Parallel architecture to accelerate superparamagnetic clustering algorithm
Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for r...
Saved in:
| Published in | Electronics letters Vol. 56; no. 14; pp. 701 - 704 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
09.07.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-5194 1350-911X 1350-911X |
| DOI | 10.1049/el.2020.0760 |
Cover
| Abstract | Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen–Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open-source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real-time neural spike sorting. |
|---|---|
| AbstractList | Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self‐organised based on data density and mutual interaction energy. Traditional SPC algorithm uses the Swendsen–Wang Monte Carlo approximation technique to significantly reduce the search space for reasonable clustering. However, Swendsen–Wang approximation is a Markov process which limits the conventional superparamagnetic technique to process data clustering in a sequential manner. Here the authors propose a parallel approach to replace the conventional appropriation to allow the algorithm to perform clustering in parallel. One synthetic and one open‐source dataset were used to validate the accuracy of this parallel approach in which comparable clustering results were obtained as compared to the conventional implementation. The parallel method has an increase of clustering speed at least 8.7 times over the conventional approach, and the larger the sample size, the more increase in speed was observed. This can be explained by the higher degree of parallelism utilised for the increased data points. In addition, a hardware architecture was proposed to implement the parallel superparamagnetic algorithm using digital electronic technologies suitable for rapid or real‐time neural spike sorting. |
| Author | Lei, Tim C Wang, Pan Ke Chen, Chang Hao Zhang, Baijun Pun, Sio Hang Mak, Peng Un Vai, Mang I |
| Author_xml | – sequence: 1 givenname: Pan Ke surname: Wang fullname: Wang, Pan Ke organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China – sequence: 2 givenname: Chang Hao surname: Chen fullname: Chen, Chang Hao organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China – sequence: 3 givenname: Sio Hang surname: Pun fullname: Pun, Sio Hang email: lodgepun@um.edu.mo organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China – sequence: 4 givenname: Baijun surname: Zhang fullname: Zhang, Baijun organization: School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, People's Republic of China – sequence: 5 givenname: Peng Un surname: Mak fullname: Mak, Peng Un organization: Department of Electrical and Computer Engineering, University of Macau, Macau, People's Republic of China – sequence: 6 givenname: Mang I surname: Vai fullname: Vai, Mang I organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China – sequence: 7 givenname: Tim C surname: Lei fullname: Lei, Tim C organization: State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, People's Republic of China |
| BookMark | eNqFkDtPwzAUhS0EEuWx8QMyMDCQcm8ct84IqLwUCQYGNsuxb4qRm0SOI9R_T6oyIMRjusv3nXN1Dthu0zbE2AnCFCEvLshPM8hgCvMZ7LAJcgFpgfiyyyYAyFOBRb7PjvveVYA55jPIccIennTQ3pNPdDCvLpKJQ6Aktok2hjwFHSnph45CN4IrvWwoOpMYP_SRgmuWifbLNrj4ujpie7X2PR1_3kP2fLN4vr5Ly8fb--vLMjVcjn8UVkppKzuvbSaMRc65rjLUQiDJembtHCXUojCyIiGtAAApZxXm0haGkB-ydBs7NJ1ev4_Pqy64lQ5rhaA2UyjyajOF2kwx8tmWN6Ht-0C1Mi7q6NomBu38b9L5N-mfDrHF352n9Z-sWpRldnUDc5B89M62nqOo3tohNONwv1Wc_oAuyi_Jna35B_o0m_E |
