Parallel architecture to accelerate superparamagnetic clustering algorithm

Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for r...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 56; no. 14; pp. 701 - 704
Main Authors Wang, Pan Ke, Chen, Chang Hao, Pun, Sio Hang, Zhang, Baijun, Mak, Peng Un, Vai, Mang I, Lei, Tim C
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 09.07.2020
Subjects
Online AccessGet full text
ISSN0013-5194
1350-911X
1350-911X
DOI10.1049/el.2020.0760

Cover

Abstract Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen–Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open-source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real-time neural spike sorting.
AbstractList Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self‐organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen–Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open‐source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real‐time neural spike sorting.
Author Lei, Tim C
Wang, Pan Ke
Chen, Chang Hao
Zhang, Baijun
Pun, Sio Hang
Mak, Peng Un
Vai, Mang I
Author_xml – sequence: 1
  givenname: Pan Ke
  surname: Wang
  fullname: Wang, Pan Ke
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China
– sequence: 2
  givenname: Chang Hao
  surname: Chen
  fullname: Chen, Chang Hao
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China
– sequence: 3
  givenname: Sio Hang
  surname: Pun
  fullname: Pun, Sio Hang
  email: lodgepun@um.edu.mo
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China
– sequence: 4
  givenname: Baijun
  surname: Zhang
  fullname: Zhang, Baijun
  organization: School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, People's Republic of China
– sequence: 5
  givenname: Peng Un
  surname: Mak
  fullname: Mak, Peng Un
  organization: Department of Electrical and Computer Engineering, University of Macau, Macau, People's Republic of China
– sequence: 6
  givenname: Mang I
  surname: Vai
  fullname: Vai, Mang I
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China
– sequence: 7
  givenname: Tim C
  surname: Lei
  fullname: Lei, Tim C
  organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China
BookMark eNqFkDtPwzAUhS0EEuWx8QMyMDCQcm8ct84IqLwUCQYGNsuxb4qRm0SOI9R_T6oyIMRjusv3nXN1Dthu0zbE2AnCFCEvLshPM8hgCvMZ7LAJcgFpgfiyyyYAyFOBRb7PjvveVYA55jPIccIennTQ3pNPdDCvLpKJQ6Aktok2hjwFHSnph45CN4IrvWwoOpMYP_SRgmuWifbLNrj4ujpie7X2PR1_3kP2fLN4vr5Ly8fb--vLMjVcjn8UVkppKzuvbSaMRc65rjLUQiDJembtHCXUojCyIiGtAAApZxXm0haGkB-ydBs7NJ1ev4_Pqy64lQ5rhaA2UyjyajOF2kwx8tmWN6Ht-0C1Mi7q6NomBu38b9L5N-mfDrHF352n9Z-sWpRldnUDc5B89M62nqOo3tohNONwv1Wc_oAuyi_Jna35B_o0m_E
CitedBy_id crossref_primary_10_1155_2022_7551035
crossref_primary_10_1109_ACCESS_2021_3092403
crossref_primary_10_61189_016816myowlr
Cites_doi 10.1016/0378-4371(90)90275-W
10.1103/PhysRevLett.76.3251
10.1016/j.brainresbull.2015.04.007
10.1186/1471-2105-6-82
10.1016/S0378-4371(99)00524-5
10.1162/neco.1997.9.8.1805
10.1162/089976604774201631
10.1371/journal.pone.0225138
10.1109/JSSC.2014.2359219
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/el.2020.0760
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 704
ExternalDocumentID 10.1049/el.2020.0760
10_1049_el_2020_0760
ELL2BF07083
Genre rapidPublication
GrantInformation_xml – fundername: Universidade de Macau
  grantid: MYRG2019-00056-AMSV
– fundername: the Science and Technology Development Fund of Macau (FDCT)
  grantid: 088/2016/A2
– fundername: the Science and Technology Development Fund of Macau (FDCT)
  grantid: 093/2015/A3
– fundername: Universidade de Macau
  grantid: MYRG2018-00146-AMSV
– fundername: Science and Technology Development Fund of Macau (FDCT)
  funderid: 088/2016/A2
– fundername: Universidade de Macau
  funderid: MYRG2018‐00146‐AMSV
– fundername: Universidade de Macau
  funderid: MYRG2019‐00056‐AMSV
– fundername: Science and Technology Development Fund of Macau (FDCT)
  funderid: 093/2015/A3
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c3813-9d888dbd7fd25cd1333ab21a551e8f6dd7180f59c8be58d5000886b148d9ce13
IEDL.DBID UNPAY
ISSN 0013-5194
1350-911X
IngestDate Thu Oct 30 06:07:57 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Wed Oct 29 21:25:25 EDT 2025
Wed Jan 22 16:59:07 EST 2025
Tue Jan 05 21:44:07 EST 2021
Thu Jul 23 04:12:57 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Markov process
parallel algorithms
data density
parallel architectures
Swendsen–Wang Monte Carlo approximation technique
superparamagnetic clustering algorithm
mutual interaction energy
parallel architecture
parallel superparamagnetic algorithm
SPC algorithm
Monte Carlo methods
pattern clustering
open-source dataset
real-time neural spike sorting
digital electronic technology
Markov processes
hardware architecture
neurophysiology
medical computing
unsupervised classification technique
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3813-9d888dbd7fd25cd1333ab21a551e8f6dd7180f59c8be58d5000886b148d9ce13
Notes Tim C. Lei: Also with Department of Electrical Engineering, University of Colorado, Denver CO, USA
Pan Ke Wang and Mang I. Vai: Also with Department of Electrical and Computer Engineering, University of Macau, Macau, People's Republic of China
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.0760
PageCount 4
ParticipantIDs iet_journals_10_1049_el_2020_0760
unpaywall_primary_10_1049_el_2020_0760
crossref_citationtrail_10_1049_el_2020_0760
crossref_primary_10_1049_el_2020_0760
wiley_primary_10_1049_el_2020_0760_ELL2BF07083
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-07-09
PublicationDateYYYYMMDD 2020-07-09
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-09
  day: 09
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Tetko, I.V.; Facius, A.; Ruepp, A. (C3) 2005; 6
Blatt, M.; Wiseman, S.; Domany, E. (C7) 1996; 76
Ballini, M.; Müller, J.; Livi, P. (C6) 2014; 49
Rey, H.G.; Pedreira, C.; Quian Quiroga, R. (C2) 2015; 119
Getz, G.; Levine, E.; Domany, E. (C4) 2000; 279
Wang, P.K.; Pun, S.H.; Chen, C.H. (C5) 2019; 14
Blatt, M.; Wiseman, S.; Domany, E. (C8) 1997; 9
Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. (C1) 2004; 16
Wang, J.-S.; Swendsen, R.H. (C9) 1990; 167
2014; 49
2005; 6
2015; 119
1990; 167
2000; 279
2004; 16
1996; 76
1997; 9
2019; 14
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_10_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_3_1
e_1_2_6_2_1
References_xml – volume: 167
  start-page: 565
  issue: 3
  year: 1990
  end-page: 579
  ident: C9
  article-title: Cluster Monte Carlo algorithms
  publication-title: Physica A
– volume: 14
  start-page: 1
  issue: 11
  year: 2019
  end-page: 30
  ident: C5
  article-title: Low-latency single channel real-time neural spike sorting system based on template matching
  publication-title: PLoS One
– volume: 76
  start-page: 3251
  issue: 18
  year: 1996
  ident: C7
  article-title: Superparamagnetic clustering of data
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 1661
  issue: 8
  year: 2004
  end-page: 1687
  ident: C1
  article-title: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering
  publication-title: Neural Comput.
– volume: 6
  start-page: 82
  issue: 1
  year: 2005
  ident: C3
  article-title: Super paramagnetic clustering of protein sequences
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: 1805
  issue: 8
  year: 1997
  end-page: 1842
  ident: C8
  article-title: Data clustering using a model granular magnet
  publication-title: Neural Comput.
– volume: 279
  start-page: 457
  issue: 1
  year: 2000
  end-page: 464
  ident: C4
  article-title: Super-paramagnetic clustering of yeast gene expression profiles
  publication-title: Physica A
– volume: 119
  start-page: 106
  year: 2015
  end-page: 117
  ident: C2
  article-title: Past, present and future of spike sorting techniques
  publication-title: Brain Res. Bull.
– volume: 49
  start-page: 2705
  issue: 11
  year: 2014
  end-page: 2719
  ident: C6
  article-title: A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro
  publication-title: IEEE J. Solid-State Circuits
– volume: 279
  start-page: 457
  issue: 1
  year: 2000
  end-page: 464
  article-title: Super‐paramagnetic clustering of yeast gene expression profiles
  publication-title: Physica A
– volume: 49
  start-page: 2705
  issue: 11
  year: 2014
  end-page: 2719
  article-title: A 1024‐channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro
  publication-title: IEEE J. Solid‐State Circuits
– volume: 76
  start-page: 3251
  issue: 18
  year: 1996
  article-title: Superparamagnetic clustering of data
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 1805
  issue: 8
  year: 1997
  end-page: 1842
  article-title: Data clustering using a model granular magnet
  publication-title: Neural Comput.
– volume: 167
  start-page: 565
  issue: 3
  year: 1990
  end-page: 579
  article-title: Cluster Monte Carlo algorithms
  publication-title: Physica A
– volume: 16
  start-page: 1661
  issue: 8
  year: 2004
  end-page: 1687
  article-title: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering
  publication-title: Neural Comput.
– volume: 14
  start-page: 1
  issue: 11
  year: 2019
  end-page: 30
  article-title: Low‐latency single channel real‐time neural spike sorting system based on template matching
  publication-title: PLoS One
– volume: 119
  start-page: 106
  year: 2015
  end-page: 117
  article-title: Past, present and future of spike sorting techniques
  publication-title: Brain Res. Bull.
– volume: 6
  start-page: 82
  issue: 1
  year: 2005
  article-title: Super paramagnetic clustering of protein sequences
  publication-title: BMC Bioinformatics
– ident: e_1_2_6_10_1
  doi: 10.1016/0378-4371(90)90275-W
– ident: e_1_2_6_8_1
  doi: 10.1103/PhysRevLett.76.3251
– ident: e_1_2_6_3_1
  doi: 10.1016/j.brainresbull.2015.04.007
– ident: e_1_2_6_4_1
  doi: 10.1186/1471-2105-6-82
– ident: e_1_2_6_5_1
  doi: 10.1016/S0378-4371(99)00524-5
– ident: e_1_2_6_9_1
  doi: 10.1162/neco.1997.9.8.1805
– ident: e_1_2_6_2_1
  doi: 10.1162/089976604774201631
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.pone.0225138
– ident: e_1_2_6_7_1
  doi: 10.1109/JSSC.2014.2359219
SSID ssib014146041
ssj0012997
Score 2.3307765
Snippet Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual...
Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self‐organised based on data density and mutual...
SourceID unpaywall
crossref
wiley
iet
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 701
SubjectTerms Circuits and systems
data density
digital electronic technology
hardware architecture
Markov process
Markov processes
medical computing
Monte Carlo methods
mutual interaction energy
neurophysiology
open‐source dataset
parallel algorithms
parallel architecture
parallel architectures
parallel superparamagnetic algorithm
pattern clustering
real‐time neural spike sorting
SPC algorithm
superparamagnetic clustering algorithm
Swendsen–Wang Monte Carlo approximation technique
unsupervised classification technique
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHJSD8RlRMTVRL6bQLqXsHn0RNMR4wMRbs93dIkkpBCHGf-9MaRFMfNzadLLdzGz2m9mZnQ_gjAkXvXgW2Vwx3_bCUNtc-8KWigDapCBK1RaPfufZe3hpvhQgJ-PUgz5xZdj5iRudlpv5zQMq3cZ9uJ7peE5Igv5t3VAGgTk1yjGtQYlhYM6KULq_7WbRFS4t18MdwfEW1R-IcqKVkxugE-NlNfHfx1tBqzWcShnWZ8lYfrzLOF71Z1NAam_BZuZJWldz029DwSQ7UF7qL7gLD09yQlwpsbWcL7CmI0sqhXhDbSKst9nYTKgD-FD2E7rSaKl4Ru0TcAhLxv3RZDB9He5Br33Xu-nYGXmCrRCEG7bQGNvqULcizZpKYyjakCFzJXpIhke-1ghKTtQUioemyTXxInDuhxgdaaGM29iHYjJKzAFY-CpD6SmjuPQcLXEI7kg_bfbXaglRgctcR4HKGosTv0UcpAluTwQmDkijAWm0AucL6fG8ocYPcqeo7iC39g8y1RWZu-7Xt2CsowpcLIz1x89qqSV_FcLhu-y6jXskbxz-Y3ZHsEHPaW2vOIbidDIzVfRgpuFJtjo_ARo65nA
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IHtSD8RlRMTVRL6baN7tHNRBCiOGACbdmX0WSUkiBGP-9M9uKcEDjse3sNpnd2fl2Z_YbQm485gKK9xKbSi-yAyGUTVXEbC7RQWvjRDHb4jVqvwWdQTgoD9zwLkzBD7E8cEPLMOs1GjgXRRUSALU4iBg48JwHDC1VyLYLUAZnuBf0llEEWGpNcRU_dNCoB2XiO7R_XG295pIqIw0Qc2eRTfnnB0_TddBqvE7rgOyXcNF6Ksb3kGzp7IjsrZAIHpNOj-dYECW1VoMC1nxicSnBqSAXhDVbTHWONN9jPszw3qIl0wVyJEAXFk-Hk3w0fx-fkH6r2X9p22WFBFuCp_VtpmADq4RqJMoLpYL9ps-F53KAQZomkVLgeZwkZJIKHVKFxQ8ojQRsgRST2vVPSTWbZPqMWPDIBQ-klpQHjuLQBXV4ZBj9Gg3GauT-W0exLNnDsYhFGpsodsBincao0Rg1WiO3S-lpwZqxQe4a1B2XZjPbIFNfk2l2f77FU5XUyN1ysP74WTGffhWC7rvecwsWQuqf_7fBBdnF9yabl12S6jxf6Dpglrm4MhPzC7544SE
  priority: 102
  providerName: Wiley-Blackwell
Title Parallel architecture to accelerate superparamagnetic clustering algorithm
URI http://digital-library.theiet.org/content/journals/10.1049/el.2020.0760
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.0760
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.0760
UnpaywallVersion publishedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012997
  issn: 1350-911X
  databaseCode: IDLOA
  dateStart: 20130103
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012997
  issn: 1350-911X
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9tADLfW9mHwAGMwUQZVkBgvKCVNk_TusXxUgCroA0jlKbqvMERIq5IIwV8_O0lLi8Q2ibdEcZzkfD7bse9ngD2Xt9CLdyObKTewPSm1zXTAbaHIQJvciFK1xWVwduNdDP3h3F6YAh9i9sONNCNfr0nBxzoq1vki6vT4oaHkges0Kb1UgVrgoz9ehdrN5aB7O21dgC5K0dnWd0izh2X1-_vbF-xS5d6gn_k1S8bi5VnE8aLnmpue3iqo6UsXFScPzSyVTfX6Ds_xc1_1DVZKz9TqFlNpDb6Y5Dssz-EVrsPFQEyo90pszecfrHRkCaXQfhHshPWUjc2EEMUfxV1CWyQtFWcEx4AsLBHfjSb36e_HDbjunV4fn9llMwZboVFv21xjrKyl7kTa9ZXG0LYtpNsS6HEZFgVao5FzIp8rJo3PNPVZYCyQGG1prkyr_QOqySgxm2DhqZDCU0Yx4TlaIAvmiCAHD-x0OK_DwVQSoSqByqlfRhzmCXOPhyYOaYBCGqA6_JpRjwuAjg_odlGoYamhTx_Q7CzQnPbfroUopzrsz6bEPx5WCPmvRMi-7x71cM1l7a3_5fwTlug4Lxjm21BNJ5nZQbcolQ2ouN6gAbXzk_5Vt1FqwR-dfAeh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8EH9AH42dERWeivpjp2BftoxoI4iQ8YMLb0rUdkoxBYIvxv_dumwgPaHxceu2Sa6-_u177O0KuTFYHL94MdSpMV7eDQOpUukznAgFaZSCKty26bvvN7gycQVHnFN_C5PwQiwM3tIxsv0YDxwPpPOC0kSRTYebANO4wt1Qim7ZbdzH6Mu3eIo0Ae21WXcVyDLTqQXHzHfrfL_dewaTSSIGPWUnjKf_84FG06rVmsNPaJTuFv6g95BO8RzZUvE-2l1gED0inx2dYESXSlrMCWjLRuBCAKkgGoc3TqZohz_eYD2N8uKiJKEWSBBhC49FwMhsl7-ND0m81-09tvSiRoAuAWktnEiJYGchGKE1HSAg4LR6YdQ5-kKKhKyVAjxE6TNBAOVRi9QNK3QBiIMmEqltHpBxPYnVMNPjkAbeFEpTbhuQwBDW4m1H6NRqMVcntt458UdCHYxWLyM_S2DbzVeSjRn3UaJVcL6SnOW3GGrlLULdf2M18jUxtRabp_bT5UxlWyc1isv74Wb6gfhWC4T3zsQU7IbVO_tvhglTa_VfP9567L6dkC2Wyq73sjJSTWapq4MAkwXm2SL8A9S7kjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IJj4OxmdERWuiXky19MXu0QcNIiEcMOHWbHe3SFIKKRDjv3emrRUOaDw2nd0mszv7zXRmvyHkymQ18OLNUKfCdHU7CKROpct0LhCgVQqiWG3RcZtvdqvv9PM-p3gXJuOHKH64oWWk5zUauJrIMAs4bSTJVJg5MI07zC2VyLrtABgitbPdLdIIcNam3VUsx0Cr7ueV7zD-fnH0EiaVhgp8zM15POGfHzyKlr3WFHa8XbKT-4vaQ7bAe2RNxftke4FF8IC0ujzBjiiRtpgV0GZjjQsBqIJkENp0PlEJ8nyP-CDGi4uaiOZIkgBTaDwajJPh7H10SHpeo_fU1PMWCboAqLV0JiGClYGsh9J0hISA0-KBWePgBykaulIC9BihwwQNlEMldj-g1A0gBpJMqJp1RMrxOFbHRINHHnBbKEG5bUgOU1CDuymlX73OWIXcfuvIFzl9OHaxiPw0jW0zX0U-atRHjVbIdSE9yWgzVshdgrr93G6mK2SqSzKN9s87H7ZEhdwUi_XHx7IN9asQTN82Hz04Cal18t8BF2Sj--z57ZfO6ynZQpG0spedkfIsmasq-C-z4Dzdo1_QdOQc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPagH38b6CibqxVApBbp7rMbGGGM8aFJPZF9UI9KmhRj99c4Ara2Jj8QbhGGAnZ2dGWb2G4BDl9fRi3cjmyk3sD0ptc10wG2hyECb3IhStcVNcHnvXXX8zsRemAIfYvzDjTQjX69Jwfs6Ktb5Iur0-Kmh5IHr1Ci9NAtzgY_-eAXm7m9uWw-j1gXoohSdbX2HNLtTVr9_vX3KLs0-GfQz57OkL95eRRxPe6656Wkvgxq9dFFx8lzLUllT71_wHP_3VSuwVHqmVquYSqswY5I1WJzAK1yHq1sxoN4rsTWZf7DSniWUQvtFsBPWMOubASGKv4huQlskLRVnBMeALCwRd3uDp_TxZQPu2hd355d22YzBVmjUGzbXGCtrqZuRdn2lMbRtCOnWBXpchkWB1mjknMjniknjM019FhgLJEZbmitTb2xCJeklZgssPBVSeMooJjxHC2TBHBHk4IHNJudVOBlJIlQlUDn1y4jDPGHu8dDEIQ1QSANUhaMxdb8A6PiG7gCFGpYaOvyGZm-K5uL681qIcqrC8XhK_PKwQsg_EiH7a_esjWsua2z_lfMOLNBxXjDMd6GSDjKzh25RKvfLef8BSowFPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+architecture+to+accelerate+superparamagnetic+clustering+algorithm&rft.jtitle=Electronics+letters&rft.au=Wang%2C+Pan+Ke&rft.au=Chen%2C+Chang+Hao&rft.au=Pun%2C+Sio+Hang&rft.au=Zhang%2C+Baijun&rft.date=2020-07-09&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=14&rft.spage=701&rft.epage=704&rft_id=info:doi/10.1049%2Fel.2020.0760&rft.externalDBID=10.1049%252Fel.2020.0760&rft.externalDocID=ELL2BF07083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon