New Modes for the Prediction of Gas Chromatographic Relative Retention Times of Polybrominated Diphenyl Ethers

A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave-multiple-out cross validation (LMOC...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 29; no. 11; pp. 2495 - 2504
Main Author 易忠胜 李连臣 张爱茜 王连生
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.11.2011
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1001-604X
1614-7065
DOI10.1002/cjoc.201100039

Cover

Abstract A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave-multiple-out cross validation (LMOCV) was used to select optimal subsets from large-size molecular descriptors. Overall multiple-linear regression fitting correlation coefficients (R2) are greater than 0.988, except for the CP-Sil 19 colunm, in which Q~uocv (correlation coefficient of LMOCV), Q~oocv (correlation coefficient of leave-one-out cross validation, LOOCV), and Rp2re (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC-RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain.
AbstractList A series of quantitative structure‐retention relationship models were developed to predict gas chromatographic relative retention times (GC‐RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave‐multiple‐out cross validation (LMOCV) was used to select optimal subsets from large‐size molecular descriptors. Overall multiple‐linear regression fitting correlation coefficients ( R 2 ) are greater than 0.988, except for the CP‐Sil 19 column, in which Q LMOCV 2 (correlation coefficient of LMOCV), Q LOOCV 2 (correlation coefficient of leave‐one‐out cross validation, LOOCV), and R pre 2 (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC‐RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain.
A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave-multiple-out cross validation (LMOCV) was used to select optimal subsets from large-size molecular descriptors. Overall multiple-linear regression fitting correlation coefficients (R2) are greater than 0.988, except for the CP-Sil 19 colunm, in which Q~uocv (correlation coefficient of LMOCV), Q~oocv (correlation coefficient of leave-one-out cross validation, LOOCV), and Rp2re (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC-RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain.
A series of quantitative structure‐retention relationship models were developed to predict gas chromatographic relative retention times (GC‐RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave‐multiple‐out cross validation (LMOCV) was used to select optimal subsets from large‐size molecular descriptors. Overall multiple‐linear regression fitting correlation coefficients (R2) are greater than 0.988, except for the CP‐Sil 19 column, in which QLMOCV2 (correlation coefficient of LMOCV), QLOOCV2 (correlation coefficient of leave‐one‐out cross validation, LOOCV), and Rpre2 (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC‐RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain. Correlation coefficients of LMOCV (QLMOCV2) of 10 datasets vs. number of descriptors.
A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave-multiple-out cross validation (LMOCV) was used to select optimal subsets from large-size molecular descriptors. Overall multiple-linear regression fitting correlation coefficients (R2) are greater than 0.988, except for the CP-Sil 19 column, in which QLMOCV2 (correlation coefficient of LMOCV), QLOOCV2 (correlation coefficient of leave-one-out cross validation, LOOCV), and Rpre2 (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC-RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain.
Author Zhang, Aiqian
Wang, Liansheng
Li, Lianchen
Yi, Zhongsheng
AuthorAffiliation State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing, Jiangsu 210093, China College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004, China State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
Author_xml – sequence: 1
  fullname: 易忠胜 李连臣 张爱茜 王连生
BookMark eNqFkE1vEzEQhleoSLSFK2cjzhvG--HdPaKlJFSlLagoqBdr4p3NOmzs1HZp8-9xSBUhJMTJM9LzzIzfk-TIWENJ8prDhANk79TKqkkGPDaQN8-SYy54kVYgyqNYA_BUQPH9RXLi_SryVZWJ48Rc0gP7bDvyrLeOhYHYtaNOq6CtYbZnU_SsHZxdY7BLh5tBK_aVRgz6J8UikPlN3uh1HBH5aztuFxHXBgN17IPeDGS2IzuLo51_mTzvcfT06uk9Tb59PLtpZ-nF1fRT-_4iVXnNm1Q1HfJMNTlC1uWkEHOlQGC_iK2oOqwAe6UUh66nQi1qyIgoK5smqxFUnZ8mb_dzN87e3ZMPcmXvnYkrJa-EqEHUvIzUZE8pZ7131MuN02t0W8lB7jKVu0zlIdMoFH8JSgfcBRAc6vHfWrPXHvRI2_8ske35Vfunm-5d7QM9Hlx0P6So8qqU88upnN9-mbfz2a2cRf7N04mDNcs7bZYHpwBelzz--xcqHKrb
CitedBy_id crossref_primary_10_1016_j_chroma_2013_05_018
crossref_primary_10_1007_s10337_014_2735_4
Cites_doi 10.1016/j.chemosphere.2006.07.072
10.1016/j.chroma.2003.07.002
10.1002/9783527615452.ch5
10.1016/S0048-9697(01)00852-X
10.1021/ci010245a
10.1021/ci025626i
10.1021/ci010291a
10.1021/ci020377j
10.1177/026119290503300508
10.1177/026119290503300209
10.1007/s00894-007-0195-6
10.1002/qsar.19940130403
10.1021/es900472k
10.1016/S0169-7439(98)00167-1
10.1021/ac901805d
10.1002/9783527628766
10.1111/j.2517-6161.1977.tb01603.x
10.1016/S0160-4120(03)00108-9
10.1080/01621459.1986.10478291
10.1080/00401706.1999.10485634
10.1016/S0165-9936(03)00607-1
10.1093/toxsci/56.1.95
10.1016/j.envint.2008.11.001
10.1002/9783527613106
10.1016/j.chroma.2010.02.070
10.1016/0169-7439(95)00058-5
10.1002/cem.1180060604
10.1016/j.chroma.2005.11.034
10.1080/01621459.1993.10476299
10.1002/qsar.200610151
10.1021/cr068412z
10.1016/j.chroma.2004.12.059
10.1016/j.chroma.2007.03.108
10.1289/ehp.01109s149
10.1002/qsar.19940130306
10.1080/08927022.2010.503326
10.1214/aos/1176349027
10.1365/s10337-006-0160-z
10.1016/0169-7439(89)80012-7
ContentType Journal Article
Copyright Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2011 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 2RA
92L
CQIGP
~WA
BSCLL
AAYXX
CITATION
DOI 10.1002/cjoc.201100039
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate New Modes for the Prediction of Gas Chromatographic Relative Retention Times of Polybrominated Diphenyl Ethers
EISSN 1614-7065
EndPage 2504
ExternalDocumentID 3957969411
10_1002_cjoc_201100039
CJOC201100039
ark_67375_WNG_WZQWCWHZ_H
40185115
Genre shortCommunication
GrantInformation_xml – fundername: the Guangxi Natural Science Foundation
  funderid: 2011GXNSFA018061
– fundername: 863 Advanced Research Project
  funderid: 2007AA06Z416
– fundername: the National Nature Foundation Committee of China
  funderid: 21167006
– fundername: the Scientific Research Fund of Guangxi Education Department
  funderid: 200708LX265
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29B
2RA
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92L
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
BZXJU
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RK2
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WA
~WT
-SB
-S~
5XA
5XC
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
CAJEB
HGLYW
OIG
Q--
TGP
U1G
U5L
AAXDM
AAYXX
CITATION
ID FETCH-LOGICAL-c3819-c9da12c93a02d3ecaa3cc06afb2d367da70afccc10dfe4cb802eee259928a0c83
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Fri Jul 25 10:44:23 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Wed Oct 01 06:42:09 EDT 2025
Wed Jan 22 16:21:05 EST 2025
Sun Sep 21 06:19:33 EDT 2025
Wed Feb 14 10:47:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3819-c9da12c93a02d3ecaa3cc06afb2d367da70afccc10dfe4cb802eee259928a0c83
Notes gas chromatography relative retention times, polybrominated diphenyl ethers, leave-multiple-out cross validation, quantitative structure-retention relationships, genetic algorithm
31-1547/O6
A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209 polybrominated diphenyl ether (PBDE) congeners on 10 stationary phases. A genetic algorithm with twofold leave-multiple-out cross validation (LMOCV) was used to select optimal subsets from large-size molecular descriptors. Overall multiple-linear regression fitting correlation coefficients (R2) are greater than 0.988, except for the CP-Sil 19 colunm, in which Q~uocv (correlation coefficient of LMOCV), Q~oocv (correlation coefficient of leave-one-out cross validation, LOOCV), and Rp2re (correlation coefficients of prediction set) are larger than 0.98. The excellent statistical parameters reveal that the models are robust and have high internal and external predictive capability. According to the descriptors for constructing the models, the GC-RRTs in various stationary phases are highly dependent on distances among atoms, branches of molecules, and molecular properties. PBDE congeners with 1, 9, and 10 bromines are major outliers based on the results of the application domain.
