Synthesis of Aqueous CdTe Nanocrystals with High Efficient Blue-Green Emission of Exciton

As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. Th...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 30; no. 4; pp. 803 - 808
Main Author 邵海宝 王春雷 李荣青 徐淑宏 张海升 崔一平
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.04.2012
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1001-604X
1614-7065
DOI10.1002/cjoc.201100113

Cover

More Information
Summary:As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimi- zation of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2 × 10-5 mol/L, to get a slow growth rate after nucleation. The as-prepared blue-emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as-prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time-resolved PL decay and X-ray photoelectron spectroscopy (XPS) results show the as-prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions.
Bibliography:31-1547/O6
nanocrystals, CdTe, blue-emitting
As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimi- zation of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2 × 10-5 mol/L, to get a slow growth rate after nucleation. The as-prepared blue-emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as-prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time-resolved PL decay and X-ray photoelectron spectroscopy (XPS) results show the as-prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions.
ArticleID:CJOC201100113
ark:/67375/WNG-TZ9W2XXL-B
the National Natural Science Foundation of China - No. 60877024
istex:7CE1BF853A077A6FE28E79B04611181DEE149991
Specialized Research Fund for the Doctoral Program of Higher Education - No. 20090092110015, 20090092120022
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201100113