWJSVD3mCafwRHo8-Z78KDkSyyckD3IdwJ7R7cLy--j4IZYQ_ufu3ixvgj-HU6HC7fs65hl10brpkPgZEqdXvNaqJ6zLU1u1r17OpGHjlD2so-kxajw16Dniy2UN0TW5EnQ0ugLTVGKfIXrPPrfVwWNWsfw3J-9ulkkYzHKiQVuudVwisnXJWbzAmehjo1PDVprXC-KsQzT4X0ReYUd15oyUNdi9xrIyVplaVNLcQT2G7xLfaBiVQ2ygsZUtVIVWmf6yZIZbKAMDhlZvBqml37bVDPsBudZMLCIhY2YmHlDF4gAOuOJHy9KN9baqOwsyyK7Gc2g4MJHzt-br3lRZFHKTy8_Xx9G6eHoh-uDd2P3gpc2wv02VLM4PWE62aIfz_W0__r_gzu8WhglPJyANsIWzhE4rLyR7BTHp8ez-n65su7s6Not78Bdn7mpA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3Rogo4IFpAbCngVtwgUuKPxD6ugGqBbU9dVHGx7MRpe0lQs23Vf98ZJ9ktCA5cY8tK_BzPs2fmDcB7LbwONc8Tr6mEWaVcYpQrE-OJPWsTRKxacnSczxby26k6HZLCujHafXRJxp16newmFEVKcpEQrcGTzwY8JDcjHbkWfLryHVBOYO9XlolGNjCkyvx9jN_M0cY5BUPeY5p_OEejzTl8Bk8HssimPbrb8CA0O_BkenY5CGaEHdj62caL8edw87kvLt-xtmbnbRNumQ-BkSp1c8sqonrMNRW7WHbs4l4cOUPayn6QFqPDXr2eLD6hvCe2JEuGK4Gu1BiFyJ-x1q_ucVnUrH0Bi8MvJ59myVBWISnRPC8TXjrhytxkTvA0VKnhqUkrhfNVIp55KqQvMqe480JLHqpK5F4bKUmrLK0rIV7CZoNf8QqYSGWtvJAhVbVUpfa5roNUJgsIg1NmAh_G2bW_evUMu9ZJJiwsYmEjFlZO4AABWHUk4evZdG7pGbmdZVFk19kE9kZ87PC7dZYXRR6l8LB5f9WM00PeD9eE9qqzAvf2Am22FBP4OOK6HuLfr7X7f93fwaPZydHczr8ef38Nj3lcbBT-sgebCGF4gyRm6d_GNXsH3TzmgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrUBw4FFALBQwiBukTfxI7OOKdlloqThQVLhYduK0FVJSsSmo_Hpm8thdKjggrrFl2TNjzRfPzDcAL7TwOpQ8jbymFmaFcpFRLo-MJ_SsTRBt15L3B-nsUL47UkcrVfxttvsQkuxqGoilqWq2z4pye1n4JhRlTXIREcTBv6A1WJfUQ2IE65M3n_d2F5EEqhDsoswy0ogN-sKZP6_ym3NaO6HUyBXceSlU2nqg6S1ww967xJOvW-eN38p_XqJ1_J_D3YabPTxlk86e7sCVUG3Ajcnxt56iI2zA1S91-xR_F37sdO3s56wu2UldhQvmQ2DEg11dsILAJXNVwU6bOTtdyVxnCJTZJ2J_dDirY7DFL1RpxRrynWh79IjHKCn_mNV-8XLMWpbce3A43f34ehb1jRyiHAFBE_HcCZenJnGCx6GIDY9NXCjUSY4WlMZC-ixxijsvtOShKETqtZGS2NHishDiPowqPMUDYCKWpfJChliVUuXap7oMUpkkoKqdMmN4OWjQnnV8HXbJzEyCtShY2wrWyjE8RyUvJhLV9myyb-kbBbplliXfkzFsDjZg-ws-tzzL0pZ8D4efLYZRPBRvcVWoz-dWoDfJECVIMYZXg9qXS_x9Ww__bfpTuPZhZ2r33x7sPYLrvDUcyrfZhBFqMDxG1NT4J_3F-AWPfgxs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+honey+bee+colony+death+and+its+implications+for+Varroa+destructor+mite+transmission+using+observation+hives&rft.jtitle=Apidologie&rft.au=Smith%2C+Michael+L&rft.au=Peck%2C+David+T&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-8435&rft.eissn=1297-9678&rft.volume=54&rft.issue=1&rft_id=info:doi/10.1007%2Fs13592-023-00991-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8435&client=summon |