Yi, Zhongsheng Li, Lianchen Zhang, Aiqian Wang, Liansheng(a State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing, Jiangsu 210093, China b College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004, China c State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China)
istex:52A30EF73EB33B975C0690521652A8277D2EB35D
the Scientific Research Fund of Guangxi Education Department - No. 200708LX265
the National Nature Foundation Committee of China - No. 21167006
863 Advanced Research Project - No. 2007AA06Z416
ark:/67375/WNG-WZQWCWHZ-H
ArticleID:CJOC201100039
the Guangxi Natural Science Foundation - No. 2011GXNSFA018061
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1766806815
PQPubID 986331
PageCount 10
ParticipantIDs proquest_journals_1766806815
crossref_primary_10_1002_cjoc_201100039
crossref_citationtrail_10_1002_cjoc_201100039
wiley_primary_10_1002_cjoc_201100039_CJOC201100039
istex_primary_ark_67375_WNG_WZQWCWHZ_H
chongqing_primary_40185115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November, 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November, 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationTitleAlternate Chinese Journal of Chemistry
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Baumann, K.. Trac-Trends Anal. Chem., 2003, 22, 395.
Rahman, F.; Langford, K.; Scrimshaw, M.; Lester, J.. Sci. Total Environ., 2001, 275, 1.
Meerts, I.; van Zanden, J.; Luijks, E.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, Å.; Brouwer, A.. Toxicol. Sci., 2000, 56, 95.
Rayne, S.; Ikonomou, M.. J. Chromatogr. A, 2003, 1016, 235.
Dassanayake, R.; Wei, H.; Chen, R.; Li, A.. Anal. Chem., 2009, 81, 9795.
Efron, B.. J. Am. Stat. Assoc., 1986, 81, 461.
Kubinyi, H.. QSAR Comb. Sci., 1994, 13, 393.
H?skuldsson, A.. Chemometr. Intell. Lab. Syst., 1996, 32, 37.
Abraham, B.; Chipman, H.; Vijayan, K.. Technometrics, 1999, 41, 135.
Wold, S.; Eriksson, L., In Chemometric Methods in Molecular Design, Vol. 2, Ed.: Waterbeemd, H. V. D., Wiley VCH Publishers, Inc., New York, 1995, p. 309.
Wang, Y.; Li, A.; Liu, H.; Zhang, Q.; Ma, W.; Song, W.; Jiang, G.. J. Chromatogr. A, 2006, 1103, 314.
Mitra, I.; Saha, A.; Roy, K.. Molecular Simulation, 2010, 36, 1067.
Gramatica, P.. QSAR Comb. Sci., 2007, 26, 694.
Hawkins, D.; Basak, S.; Mills, D.. J. Chem. Inf. Comput. Sci., 2003, 43, 579.
Netzeva, T.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M.; Gramatica, P.; Jaworska, J.; Kahn, S.; Klopman, G.; Marchant, C.. Altern. Lab. Anim., 2005, 33, 1.
Héberger, K.. J. Chromatogr. A, 2007, 1158, 273.
Shao, J.. J. Am. Stat. Assoc., 1993, 88, 486.
Kaliszan, R.. Chem. Rev., 2007, 107, 3212.
Stone, M.. J. Roy. Stat. Soc. Ser. B (Methodological), 1977, 39, 44.
Liu, H. Y.; Liu, S. S.; Qin, L. T.. J. Mol. Model., 2007, 13, 611.
Todeschini, R.; Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley VCH, New York, 2009.
Xu, H. Y.; Zou, J. W.; Yu, Q. S.; Wang, Y. H.; Zhang, J. Y.; Jin, H. X.. Chemosphere, 2007, 66, 1998.
Zhang, P.. The Annals of Statistics, 1993, 21, 299.
Korytár, P.; Covaci, A.; de Boer, J.; Gelbin, A.; Brinkman, U.. J. Chromatogr. A, 2005, 1065, 239.
Darnerud, P.; Eriksen, G.; Jóhannesson, T.; Larsen, P.; Viluksela, M.. Environ. Health Perspect., 2001, 109, 49.
Sjödin, A.; Patterson, D.. Environ. Int., 2003, 29, 829.
Kubinyi, H.. QSAR Comb. Sci., 1994, 13, 285.
N?s, T.. Chemometr. Intell. Lab. Syst., 1989, 5, 155.
Wei, H.; Yang, R.; Li, A.; Christensen, E.; Rockne, K.. J. Chromatogr. A, 2010, 1217, 2964.
Todeschini, R.; Consonni, V., Handbook of Molecular Descriptors, Wiley VCH, New York, 2000.
deBruyn, A.; Meloche, L.; Lowe, C.. Environ. Sci. Technol., 2009, 43, 3700.
Liu, S. S.; Liu, H. L.; Yin, C. S.; Wang, L. S.. J. Chem. Inf. Comput. Sci., 2003, 43, 964.
Liu, S. S.; Liu, Y.; Yin, D. Q.. Chin. Chem. Lett., 2005, 16, 1559.
Yogui, G.; Sericano, J.. Environ. Int., 2009, 35, 655.
Martens, H. A.; Dardenne, P.. Chemometr. Intell. Lab. Syst., 1998, 44, 99.
Zhang, Y. H.; Liu, S. S.; Liu, H. Y.. Chromatographia, 2007, 65, 319.
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T.. Altern. Lab. Anim., 2005, 33, 445.
Yasri, A.; Hartsough, D.. J. Chem. Inf. Comput. Sci., 2001, 41, 1218.
Liu, S. S.; Yin, C. S.; Wang, L. S.. J. Chem. Inf. Comput. Sci., 2002, 42, 749.
Cruciani, G.; Baroni, M.; Clementi, S.; Costantino, G.; Riganelli, D.; Skagerberg, B.. J. Chemom., 1992, 6, 335.
2003; 1016
1989; 5
2007; 107
2009; 43
2010; 36
2009; 81
1993; 88
1993; 21
2010; 1217
2009
2006; 1103
1999; 41
1995; 2
2001; 109
2007; 13
1996; 32
2001; 41
1998; 44
1992; 6
2001; 275
2009; 35
1986; 81
2000
2002; 42
2000; 56
1977; 39
2007; 1158
2005; 1065
1994; 13
2003; 29
2007; 65
2005; 16
2007; 66
2005; 33
2003; 43
2003; 22
2007; 26
Liu S. S. (e_1_2_1_40_2) 2005; 16
Stone M. (e_1_2_1_31_2) 1977; 39
e_1_2_1_41_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
Efron B. (e_1_2_1_29_2) 1986; 81
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
Netzeva T. (e_1_2_1_38_2) 2005; 33
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Dassanayake, R.; Wei, H.; Chen, R.; Li, A.. Anal. Chem., 2009, 81, 9795.
– reference: Liu, S. S.; Yin, C. S.; Wang, L. S.. J. Chem. Inf. Comput. Sci., 2002, 42, 749.
– reference: Hawkins, D.; Basak, S.; Mills, D.. J. Chem. Inf. Comput. Sci., 2003, 43, 579.
– reference: Héberger, K.. J. Chromatogr. A, 2007, 1158, 273.
– reference: deBruyn, A.; Meloche, L.; Lowe, C.. Environ. Sci. Technol., 2009, 43, 3700.
– reference: Darnerud, P.; Eriksen, G.; Jóhannesson, T.; Larsen, P.; Viluksela, M.. Environ. Health Perspect., 2001, 109, 49.
– reference: Cruciani, G.; Baroni, M.; Clementi, S.; Costantino, G.; Riganelli, D.; Skagerberg, B.. J. Chemom., 1992, 6, 335.
– reference: Sjödin, A.; Patterson, D.. Environ. Int., 2003, 29, 829.
– reference: Yasri, A.; Hartsough, D.. J. Chem. Inf. Comput. Sci., 2001, 41, 1218.
– reference: Shao, J.. J. Am. Stat. Assoc., 1993, 88, 486.
– reference: Liu, H. Y.; Liu, S. S.; Qin, L. T.. J. Mol. Model., 2007, 13, 611.
– reference: Martens, H. A.; Dardenne, P.. Chemometr. Intell. Lab. Syst., 1998, 44, 99.
– reference: Gramatica, P.. QSAR Comb. Sci., 2007, 26, 694.
– reference: Todeschini, R.; Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley VCH, New York, 2009.
– reference: N?s, T.. Chemometr. Intell. Lab. Syst., 1989, 5, 155.
– reference: Rayne, S.; Ikonomou, M.. J. Chromatogr. A, 2003, 1016, 235.
– reference: Korytár, P.; Covaci, A.; de Boer, J.; Gelbin, A.; Brinkman, U.. J. Chromatogr. A, 2005, 1065, 239.
– reference: Zhang, Y. H.; Liu, S. S.; Liu, H. Y.. Chromatographia, 2007, 65, 319.
– reference: Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T.. Altern. Lab. Anim., 2005, 33, 445.
– reference: Kubinyi, H.. QSAR Comb. Sci., 1994, 13, 393.
– reference: Liu, S. S.; Liu, H. L.; Yin, C. S.; Wang, L. S.. J. Chem. Inf. Comput. Sci., 2003, 43, 964.
– reference: Xu, H. Y.; Zou, J. W.; Yu, Q. S.; Wang, Y. H.; Zhang, J. Y.; Jin, H. X.. Chemosphere, 2007, 66, 1998.
– reference: Efron, B.. J. Am. Stat. Assoc., 1986, 81, 461.
– reference: Yogui, G.; Sericano, J.. Environ. Int., 2009, 35, 655.
– reference: Abraham, B.; Chipman, H.; Vijayan, K.. Technometrics, 1999, 41, 135.
– reference: Wold, S.; Eriksson, L., In Chemometric Methods in Molecular Design, Vol. 2, Ed.: Waterbeemd, H. V. D., Wiley VCH Publishers, Inc., New York, 1995, p. 309.
– reference: H?skuldsson, A.. Chemometr. Intell. Lab. Syst., 1996, 32, 37.
– reference: Baumann, K.. Trac-Trends Anal. Chem., 2003, 22, 395.
– reference: Wei, H.; Yang, R.; Li, A.; Christensen, E.; Rockne, K.. J. Chromatogr. A, 2010, 1217, 2964.
– reference: Zhang, P.. The Annals of Statistics, 1993, 21, 299.
– reference: Wang, Y.; Li, A.; Liu, H.; Zhang, Q.; Ma, W.; Song, W.; Jiang, G.. J. Chromatogr. A, 2006, 1103, 314.
– reference: Rahman, F.; Langford, K.; Scrimshaw, M.; Lester, J.. Sci. Total Environ., 2001, 275, 1.
– reference: Netzeva, T.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M.; Gramatica, P.; Jaworska, J.; Kahn, S.; Klopman, G.; Marchant, C.. Altern. Lab. Anim., 2005, 33, 1.
– reference: Kaliszan, R.. Chem. Rev., 2007, 107, 3212.
– reference: Stone, M.. J. Roy. Stat. Soc. Ser. B (Methodological), 1977, 39, 44.
– reference: Kubinyi, H.. QSAR Comb. Sci., 1994, 13, 285.
– reference: Mitra, I.; Saha, A.; Roy, K.. Molecular Simulation, 2010, 36, 1067.
– reference: Liu, S. S.; Liu, Y.; Yin, D. Q.. Chin. Chem. Lett., 2005, 16, 1559.
– reference: Meerts, I.; van Zanden, J.; Luijks, E.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, Å.; Brouwer, A.. Toxicol. Sci., 2000, 56, 95.
– reference: Todeschini, R.; Consonni, V., Handbook of Molecular Descriptors, Wiley VCH, New York, 2000.
– volume: 81
  start-page: 461
  year: 1986
  publication-title: J. Am. Stat. Assoc.
– volume: 22
  start-page: 395
  year: 2003
  publication-title: Trac‐Trends Anal. Chem.
– year: 2009
– volume: 43
  start-page: 579
  year: 2003
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 1016
  start-page: 235
  year: 2003
  publication-title: J. Chromatogr. A
– volume: 33
  start-page: 1
  year: 2005
  publication-title: Altern. Lab. Anim.
– volume: 35
  start-page: 655
  year: 2009
  publication-title: Environ. Int.
– volume: 109
  start-page: 49
  year: 2001
  publication-title: Environ. Health Perspect.
– volume: 43
  start-page: 3700
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 95
  year: 2000
  publication-title: Toxicol. Sci.
– volume: 1158
  start-page: 273
  year: 2007
  publication-title: J. Chromatogr. A
– year: 2000
– volume: 65
  start-page: 319
  year: 2007
  publication-title: Chromatographia
– volume: 13
  start-page: 611
  year: 2007
  publication-title: J. Mol. Model.
– volume: 32
  start-page: 37
  year: 1996
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 13
  start-page: 393
  year: 1994
  publication-title: QSAR Comb. Sci.
– volume: 39
  start-page: 44
  year: 1977
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodological)
– volume: 275
  start-page: 1
  year: 2001
  publication-title: Sci. Total Environ.
– volume: 41
  start-page: 1218
  year: 2001
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 1217
  start-page: 2964
  year: 2010
  publication-title: J. Chromatogr. A
– volume: 16
  start-page: 1559
  year: 2005
  publication-title: Chin. Chem. Lett.
– volume: 29
  start-page: 829
  year: 2003
  publication-title: Environ. Int.
– volume: 33
  start-page: 445
  year: 2005
  publication-title: Altern. Lab. Anim.
– volume: 26
  start-page: 694
  year: 2007
  publication-title: QSAR Comb. Sci.
– volume: 2
  start-page: 309
  year: 1995
– volume: 43
  start-page: 964
  year: 2003
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 42
  start-page: 749
  year: 2002
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 88
  start-page: 486
  year: 1993
  publication-title: J. Am. Stat. Assoc.
– volume: 66
  start-page: 1998
  year: 2007
  publication-title: Chemosphere
– volume: 81
  start-page: 9795
  year: 2009
  publication-title: Anal. Chem.
– volume: 1065
  start-page: 239
  year: 2005
  publication-title: J. Chromatogr. A
– volume: 41
  start-page: 135
  year: 1999
  publication-title: Technometrics
– volume: 1103
  start-page: 314
  year: 2006
  publication-title: J. Chromatogr. A
– volume: 6
  start-page: 335
  year: 1992
  publication-title: J. Chemom.
– volume: 5
  start-page: 155
  year: 1989
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 36
  start-page: 1067
  year: 2010
  publication-title: Molecular Simulation
– volume: 107
  start-page: 3212
  year: 2007
  publication-title: Chem. Rev.
– volume: 44
  start-page: 99
  year: 1998
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 21
  start-page: 299
  year: 1993
  publication-title: The Annals of Statistics
– volume: 13
  start-page: 285
  year: 1994
  publication-title: QSAR Comb. Sci.
– ident: e_1_2_1_41_2
  doi: 10.1016/j.chemosphere.2006.07.072
– ident: e_1_2_1_16_2
  doi: 10.1016/j.chroma.2003.07.002
– ident: e_1_2_1_35_2
  doi: 10.1002/9783527615452.ch5
– volume: 16
  start-page: 1559
  year: 2005
  ident: e_1_2_1_40_2
  publication-title: Chin. Chem. Lett.
– ident: e_1_2_1_7_2
  doi: 10.1016/S0048-9697(01)00852-X
– ident: e_1_2_1_23_2
  doi: 10.1021/ci010245a
– ident: e_1_2_1_25_2
  doi: 10.1021/ci025626i
– ident: e_1_2_1_22_2
  doi: 10.1021/ci010291a
– ident: e_1_2_1_20_2
  doi: 10.1021/ci020377j
– ident: e_1_2_1_39_2
  doi: 10.1177/026119290503300508
– volume: 33
  start-page: 1
  year: 2005
  ident: e_1_2_1_38_2
  publication-title: Altern. Lab. Anim.
  doi: 10.1177/026119290503300209
– ident: e_1_2_1_13_2
  doi: 10.1007/s00894-007-0195-6
– ident: e_1_2_1_24_2
  doi: 10.1002/qsar.19940130403
– ident: e_1_2_1_4_2
  doi: 10.1021/es900472k
– ident: e_1_2_1_26_2
  doi: 10.1016/S0169-7439(98)00167-1
– ident: e_1_2_1_5_2
  doi: 10.1021/ac901805d
– ident: e_1_2_1_18_2
  doi: 10.1002/9783527628766
– volume: 39
  start-page: 44
  year: 1977
  ident: e_1_2_1_31_2
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01603.x
– ident: e_1_2_1_2_2
  doi: 10.1016/S0160-4120(03)00108-9
– volume: 81
  start-page: 461
  year: 1986
  ident: e_1_2_1_29_2
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1986.10478291
– ident: e_1_2_1_19_2
  doi: 10.1080/00401706.1999.10485634
– ident: e_1_2_1_34_2
  doi: 10.1016/S0165-9936(03)00607-1
– ident: e_1_2_1_8_2
  doi: 10.1093/toxsci/56.1.95
– ident: e_1_2_1_3_2
  doi: 10.1016/j.envint.2008.11.001
– ident: e_1_2_1_17_2
  doi: 10.1002/9783527613106
– ident: e_1_2_1_9_2
  doi: 10.1016/j.chroma.2010.02.070
– ident: e_1_2_1_28_2
  doi: 10.1016/0169-7439(95)00058-5
– ident: e_1_2_1_33_2
  doi: 10.1002/cem.1180060604
– ident: e_1_2_1_12_2
  doi: 10.1016/j.chroma.2005.11.034
– ident: e_1_2_1_30_2
  doi: 10.1080/01621459.1993.10476299
– ident: e_1_2_1_37_2
  doi: 10.1002/qsar.200610151
– ident: e_1_2_1_11_2
  doi: 10.1021/cr068412z
– ident: e_1_2_1_15_2
  doi: 10.1016/j.chroma.2004.12.059
– ident: e_1_2_1_10_2
  doi: 10.1016/j.chroma.2007.03.108
– ident: e_1_2_1_6_2
  doi: 10.1289/ehp.01109s149
– ident: e_1_2_1_21_2
  doi: 10.1002/qsar.19940130306
– ident: e_1_2_1_36_2
  doi: 10.1080/08927022.2010.503326
– ident: e_1_2_1_32_2
  doi: 10.1214/aos/1176349027
– ident: e_1_2_1_14_2
  doi: 10.1365/s10337-006-0160-z
– ident: e_1_2_1_27_2
  doi: 10.1016/0169-7439(89)80012-7
SSID ssj0027726
Score 1.8743548
Snippet A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209...
A series of quantitative structure‐retention relationship models were developed to predict gas chromatographic relative retention times (GC‐RRTs) for 209...
A series of quantitative structure-retention relationship models were developed to predict gas chromatographic relative retention times (GC-RRTs) for 209...
SourceID proquest
crossref
wiley
istex
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2495
SubjectTerms Chromatography
Correlation coefficient
Ethers
Fire resistant materials
Fish
gas chromatography relative retention times
genetic algorithm
leave-multiple-out cross validation
Polybrominated diphenyl ethers
quantitative structure-retention relationships
Retention
交叉验证
分子描述符
多溴二苯醚
模型预测
气相色谱
瓦斯预测
相关系数
相对保留时间
Title New Modes for the Prediction of Gas Chromatographic Relative Retention Times of Polybrominated Diphenyl Ethers
URI http://lib.cqvip.com/qk/84126X/201111/40185115.html
https://api.istex.fr/ark:/67375/WNG-WZQWCWHZ-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201100039
https://www.proquest.com/docview/1766806815
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1001-604X
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1614-7065
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027726
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqeiiX0hdiKa18qOAU8ObhJMcqBVZI5VEV7YqL5YztdmGVtLtLVfj1zDibwFaqkNpbrIwTxx7b3zgz3zD2Qdg0A8hdYEDoIAZnglw4tFpFnlkjdCkdBQp_PpaD8_holIweRPE3_BDdgRvNDL9e0wTX5WzvnjQULmvwFJw-vhQX4X4kvU31Jby3uFKfb414hgIp4lHL2ijCveXqxKzwva6-_cT9YmmHekqd_XsJfj4EsX4XOlhjum1_43xytXs9L3fh9g9qx__5wBfs-QKi8o-NTr1kT2z1ij0r2sxwr1mFKyOnJGozjpCXI4Tkp1P64UODzGvHD_WME-suouGGEXsMvPG6-2XxYt64WHIffkLyp_XkpkTxcYXI1_BPY3I8u5nwfY9O37Dzg_2vxSBY5G0IgOy_AHKj-yHkkRahiSxoHQEIqV2JRZkanQrtAKAvjLMxlJkIrbVoh-VhpgVk0TpbqerKbjBuRKKtjeLYpGgnIprKUhuVLnaJzCMpkx7b7MZN_Wj4ORSajIQj8WbQDqSCBeM5Jd6YqIarOVTUxarr4h7b6eTbZ_1NctvrRSemp1fkIZcmanh8qIYXZ8NiOLhQgx7bahVHLRaHmSJOzkzIjFoYeg145HWqODoputLmv1R6y1b9abiPotxiK_PptX2HcGpevvdT5g4ywBgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQLb9QtBXxAcErr5uEkRxTahtIuBbXaqhfLGduwdJXA7hZRfj0zziZlkRAS3GJlnMT22P7GmfmGsefCphlA7gIDQgcxOBPkwqHVKvLMGqEr6ShQ-Ggoy9P44CzpvAkpFqblh-gP3Ghm-PWaJjgdSG9fs4bC5wY8B6cPML3JVmOJxgrhog_htc2V-oxrxDQUSBGfdbyNItxerk_cCp-a-uNX3DGW9qhV6u7vSwD0Vxjr96G9O6zqWtC6n1xsXc6rLfjxG7njfzXxLru9QKn8VatW99gNW99na0WXHO4Bq3Fx5JRHbcYR9XJEkfx4Sv98aJx54_i-nnEi3kVA3JJij4G3jnffLF7MWy9L7iNQSP64mVxVKD6uEfwa_npMvmdXE77rAepDdrq3e1KUwSJ1QwBkAgaQG70TQh5pEZrIgtYRgJDaVViUqdGp0A4AdoRxNoYqE6G1Fk2xPMy0gCx6xFbqprbrjBuRaGujODYpmooIqLLURpWLXSLzSMpkwDb6gVNfWooOhVYjQUm8GXQjqWBBek65NyaqpWsOFXWx6rt4wF728t2z_iT5witGL6anF-QklyZqNNxXo_P3o2JUnqtywDY7zVGL9WGmiJYzEzKjLwy9Cvzldao4eFf0pY1_qfSMrZUnR4fq8M3w7WN2yx-O-6DKTbYyn17aJ4iu5tVTP39-ArvHHDE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgk2AvG59atwF-QPCUzcuH4zyidF0ZUApi6rQXyznbUFYlW9tNbH89PqfJKBJCgrdYOSexfbZ_59z9jpCXzKQCILOBBqaCGKwOMmad1coyYTRTBbcYKPxhwPvH8dFJ0ngTYixMzQ_RHrjhzPDrNU5wc67t3i1rKHyvwHNw-gDTu2Q1TjKBXn3dz-GtzZX6jGvINBRwFp80vI0s3Fuuj9wK36ry64XbMZb2qFXs7h9LAPRXGOv3od4GKZoW1O4nZ7uX82IXbn4jd_yvJj4g6wuUSt_UavWQ3DHlI3I_b5LDPSalWxwp5lGbUYd6qUORdDjFfz44zrSy9FDNKBLvOkBck2KPgdaOd1fGXcxrL0vqI1BQflhNrgsnPi4d-NW0O0bfs-sJPfAA9Qk57h18yfvBInVDAGgCBpBptR9CFikW6siAUhEA48oWrshTrVKmLADsM21NDIVgoTHGmWJZKBQDET0lK2VVmk1CNUuUMVEc69SZig5QidREhY1twrOI86RDttqBk-c1RYd0ViNCSXczaEZSwoL0HHNvTGRN1xxK7GLZdnGHvG7lm2f9SfKVV4xWTE3P0EkuTeRocChHp59G-ah_KvsdstNojlysDzOJtJyCcYFfGHoV-MvrZH70MW9LW_9S6QW5N-z25Pu3g3fbZM2fjfuYyh2yMp9emmcOXM2L5376_AQ9txu1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Modes+for+the+Prediction+of+Gas+Chromatographic+Relative+Retention+Times+of+Polybrominated+Diphenyl+Ethers&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Yi%2C+Zhongsheng&rft.au=Li%2C+Lianchen&rft.au=Zhang%2C+Aiqian&rft.au=Wang%2C+Liansheng&rft.date=2011-11-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=29&rft.issue=11&rft.spage=2495&rft.epage=2504&rft_id=info:doi/10.1002%2Fcjoc.201100039&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_WZQWCWHZ_H
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg