Synthesis of Aqueous CdTe Nanocrystals with High Efficient Blue-Green Emission of Exciton
As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. Th...
Saved in:
| Published in | Chinese journal of chemistry Vol. 30; no. 4; pp. 803 - 808 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
WILEY-VCH Verlag
01.04.2012
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-604X 1614-7065 |
| DOI | 10.1002/cjoc.201100113 |
Cover
| Summary: | As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimi- zation of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2 × 10-5 mol/L, to get a slow growth rate after nucleation. The as-prepared blue-emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as-prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time-resolved PL decay and X-ray photoelectron spectroscopy (XPS) results show the as-prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions. |
|---|---|
| Bibliography: | 31-1547/O6 nanocrystals, CdTe, blue-emitting As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimi- zation of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2 × 10-5 mol/L, to get a slow growth rate after nucleation. The as-prepared blue-emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as-prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time-resolved PL decay and X-ray photoelectron spectroscopy (XPS) results show the as-prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions. ArticleID:CJOC201100113 ark:/67375/WNG-TZ9W2XXL-B the National Natural Science Foundation of China - No. 60877024 istex:7CE1BF853A077A6FE28E79B04611181DEE149991 Specialized Research Fund for the Doctoral Program of Higher Education - No. 20090092110015, 20090092120022 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1001-604X 1614-7065 |
| DOI: | 10.1002/cjoc.201100113 |