| CitedBy_id | crossref_primary_10_1155_2022_7551035 crossref_primary_10_1109_ACCESS_2021_3092403 crossref_primary_10_61189_016816myowlr |
| Cites_doi | 10.1016/0378-4371(90)90275-W 10.1103/PhysRevLett.76.3251 10.1016/j.brainresbull.2015.04.007 10.1186/1471-2105-6-82 10.1016/S0378-4371(99)00524-5 10.1162/neco.1997.9.8.1805 10.1162/089976604774201631 10.1371/journal.pone.0225138 10.1109/JSSC.2014.2359219 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1049/el.2020.0760 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 704 |
| ExternalDocumentID | 10.1049/el.2020.0760 10_1049_el_2020_0760 ELL2BF07083 |
| Genre | rapidPublication |
| GrantInformation_xml | – fundername: Universidade de Macau grantid: MYRG2019-00056-AMSV – fundername: the Science and Technology Development Fund of Macau (FDCT) grantid: 088/2016/A2 – fundername: the Science and Technology Development Fund of Macau (FDCT) grantid: 093/2015/A3 – fundername: Universidade de Macau grantid: MYRG2018-00146-AMSV – fundername: Science and Technology Development Fund of Macau (FDCT) funderid: 088/2016/A2 – fundername: Universidade de Macau funderid: MYRG2018‐00146‐AMSV – fundername: Universidade de Macau funderid: MYRG2019‐00056‐AMSV – fundername: Science and Technology Development Fund of Macau (FDCT) funderid: 093/2015/A3 |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3813-9d888dbd7fd25cd1333ab21a551e8f6dd7180f59c8be58d5000886b148d9ce13 |
| IEDL.DBID | UNPAY |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Thu Oct 30 06:07:57 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 Wed Oct 29 21:25:25 EDT 2025 Wed Jan 22 16:59:07 EST 2025 Tue Jan 05 21:44:07 EST 2021 Thu Jul 23 04:12:57 EDT 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Markov process parallel algorithms data density parallel architectures Swendsen–Wang Monte Carlo approximation technique superparamagnetic clustering algorithm mutual interaction energy parallel architecture parallel superparamagnetic algorithm SPC algorithm Monte Carlo methods pattern clustering open-source dataset real-time neural spike sorting digital electronic technology Markov processes hardware architecture neurophysiology medical computing unsupervised classification technique |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3813-9d888dbd7fd25cd1333ab21a551e8f6dd7180f59c8be58d5000886b148d9ce13 |
| Notes | Tim C. Lei: Also with Department of Electrical Engineering, University of Colorado, Denver CO, USA Pan Ke Wang and Mang I. Vai: Also with Department of Electrical and Computer Engineering, University of Macau, Macau, People's Republic of China |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.0760 |
| PageCount | 4 |
| ParticipantIDs | iet_journals_10_1049_el_2020_0760 unpaywall_primary_10_1049_el_2020_0760 crossref_citationtrail_10_1049_el_2020_0760 crossref_primary_10_1049_el_2020_0760 wiley_primary_10_1049_el_2020_0760_ELL2BF07083 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-09 |
| PublicationDateYYYYMMDD | 2020-07-09 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Tetko, I.V.; Facius, A.; Ruepp, A. (C3) 2005; 6 Blatt, M.; Wiseman, S.; Domany, E. (C7) 1996; 76 Ballini, M.; Müller, J.; Livi, P. (C6) 2014; 49 Rey, H.G.; Pedreira, C.; Quian Quiroga, R. (C2) 2015; 119 Getz, G.; Levine, E.; Domany, E. (C4) 2000; 279 Wang, P.K.; Pun, S.H.; Chen, C.H. (C5) 2019; 14 Blatt, M.; Wiseman, S.; Domany, E. (C8) 1997; 9 Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. (C1) 2004; 16 Wang, J.-S.; Swendsen, R.H. (C9) 1990; 167 2014; 49 2005; 6 2015; 119 1990; 167 2000; 279 2004; 16 1996; 76 1997; 9 2019; 14 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_10_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_3_1 e_1_2_6_2_1 |
| References_xml | – volume: 167 start-page: 565 issue: 3 year: 1990 end-page: 579 ident: C9 article-title: Cluster Monte Carlo algorithms publication-title: Physica A – volume: 14 start-page: 1 issue: 11 year: 2019 end-page: 30 ident: C5 article-title: Low-latency single channel real-time neural spike sorting system based on template matching publication-title: PLoS One – volume: 76 start-page: 3251 issue: 18 year: 1996 ident: C7 article-title: Superparamagnetic clustering of data publication-title: Phys. Rev. Lett. – volume: 16 start-page: 1661 issue: 8 year: 2004 end-page: 1687 ident: C1 article-title: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering publication-title: Neural Comput. – volume: 6 start-page: 82 issue: 1 year: 2005 ident: C3 article-title: Super paramagnetic clustering of protein sequences publication-title: BMC Bioinformatics – volume: 9 start-page: 1805 issue: 8 year: 1997 end-page: 1842 ident: C8 article-title: Data clustering using a model granular magnet publication-title: Neural Comput. – volume: 279 start-page: 457 issue: 1 year: 2000 end-page: 464 ident: C4 article-title: Super-paramagnetic clustering of yeast gene expression profiles publication-title: Physica A – volume: 119 start-page: 106 year: 2015 end-page: 117 ident: C2 article-title: Past, present and future of spike sorting techniques publication-title: Brain Res. Bull. – volume: 49 start-page: 2705 issue: 11 year: 2014 end-page: 2719 ident: C6 article-title: A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro publication-title: IEEE J. Solid-State Circuits – volume: 279 start-page: 457 issue: 1 year: 2000 end-page: 464 article-title: Super‐paramagnetic clustering of yeast gene expression profiles publication-title: Physica A – volume: 49 start-page: 2705 issue: 11 year: 2014 end-page: 2719 article-title: A 1024‐channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro publication-title: IEEE J. Solid‐State Circuits – volume: 76 start-page: 3251 issue: 18 year: 1996 article-title: Superparamagnetic clustering of data publication-title: Phys. Rev. Lett. – volume: 9 start-page: 1805 issue: 8 year: 1997 end-page: 1842 article-title: Data clustering using a model granular magnet publication-title: Neural Comput. – volume: 167 start-page: 565 issue: 3 year: 1990 end-page: 579 article-title: Cluster Monte Carlo algorithms publication-title: Physica A – volume: 16 start-page: 1661 issue: 8 year: 2004 end-page: 1687 article-title: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering publication-title: Neural Comput. – volume: 14 start-page: 1 issue: 11 year: 2019 end-page: 30 article-title: Low‐latency single channel real‐time neural spike sorting system based on template matching publication-title: PLoS One – volume: 119 start-page: 106 year: 2015 end-page: 117 article-title: Past, present and future of spike sorting techniques publication-title: Brain Res. Bull. – volume: 6 start-page: 82 issue: 1 year: 2005 article-title: Super paramagnetic clustering of protein sequences publication-title: BMC Bioinformatics – ident: e_1_2_6_10_1 doi: 10.1016/0378-4371(90)90275-W – ident: e_1_2_6_8_1 doi: 10.1103/PhysRevLett.76.3251 – ident: e_1_2_6_3_1 doi: 10.1016/j.brainresbull.2015.04.007 – ident: e_1_2_6_4_1 doi: 10.1186/1471-2105-6-82 – ident: e_1_2_6_5_1 doi: 10.1016/S0378-4371(99)00524-5 – ident: e_1_2_6_9_1 doi: 10.1162/neco.1997.9.8.1805 – ident: e_1_2_6_2_1 doi: 10.1162/089976604774201631 – ident: e_1_2_6_6_1 doi: 10.1371/journal.pone.0225138 – ident: e_1_2_6_7_1 doi: 10.1109/JSSC.2014.2359219 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.3307765 |
| Snippet | Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self-organised based on data density and mutual... Superparamagnetic clustering (SPC) is an unsupervised classification technique in which clusters are self‐organised based on data density and mutual... |
| SourceID | unpaywall crossref wiley iet |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 701 |
| SubjectTerms | Circuits and systems data density digital electronic technology hardware architecture Markov process Markov processes medical computing Monte Carlo methods mutual interaction energy neurophysiology open‐source dataset parallel algorithms parallel architecture parallel architectures parallel superparamagnetic algorithm pattern clustering real‐time neural spike sorting SPC algorithm superparamagnetic clustering algorithm Swendsen–Wang Monte Carlo approximation technique unsupervised classification technique |
| SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHJSD8RlRMTVRL6bQLqXsHn0RNMR4wMRbs93dIkkpBCHGf-9MaRFMfNzadLLdzGz2m9mZnQ_gjAkXvXgW2Vwx3_bCUNtc-8KWigDapCBK1RaPfufZe3hpvhQgJ-PUgz5xZdj5iRudlpv5zQMq3cZ9uJ7peE5Igv5t3VAGgTk1yjGtQYlhYM6KULq_7WbRFS4t18MdwfEW1R-IcqKVkxugE-NlNfHfx1tBqzWcShnWZ8lYfrzLOF71Z1NAam_BZuZJWldz029DwSQ7UF7qL7gLD09yQlwpsbWcL7CmI0sqhXhDbSKst9nYTKgD-FD2E7rSaKl4Ru0TcAhLxv3RZDB9He5Br33Xu-nYGXmCrRCEG7bQGNvqULcizZpKYyjakCFzJXpIhke-1ghKTtQUioemyTXxInDuhxgdaaGM29iHYjJKzAFY-CpD6SmjuPQcLXEI7kg_bfbXaglRgctcR4HKGosTv0UcpAluTwQmDkijAWm0AucL6fG8ocYPcqeo7iC39g8y1RWZu-7Xt2CsowpcLIz1x89qqSV_FcLhu-y6jXskbxz-Y3ZHsEHPaW2vOIbidDIzVfRgpuFJtjo_ARo65nA priority: 102 providerName: Institution of Engineering and Technology – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IHtSD8RlRMTVRL6baN7tHNRBCiOGACbdmX0WSUkiBGP-9M9uKcEDjse3sNpnd2fl2Z_YbQm485gKK9xKbSi-yAyGUTVXEbC7RQWvjRDHb4jVqvwWdQTgoD9zwLkzBD7E8cEPLMOs1GjgXRRUSALU4iBg48JwHDC1VyLYLUAZnuBf0llEEWGpNcRU_dNCoB2XiO7R_XG295pIqIw0Qc2eRTfnnB0_TddBqvE7rgOyXcNF6Ksb3kGzp7IjsrZAIHpNOj-dYECW1VoMC1nxicSnBqSAXhDVbTHWONN9jPszw3qIl0wVyJEAXFk-Hk3w0fx-fkH6r2X9p22WFBFuCp_VtpmADq4RqJMoLpYL9ps-F53KAQZomkVLgeZwkZJIKHVKFxQ8ojQRsgRST2vVPSTWbZPqMWPDIBQ-klpQHjuLQBXV4ZBj9Gg3GauT-W0exLNnDsYhFGpsodsBincao0Rg1WiO3S-lpwZqxQe4a1B2XZjPbIFNfk2l2f77FU5XUyN1ysP74WTGffhWC7rvecwsWQuqf_7fBBdnF9yabl12S6jxf6Dpglrm4MhPzC7544SE priority: 102 providerName: Wiley-Blackwell |
| Title | Parallel architecture to accelerate superparamagnetic clustering algorithm |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2020.0760 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2020.0760 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2020.0760 |
| UnpaywallVersion | publishedVersion |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 1350-911X databaseCode: IDLOA dateStart: 20130103 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012997 issn: 1350-911X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9tADLfW9mHwAGMwUQZVkBgvKCVNk_TusXxUgCroA0jlKbqvMERIq5IIwV8_O0lLi8Q2ibdEcZzkfD7bse9ngD2Xt9CLdyObKTewPSm1zXTAbaHIQJvciFK1xWVwduNdDP3h3F6YAh9i9sONNCNfr0nBxzoq1vki6vT4oaHkges0Kb1UgVrgoz9ehdrN5aB7O21dgC5K0dnWd0izh2X1-_vbF-xS5d6gn_k1S8bi5VnE8aLnmpue3iqo6UsXFScPzSyVTfX6Ds_xc1_1DVZKz9TqFlNpDb6Y5Dssz-EVrsPFQEyo90pszecfrHRkCaXQfhHshPWUjc2EEMUfxV1CWyQtFWcEx4AsLBHfjSb36e_HDbjunV4fn9llMwZboVFv21xjrKyl7kTa9ZXG0LYtpNsS6HEZFgVao5FzIp8rJo3PNPVZYCyQGG1prkyr_QOqySgxm2DhqZDCU0Yx4TlaIAvmiCAHD-x0OK_DwVQSoSqByqlfRhzmCXOPhyYOaYBCGqA6_JpRjwuAjg_odlGoYamhTx_Q7CzQnPbfroUopzrsz6bEPx5WCPmvRMi-7x71cM1l7a3_5fwTlug4Lxjm21BNJ5nZQbcolQ2ouN6gAbXzk_5Vt1FqwR-dfAeh |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8EH9AH42dERWeivpjp2BftoxoI4iQ8YMLb0rUdkoxBYIvxv_dumwgPaHxceu2Sa6-_u177O0KuTFYHL94MdSpMV7eDQOpUukznAgFaZSCKty26bvvN7gycQVHnFN_C5PwQiwM3tIxsv0YDxwPpPOC0kSRTYebANO4wt1Qim7ZbdzH6Mu3eIo0Ae21WXcVyDLTqQXHzHfrfL_dewaTSSIGPWUnjKf_84FG06rVmsNPaJTuFv6g95BO8RzZUvE-2l1gED0inx2dYESXSlrMCWjLRuBCAKkgGoc3TqZohz_eYD2N8uKiJKEWSBBhC49FwMhsl7-ND0m81-09tvSiRoAuAWktnEiJYGchGKE1HSAg4LR6YdQ5-kKKhKyVAjxE6TNBAOVRi9QNK3QBiIMmEqltHpBxPYnVMNPjkAbeFEpTbhuQwBDW4m1H6NRqMVcntt458UdCHYxWLyM_S2DbzVeSjRn3UaJVcL6SnOW3GGrlLULdf2M18jUxtRabp_bT5UxlWyc1isv74Wb6gfhWC4T3zsQU7IbVO_tvhglTa_VfP9567L6dkC2Wyq73sjJSTWapq4MAkwXm2SL8A9S7kjQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IJj4OxmdERWuiXky19MXu0QcNIiEcMOHWbHe3SFIKKRDjv3emrRUOaDw2nd0mszv7zXRmvyHkymQ18OLNUKfCdHU7CKROpct0LhCgVQqiWG3RcZtvdqvv9PM-p3gXJuOHKH64oWWk5zUauJrIMAs4bSTJVJg5MI07zC2VyLrtABgitbPdLdIIcNam3VUsx0Cr7ueV7zD-fnH0EiaVhgp8zM15POGfHzyKlr3WFHa8XbKT-4vaQ7bAe2RNxftke4FF8IC0ujzBjiiRtpgV0GZjjQsBqIJkENp0PlEJ8nyP-CDGi4uaiOZIkgBTaDwajJPh7H10SHpeo_fU1PMWCboAqLV0JiGClYGsh9J0hISA0-KBWePgBykaulIC9BihwwQNlEMldj-g1A0gBpJMqJp1RMrxOFbHRINHHnBbKEG5bUgOU1CDuymlX73OWIXcfuvIFzl9OHaxiPw0jW0zX0U-atRHjVbIdSE9yWgzVshdgrr93G6mK2SqSzKN9s87H7ZEhdwUi_XHx7IN9asQTN82Hz04Cal18t8BF2Sj--z57ZfO6ynZQpG0spedkfIsmasq-C-z4Dzdo1_QdOQc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oPagH38b6CibqxVApBbp7rMbGGGM8aFJPZF9UI9KmhRj99c4Ara2Jj8QbhGGAnZ2dGWb2G4BDl9fRi3cjmyk3sD0ptc10wG2hyECb3IhStcVNcHnvXXX8zsRemAIfYvzDjTQjX69Jwfs6Ktb5Iur0-Kmh5IHr1Ci9NAtzgY_-eAXm7m9uWw-j1gXoohSdbX2HNLtTVr9_vX3KLs0-GfQz57OkL95eRRxPe6656Wkvgxq9dFFx8lzLUllT71_wHP_3VSuwVHqmVquYSqswY5I1WJzAK1yHq1sxoN4rsTWZf7DSniWUQvtFsBPWMOubASGKv4huQlskLRVnBMeALCwRd3uDp_TxZQPu2hd355d22YzBVmjUGzbXGCtrqZuRdn2lMbRtCOnWBXpchkWB1mjknMjniknjM019FhgLJEZbmitTb2xCJeklZgssPBVSeMooJjxHC2TBHBHk4IHNJudVOBlJIlQlUDn1y4jDPGHu8dDEIQ1QSANUhaMxdb8A6PiG7gCFGpYaOvyGZm-K5uL681qIcqrC8XhK_PKwQsg_EiH7a_esjWsua2z_lfMOLNBxXjDMd6GSDjKzh25RKvfLef8BSowFPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+architecture+to+accelerate+superparamagnetic+clustering+algorithm&rft.jtitle=Electronics+letters&rft.au=Wang%2C+Pan+Ke&rft.au=Chen%2C+Chang+Hao&rft.au=Pun%2C+Sio+Hang&rft.au=Zhang%2C+Baijun&rft.date=2020-07-09&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=56&rft.issue=14&rft.spage=701&rft.epage=704&rft_id=info:doi/10.1049%2Fel.2020.0760&rft.externalDBID=10.1049%252Fel.2020.0760&rft.externalDocID=ELL2BF07083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |